Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

Memorization to Categorization: Improving
Students' Comprehension of SDLC Models

'K.Gomathi, 2Gudapati Lakshmi Bhavani, ’Khamruddin Syed
123K G Reddy College of Engineering and Technology
"Department of CSE(DS), *Department of ECE, *Department of CSE(AIML)
' gomathi.k@kgr.ac.in, 2lakshmisrinivas.2010@kgr.ac.in, *syedkhamruddin@kgr.ac.in

Abstract—Sophomore-level students of engineering institutions
of computer science engineering often face challenges in
differentiating software development models due to the overlap
between them, which leads to difficulties in recalling and
categorizing. The effectiveness of pedagogical interventions for
improving the conceptual understanding of Software
Development lifecycle models is investigated in the study. A total
of one hundred and twenty students were divided into experiment
and control groups with varied instructions, which incorporated
concept maps, comparative case exercises, and gamified learning
activities. A pre- and post-test design was administered, and the
data were analyzed using a paired t-test and an independent t-test.
The post-test analysis shows significant improvement in the
experimental group of students (M=78.4, SD = 5.9) compared to
the control group (M=61.2, SD=7.4; t(118) = 13.27, p < 0.001). A
one-way ANOVA confirmed a strong effect of instructional
approach on performance, F(1,118) = 176.2, p < 0.001, and the
intervention showed a significant effect (Cohen's d=0.92). Overall,
this structured activity mentioned in the study improved students'
ability to differentiate and categorize software development logic
models, indicating the results, which are both practically and
statistically meaningful.

Keywords—Cognitive Load Theory; Categorization; Concept
mapping; Gamification; Software Engineering

ICTIEE Track—Emerging technologies and future skills
ICTIEE Sub-Track—Pedagogy for the Modern Classroom-
Strategies for Engaging Students through Al

I. INTRODUCTION

NE of the foundational courses in computer science

engineering curriculum is software engineering. This
course intends to develop conceptual understanding and
industry-ready skills. However, many sophomore-level
students find the fundamental ideas behind software
development models, such as the Waterfall, Unified Process,
Incremental, Spiral, and Agile development models, to be
challenging, as many concepts overlap with each other. For
those still developing their understanding of abstraction and
knowledge classification, these models often appear confused,
and this week's differentiation reduces retention, making it
harder for students to grasp the concepts. These kinds of
difficulties are widely reported in the field of computing

education. Pessoni et al. (2015) emphasized that undergraduate
engineering students frequently struggle to convert classroom
instructions into abstract knowledge when foundational
reasoning skills and scaffolded instructions are missing
(Pessoni et al., 2015). Abstract concepts such as data structures
and algorithms observe similar patterns where the cognitive
demands and persistent misconceptions are obvious (Mtaho &
Mselle, 2024). In courses like software engineering, this is
viewed as rote memorization, which includes concepts of list of
phases, pros and cons, and terminologies rather than the
conceptual mapping needed to meaningfully differentiate the
models. These problems addressed in this study are grounded
in the Cognitive Load Theory (CLT). As working memory can
handle only a few chunks of information, tasks that are added
unnecessarily interfere with schema construction and the
integration of new ideas into long-term memory (Winter et al.,
2019; Syed et al., 2025). Traditional lectures often deliver the
phases of software development phases with overlapping (e.g
planning, modelling, construction, testing) without proper
visual representations which pushes the students to learn the
models as interchangeable and resulting into shallow learning.
Structured instructions including concept mappings and
gamified learning can address these issues reducing extraneous
load, supporting schema formation and encouraging active
engagement. Students also construct knowledge by doing,
comparing, and reflecting, applying various software
development models to real-time scenarios. They evaluate the
models side by side and choose the appropriate ones. These
structured pedagogies enhance the students learning by
strengthening the conceptual clarity and promoting deep
learning (Upchurch & Sims-Knight, 1997)

II. BACKGROUND STUDY

Students in computer science education face persistent
challenges in categorization and abstraction. Not only the
programming, but also the concepts related to modeling and
systems thinking, have difficulties with abstract concepts and
categorization. For instance, Silva et al. (2019) highlighted that
students often struggle with mastering software modeling,
especially when using UML diagrams. Many students find it
challenging to understand software engineering models and
methods. This difficulty is often attributed to the complexity of

Khamruddin Syed
KG Reddy College of Engineering and Technology Hyderabad
syedkhamruddin@kgr.ac.in

641

JEET

mailto:gomathi.k@kgr.ac.in
mailto:2lakshmisrinivas.2010@kgr.ac.in
mailto:3syedkhamruddin@kgr.ac.in

