
Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

641

 1K.Gomathi, 2Gudapati Lakshmi Bhavani, 3Khamruddin Syed
1,2,3KG Reddy College of Engineering and Technology

1Department of CSE(DS), 2Department of ECE, 3Department of CSE(AIML)
1 gomathi.k@kgr.ac.in, 2lakshmisrinivas.2010@kgr.ac.in, 3syedkhamruddin@kgr.ac.in

Abstract—Sophomore-level students of engineering institutions

of computer science engineering often face challenges in

differentiating software development models due to the overlap

between them, which leads to difficulties in recalling and

categorizing. The effectiveness of pedagogical interventions for

improving the conceptual understanding of Software

Development lifecycle models is investigated in the study. A total

of one hundred and twenty students were divided into experiment

and control groups with varied instructions, which incorporated

concept maps, comparative case exercises, and gamified learning

activities. A pre- and post-test design was administered, and the

data were analyzed using a paired t-test and an independent t-test.

The post-test analysis shows significant improvement in the

experimental group of students (M=78.4, SD = 5.9) compared to

the control group (M=61.2, SD=7.4; t(118) = 13.27, p < 0.001). A

one-way ANOVA confirmed a strong effect of instructional

approach on performance, F(1,118) = 176.2, p < 0.001, and the

intervention showed a significant effect (Cohen's d=0.92). Overall,

this structured activity mentioned in the study improved students'

ability to differentiate and categorize software development logic

models, indicating the results, which are both practically and

statistically meaningful.

Keywords—Cognitive Load Theory; Categorization; Concept

mapping; Gamification; Software Engineering

ICTIEE Track—Emerging technologies and future skills

ICTIEE Sub-Track—Pedagogy for the Modern Classroom-

Strategies for Engaging Students through AI

I. INTRODUCTION

NE of the foundational courses in computer science

engineering curriculum is software engineering. This

course intends to develop conceptual understanding and

industry-ready skills. However, many sophomore-level

students find the fundamental ideas behind software

development models, such as the Waterfall, Unified Process,

Incremental, Spiral, and Agile development models, to be

challenging, as many concepts overlap with each other. For

those still developing their understanding of abstraction and

knowledge classification, these models often appear confused,

and this week's differentiation reduces retention, making it

harder for students to grasp the concepts. These kinds of

difficulties are widely reported in the field of computing

Khamruddin Syed

 KG Reddy College of Engineering and Technology Hyderabad
syedkhamruddin@kgr.ac.in

education. Pessoni et al. (2015) emphasized that undergraduate

engineering students frequently struggle to convert classroom

instructions into abstract knowledge when foundational

reasoning skills and scaffolded instructions are missing

(Pessoni et al., 2015). Abstract concepts such as data structures

and algorithms observe similar patterns where the cognitive

demands and persistent misconceptions are obvious (Mtaho &

Mselle, 2024). In courses like software engineering, this is

viewed as rote memorization, which includes concepts of list of

phases, pros and cons, and terminologies rather than the

conceptual mapping needed to meaningfully differentiate the

models. These problems addressed in this study are grounded

in the Cognitive Load Theory (CLT). As working memory can

handle only a few chunks of information, tasks that are added

unnecessarily interfere with schema construction and the

integration of new ideas into long-term memory (Winter et al.,

2019; Syed et al., 2025). Traditional lectures often deliver the

phases of software development phases with overlapping (e.g

planning, modelling, construction, testing) without proper

visual representations which pushes the students to learn the

models as interchangeable and resulting into shallow learning.