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

the material and the everyday use of teacher-centered
instructional approaches (Silva et al., 2019). This observation is
supported by other research indicating that students frequently
struggle to differentiate between various software engineering
concepts. This happens due to the poorly organized instructions
which just include text in the form of bullet points or long
paragraphs of content explanations (Mtaho & Mselle, 2024).
This problem is grounded in Cognitive Load Theory (CLT),
which emphasizes the importance of reducing unnecessary
cognitive load while promoting the mental effort required to
build knowledge structures, or schemas. In computer science,
strategies such as visualization tools and concept maps have
been found to ease cognitive load and enhance understanding
of core concepts by creating long-term schemas (Yousoof et al.,
2007; Winter et al., 2019). Same interventions can be used for
the Software Engineering course concepts to help students to
visualize the models wusing concept maps, tabular
representations, etc. This will enable the course instructors in
reducing the extraneous load on the learners and support them
in building the mental frameworks needed to differentiate
between models.

The limitations of traditional lecture-based teaching have
prompted the broader adoption of active learning methods in
computer science education. Project-based learning, peer
instruction, and gamification have improved student
engagement, motivation, and learning outcomes. For instance,
Morais et al. (2021) found that problem-based learning
significantly increased student engagement and success in
courses like software engineering and information systems
development, as students could experience the iterative nature
of the development process firsthand. It is also evident as per
the existing research that collaborative learning in concepts
such as testing and integration improved cognitive performance
in entire software engineering courses (Gopal and Cooper,
2001). Recent studies also support the integration of interactive
and playful strategies. Studies conducted by past researchers
conducted randomized control interventions to check the
effectiveness of L-E-G-O series play activity (Lopez et al. ,
2024; Shet et al., 2015). The findings also showed that students
who participated in this interactive learning method understood
SDLC models much better than those taught via traditional
lectures. These results underscore the effectiveness of gamified
and hands-on approaches for teaching complex, abstract topics
like software development models.

The problem addressed in this study is grounded in both
Constructivist Learning Theory (CLT) and Cognitive Load
Theory. CLT focuses on reducing the unnecessary cognitive
load demand on the student and allows schema construction,
whereas Constructivism emphasizes active participation and
the construction of knowledge over a period of time. An
OpenSMALS developed by Silva et al. (2020) for teaching
UML reduced the difficulties addressed above and improved
the intended learning outcomes. By grounding in the mentioned
theories and aligning with existing literature, this current study
contributes by designing and administering a unique
instructional model that employs concept mapping, gamified
learning in software development life cycle models.

III. METHODOLOGY

In this study, a control design with a quasi-experimental
approach is implemented. Pre and post-test data were collected
the data to evaluate the effectiveness of the interventions. The
quantitative data is collected through assignments for both the
control and experimental groups. While accommodating the
classroom setting, the casual relationships are assessed by using
this design. Students from Computer Science and Engineering
(AIML) have participated in the study. Participants were
second-year undergraduate students enrolled in the core
Software Engineering course. A total of 120 students
participated, with 60 students assigned to the control group and
60 students assigned to the experimental group. Both groups
were taught by the same instructor to ensure consistency of
delivery and to minimize instructor-related variability.
Students’ demographic backgrounds were diverse, though all
had completed prerequisite programming and introductory
computing courses, ensuring a comparable baseline of prior
knowledge.

The control group received traditional lecture-based instruction,
focusing on descriptive presentations of SDLC models. The
experimental group, however, was exposed to a blended
instructional approach designed around three strategies:

1. Concept Mapping: Visual diagrams were used to highlight
similarities and differences across models. Students were
formed into groups of 3 and given keywords related to the
SDLC models to compare based on parameters like
iterations, increments, risk handling, requirements, etc.
They were asked to draw the concept map in the form of a
chart or a tabular form and were evaluated. The peer
evaluation was done on the basis of completeness, clarity,
correctness, and accuracy. This activity was conducted for
30 minutes.

2. Comparative Case exercises: Students analyzed real-world
scenarios to identify the most appropriate SDLC model. The
students of a group of 3 members were given an additional
30 minutes to identify a suitable model for a real-world
scenario or application. Students did this using various
dimensions, such as most suitable, trade-off reasons, and
justifications. After this they presented
information to the entire class, and the rest of the groups
evaluated using the same dimensions.

exercise,

3. Gamification: Students use gamification tools like HSP and
Mentimeter to participate in gamified learning to drag and
drop , match UML diagrams and also to attempt the quizzes.

These interventions were delivered across four consecutive
weeks, aligning with the curriculum schedule for software
engineering models. A test consisting of MCQs and descriptive
questions was administered as both a before and after test. The
reliability of the instrument was established using Cronbach’s
alpha (a = 0.82), indicating high internal consistency.

642

JEET

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

1. Pre-test: administered one week Dbefore the

instructional unit, assessing baseline understanding.

2. Post-test: administered immediately after the four-
week intervention, measuring knowledge gains.

Both control and experimental groups completed the same
assessments under identical conditions.

The study unfolded in three phases which is presented as a
conceptual diagram Fig. 1:

1. Preparation Phase: Development of instructional
materials, validation of test instruments.

2. Implementation Phase: Delivery of instruction to both
groups, with the control group taught via conventional
lectures and the blended approach for experimental
group of students.

3. Evaluation Phase: administration of the post-test,
followed by statistical analysis of results

p .
I Pre-test \
. e

f Exper[menlﬂ-'l"
Group

Control
Group

Quasi-experimental ‘o 9\".

: cnnven?)onal ' study with % ‘5
N Eeqchlﬂg 1 | Interventions- Cancept a = £
~ without * | mapping, Comaprative sl

interventions case exercises, % g |

o : Gamifications 32/

(

/ Posttest&
{ <]

. Analysis J/
Fig. 1. Conceptual diagram

Attendance was monitored to ensure consistent exposure, and
all students participated voluntarily, with informed consent
obtained before the study.

Quantitative data were analyzed, where descriptive statistics
such as mean, SD were first calculated to summarize
performance. To test for significant differences:

1. Paired-sample t-tests: To compare pre- and post-test
scores within the group.

2. Independent-sample t-tests: To compare post-test
performance between the experimental and control
groups.

3. One-way ANOVA: To confirm the effect of
instructional approach on learning outcomes.

643

4. To determine the magnitude of the intervention’s
impact, the effect size (Cohen’s d) was calculated.

A significance level of p < 0.05 was adopted for entire
inferential tests. Results demonstrated statistically significant
improvements in the experimental group, supporting the
effectiveness of the intervention.

IV. RESULTS

A. Descriptive Statistics

TABLE I shows the mean and standard deviations for both
groups in pre- and post-tests. The pre-test scores indicated no
major differences between the control group (M =42.5, SD =
6.8) and the experimental group (M = 43.1, SD = 7.2),
confirming baseline equivalence. After the instructional
intervention, the experimental group showed a notable results
(M =178.4, SD = 5.9), whereas the control group demonstrated
moderate gains (M =61.2, SD =7.4).

TABLEI
PRE- AND POST-TEST SCORES
Source SS df MS F p-value
Between Groups 12850.4 1 128504 1762 <0.001
Within Groups 4320.7 118 36.6 - -
Total 17171.1 119 - — -

B. Inferential Statistics

Paired-sample #-tests indicated significant learning gains within
both groups: control (#59) = 15.4, p <0.001) and experimental
(#(59) = 289, p < 0.001). The post-test results for the
experimental group show higher performance than the control
group (#(118) =13.27, p <0.001).

A one-way ANOVA confirmed that the instructional method
had a statistically significant effect on student outcomes
(F(1,118) = 176.2, p < 0.001). The effect size (Cohen’s d =
0.92) indicated a strong practical impact of the intervention as
shown in TABLE-II

TABLE II
ANOVA SUMMARY
Grou Pre - test Post - test N
P Mean (SD) Mean (SD)
Control 42.5(6.8) 61.2(7.4) 60
Experimental 43.1(7.2) 78.4 (5.9) 60

These findings quantitatively establish that the blended
instructional approach substantially improved students’ ability
to differentiate and apply software development models
compared to traditional instruction. Fig. 2 shows the pre- and
post-test comparison

JEET

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

Caontrol Group (Datted Line}
== Experimental Group (Thick Line}

75

70

Mean Score (%)
[=1] f=)]
o w

wn
[

50

45

Pre-test Post-test

Fig. 2. Pre and Post test comparisons

V. DISCUSSION

The results shows that integrating concept maps, comparative
case-based learning, and gamified activities significantly
enhanced students’ conceptual understanding of software
engineering models. While both groups showed progress, the
experimental group achieved substantially higher gains,
providing empirical support for the use of active and visual
instructional strategies. Project-based and gamified methods
have previously been shown to increase motivation and success
rates in software engineering contexts (Morais et al., 2021).
Similarly, peer instruction and collaborative learning have
improved outcomes in areas such as software testing and
modeling (Gopal & Cooper, 2021). The current findings
contribute to this growing body of literature by showing that
even fundamental content, such as differentiating SDLC
models, benefits from active learning designs. The study offers
practical implications for educators in computer science and
engineering. First, reliance on lecture-based approaches is
insufficient for promoting deep learning of overlapping models.
Instead, instruction should deliberately incorporate
comparative visualization tools and scenario-based exercises to
foster conceptual differentiation. Second, the strong effect size
observed suggests that relatively small modifications to
pedagogy can yield substantial improvements in learning
outcomes, making these strategies feasible for adoption in
resource-constrained educational contexts. These results cannot
be generalized as this is limited to one institution. Additionally,
the focus was on short-term knowledge gains measured
immediately after the intervention; long-term retention was not
evaluated. Future research should examine the durability of
learning gains, explore scaling the intervention to larger classes,
and investigate the integration of digital tools (e.g., interactive
simulations, adaptive learning systems) to further enhance
effectiveness, including mixed methods approach.