Structured instructions including concept mappings and

gamified learning can address these issues reducing extraneous

load, supporting schema formation and encouraging active

engagement. Students also construct knowledge by doing,

comparing, and reflecting, applying various software

development models to real-time scenarios. They evaluate the

models side by side and choose the appropriate ones. These

structured pedagogies enhance the students learning by

strengthening the conceptual clarity and promoting deep

learning (Upchurch & Sims-Knight, 1997)

II. BACKGROUND STUDY

Students in computer science education face persistent

challenges in categorization and abstraction. Not only the

programming, but also the concepts related to modeling and

systems thinking, have difficulties with abstract concepts and

categorization. For instance, Silva et al. (2019) highlighted that

students often struggle with mastering software modeling,

especially when using UML diagrams. Many students find it

challenging to understand software engineering models and

methods. This difficulty is often attributed to the complexity of

Memorization to Categorization: Improving

Students' Comprehension of SDLC Models

O

mailto:gomathi.k@kgr.ac.in
mailto:2lakshmisrinivas.2010@kgr.ac.in
mailto:3syedkhamruddin@kgr.ac.in

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

642

the material and the everyday use of teacher-centered

instructional approaches (Silva et al., 2019). This observation is

supported by other research indicating that students frequently

struggle to differentiate between various software engineering

concepts. This happens due to the poorly organized instructions

which just include text in the form of bullet points or long

paragraphs of content explanations (Mtaho & Mselle, 2024).

This problem is grounded in Cognitive Load Theory (CLT),

which emphasizes the importance of reducing unnecessary

cognitive load while promoting the mental effort required to

build knowledge structures, or schemas. In computer science,

strategies such as visualization tools and concept maps have

been found to ease cognitive load and enhance understanding

of core concepts by creating long-term schemas (Yousoof et al.,

2007; Winter et al., 2019). Same interventions can be used for

the Software Engineering course concepts to help students to

visualize the models using concept maps, tabular

representations, etc. This will enable the course instructors in

reducing the extraneous load on the learners and support them

in building the mental frameworks needed to differentiate

between models.

The limitations of traditional lecture-based teaching have

prompted the broader adoption of active learning methods in

computer science education. Project-based learning, peer

instruction, and gamification have improved student

engagement, motivation, and learning outcomes. For instance,

Morais et al. (2021) found that problem-based learning

significantly increased student engagement and success in

courses like software engineering and information systems

development, as students could experience the iterative nature

of the development process firsthand. It is also evident as per

the existing research that collaborative learning in concepts

such as testing and integration improved cognitive performance

in entire software engineering courses (Gopal and Cooper,

2001). Recent studies also support the integration of interactive

and playful strategies. Studies conducted by past researchers

conducted randomized control interventions to check the

effectiveness of L-E-G-O series play activity (Lopez et al. ,

2024; Shet et al., 2015). The findings also showed that students

who participated in this interactive learning method understood

SDLC models much better than those taught via traditional

lectures. These results underscore the effectiveness of gamified

and hands-on approaches for teaching complex, abstract topics

like software development models.

The problem addressed in this study is grounded in both

Constructivist Learning Theory (CLT) and Cognitive Load

Theory. CLT focuses on reducing the unnecessary cognitive

load demand on the student and allows schema construction,

whereas Constructivism emphasizes active participation and

the construction of knowledge over a period of time. An

OpenSMALS developed by Silva et al. (2020) for teaching

UML reduced the difficulties addressed above and improved

the intended learning outcomes. By grounding in the mentioned

theories and aligning with existing literature, this current study

contributes by designing and administering a unique

instructional model that employs concept mapping, gamified

learning in software development life cycle models.

III. METHODOLOGY

In this study, a control design with a quasi-experimental

approach is implemented. Pre and post-test data were collected

the data to evaluate the effectiveness of the interventions. The

quantitative data is collected through assignments for both the

control and experimental groups. While accommodating the

classroom setting, the casual relationships are assessed by using

this design. Students from Computer Science and Engineering

(AIML) have participated in the study. Participants were

second-year undergraduate students enrolled in the core

Software Engineering course. A total of 120 students

participated, with 60 students assigned to the control group and

60 students assigned to the experimental group. Both groups

were taught by the same instructor to ensure consistency of

delivery and to minimize instructor-related variability.

Students’ demographic backgrounds were diverse, though all

had completed prerequisite programming and introductory

computing courses, ensuring a comparable baseline of prior

knowledge.