CONCLUSION

This study explored the current challenges experienced by
second-year CSE-AIML students in distinguishing SDLC

644

models. With this design for 120 students, the study
investigated the relative effectiveness of traditional lecture-
based instruction versus an integrated approach that included
concept maps, comparative case-based exercises, and gamified
activities. These findings suggest that the experimental group
of students improved in comparison to the control group in
specific tasks in the post-test (Cohen's d = 0.92). The findings
also suggest that traditional lectures alone cannot resolve
students' difficulties in understanding the overlapping models
in a software engineering course. However, a blended
instruction that includes active and visual learning aids helps
students learn, which in turn helps develop their schema. This
study is performed in a single institutional setting, so the
generalization is limited. Further research on diversified
settings with a longitudinal study is recommended.

REFERENCES

Gopal, B., & Cooper, S. (2021). Peer instruction in software
testing and continuous integration. Proceedings of the
52nd ACM Technical Symposium on Computer
Science Education.

Lopez-Fernandez, D., Tovar, E., Gordillo, A., Gayoso-
Cabada, J., Badenes-Olmedo, C., & Cimmino, A.
(2024). Comparing a LEGO Serious Play activity
with a traditional lecture in software engineering
education. IEEE Access, 12, 74045-74053.

Morais, P., Ferreira, M. J., & Veloso, B. (2021). Improving
student engagement with project-based learning: A
case study in software engineering. IEEE Revista
Iberoamericana de Tecnologias del Aprendizaje,
16(1), 21-28.

Mtaho, A., & Mselle, L. J. (2024). Difficulties in learning the
data structures and algorithms course: Literature
review. The Journal of Informatics, 4(1).

Pessoni, V. V., Federson, F. M., & Vincenzi, A. (2015).
Learning Difficulties in Computing Courses:
Cognitive Processes Assessment Methods Research
and Application. Proceedings of the Brazilian
Symposium on Information Systems, 31-38.

Shet, A., Bhavani, P., Kumarasamy, N., Arumugam, K.,
Poongulali, S., Elumalai, S., & Swaminathan, S.
(2015). Anemia, diet and therapeutic iron among
children living with HIV: A prospective cohort study.
BMC Pediatrics.

Silva, W., Gadelha, B. F., Steinmacher, I., & Conte, T. (2020).
Towards an open repository for teaching software
modeling applying active learning strategies. 2020
IEEE/ACM 42nd International Conference on
Software Engineering: Software Engineering
Education and Training (ICSE-SEET), 162—172.

Silva, W., Steinmacher, 1., & Conte, T. (2019). Students’ and
instructors’ perceptions of five different active
learning strategies used to teach software modeling.
IEEE Access, 7, 184063—184077.

Syed, K., M, V., Kandakatla, R., & Narayanan, S. (2024).
Inculcating Multidisciplinary Learning in Electrical
Engineering Undergraduate Curriculum through

JEET

https://consensus.app/papers/improving-student-engagement-with-projectbased-learning-morais-ferreira/a0281131a4ff56a39fae6fb8df675dd3/?utm_source=chatgpt
https://consensus.app/papers/peer-instruction-in-software-testing-and-continuous-gopal-cooper/64ca5b1a3ea95a89bde831ffe2dd18cd/?utm_source=chatgpt

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

Problem-Based Learning. Journal of Engineering
Education Transformations 38(is1), 210-215.
https://doi.org/10.16920/jeet/2024/v38is1/24234

Upchurch, R., & Sims-Knight, J. (1997). Designing process-
based software curriculum. Proceedings Tenth
Conference on Software Engineering Education and
Training, 28-38.

Winter, V., Friend, M., Matthews, M., Love, B., & Vasireddy,
S. (2019). Using visualization to reduce the cognitive
load of threshold concepts in computer programming.
2019 IEEE Frontiers in Education Conference (FIE),
1-9.

Yousoof, M., Sapiyan, M., & Kamaluddin, K. (2007).
Reducing cognitive load in learning computer
programming. World Academy of Science,
Engineering and Technology, International Journal of
Computer, Electrical, Automation, Control and
Information Engineering, 1(11), 4100-4103.

645

JEET