The control group received traditional lecture-based instruction,

focusing on descriptive presentations of SDLC models. The

experimental group, however, was exposed to a blended

instructional approach designed around three strategies:

1. Concept Mapping: Visual diagrams were used to highlight

similarities and differences across models. Students were

formed into groups of 3 and given keywords related to the

SDLC models to compare based on parameters like

iterations, increments, risk handling, requirements, etc.

They were asked to draw the concept map in the form of a

chart or a tabular form and were evaluated. The peer

evaluation was done on the basis of completeness, clarity,

correctness, and accuracy. This activity was conducted for

30 minutes.

2. Comparative Case exercises: Students analyzed real-world

scenarios to identify the most appropriate SDLC model. The

students of a group of 3 members were given an additional

30 minutes to identify a suitable model for a real-world

scenario or application. Students did this using various

dimensions, such as most suitable, trade-off reasons, and

justifications. After this exercise, they presented

information to the entire class, and the rest of the groups

evaluated using the same dimensions.

3. Gamification: Students use gamification tools like H5P and

Mentimeter to participate in gamified learning to drag and

drop , match UML diagrams and also to attempt the quizzes.

 These interventions were delivered across four consecutive

weeks, aligning with the curriculum schedule for software

engineering models. A test consisting of MCQs and descriptive

questions was administered as both a before and after test. The

reliability of the instrument was established using Cronbach’s

alpha (α = 0.82), indicating high internal consistency.

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

643

1. Pre-test: administered one week before the

instructional unit, assessing baseline understanding.

2. Post-test: administered immediately after the four-

week intervention, measuring knowledge gains.

Both control and experimental groups completed the same

assessments under identical conditions.

The study unfolded in three phases which is presented as a

conceptual diagram Fig. 1:

1. Preparation Phase: Development of instructional

materials, validation of test instruments.

2. Implementation Phase: Delivery of instruction to both

groups, with the control group taught via conventional

lectures and the blended approach for experimental

group of students.

3. Evaluation Phase: administration of the post-test,

followed by statistical analysis of results

Fig. 1. Conceptual diagram

Attendance was monitored to ensure consistent exposure, and

all students participated voluntarily, with informed consent

obtained before the study.

Quantitative data were analyzed, where descriptive statistics

such as mean, SD were first calculated to summarize

performance. To test for significant differences:

1. Paired-sample t-tests: To compare pre- and post-test

scores within the group.

2. Independent-sample t-tests: To compare post-test

performance between the experimental and control

groups.

3. One-way ANOVA: To confirm the effect of

instructional approach on learning outcomes.

4. To determine the magnitude of the intervention’s

impact, the effect size (Cohen’s d) was calculated.

A significance level of p < 0.05 was adopted for entire

inferential tests. Results demonstrated statistically significant

improvements in the experimental group, supporting the

effectiveness of the intervention.

IV. RESULTS

A. Descriptive Statistics

TABLE I shows the mean and standard deviations for both

groups in pre- and post-tests. The pre-test scores indicated no

major differences between the control group (M = 42.5, SD =

6.8) and the experimental group (M = 43.1, SD = 7.2),

confirming baseline equivalence. After the instructional

intervention, the experimental group showed a notable results

(M = 78.4, SD = 5.9), whereas the control group demonstrated

moderate gains (M = 61.2, SD = 7.4).

TABLE I

PRE- AND POST-TEST SCORES

B. Inferential Statistics

Paired-sample t-tests indicated significant learning gains within

both groups: control (t(59) = 15.4, p < 0.001) and experimental

(t(59) = 28.9, p < 0.001). The post-test results for the

experimental group show higher performance than the control

group (t(118) = 13.27, p < 0.001).

A one-way ANOVA confirmed that the instructional method

had a statistically significant effect on student outcomes

(F(1,118) = 176.2, p < 0.001). The effect size (Cohen’s d =

0.92) indicated a strong practical impact of the intervention as

shown in TABLE-II

TABLE II
ANOVA SUMMARY

These findings quantitatively establish that the blended

instructional approach substantially improved students’ ability

to differentiate and apply software development models

compared to traditional instruction. Fig. 2 shows the pre- and

post-test comparison

Source SS df MS F p-value

Between Groups 12850.4 1 12850.4 176.2 < 0.001

Within Groups 4320.7 118 36.6 – –

Total 17171.1 119 – – –

Group
Pre - test

Mean (SD)

Post - test

Mean (SD)
N

Control 42.5 (6.8) 61.2 (7.4) 60

Experimental 43.1 (7.2) 78.4 (5.9) 60

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

644

Fig. 2. Pre and Post test comparisons

V. DISCUSSION

The results shows that integrating concept maps, comparative

case-based learning, and gamified activities significantly

enhanced students’ conceptual understanding of software

engineering models. While both groups showed progress, the

experimental group achieved substantially higher gains,

providing empirical support for the use of active and visual

instructional strategies. Project-based and gamified methods

have previously been shown to increase motivation and success

rates in software engineering contexts (Morais et al., 2021).

Similarly, peer instruction and collaborative learning have

improved outcomes in areas such as software testing and

modeling (Gopal & Cooper, 2021). The current findings

contribute to this growing body of literature by showing that

even fundamental content, such as differentiating SDLC

models, benefits from active learning designs. The study offers

practical implications for educators in computer science and

engineering. First, reliance on lecture-based approaches is

insufficient for promoting deep learning of overlapping models.

Instead, instruction should deliberately incorporate

comparative visualization tools and scenario-based exercises to

foster conceptual differentiation. Second, the strong effect size

observed suggests that relatively small modifications to

pedagogy can yield substantial improvements in learning

outcomes, making these strategies feasible for adoption in

resource-constrained educational contexts. These results cannot

be generalized as this is limited to one institution. Additionally,

the focus was on short-term knowledge gains measured

immediately after the intervention; long-term retention was not

evaluated. Future research should examine the durability of

learning gains, explore scaling the intervention to larger classes,

and investigate the integration of digital tools (e.g., interactive

simulations, adaptive learning systems) to further enhance

effectiveness, including mixed methods approach.

CONCLUSION

This study explored the current challenges experienced by

second-year CSE-AIML students in distinguishing SDLC

models. With this design for 120 students, the study

investigated the relative effectiveness of traditional lecture-

based instruction versus an integrated approach that included

concept maps, comparative case-based exercises, and gamified

activities. These findings suggest that the experimental group

of students improved in comparison to the control group in

specific tasks in the post-test (Cohen's d = 0.92). The findings

also suggest that traditional lectures alone cannot resolve

students' difficulties in understanding the overlapping models

in a software engineering course. However, a blended

instruction that includes active and visual learning aids helps

students learn, which in turn helps develop their schema. This

study is performed in a single institutional setting, so the

generalization is limited. Further research on diversified

settings with a longitudinal study is recommended.

REFERENCES

Gopal, B., & Cooper, S. (2021). Peer instruction in software

testing and continuous integration. Proceedings of the

52nd ACM Technical Symposium on Computer

Science Education.

Lopez-Fernandez, D., Tovar, E., Gordillo, A., Gayoso-

Cabada, J., Badenes-Olmedo, C., & Cimmino, A.

(2024). Comparing a LEGO Serious Play activity

with a traditional lecture in software engineering

education. IEEE Access, 12, 74045–74053.

Morais, P., Ferreira, M. J., & Veloso, B. (2021). Improving

student engagement with project-based learning: A

case study in software engineering. IEEE Revista

Iberoamericana de Tecnologías del Aprendizaje,

16(1), 21–28.

Mtaho, A., & Mselle, L. J. (2024). Difficulties in learning the

data structures and algorithms course: Literature

review. The Journal of Informatics, 4(1).

Pessoni, V. V., Federson, F. M., & Vincenzi, A. (2015).

Learning Difficulties in Computing Courses:

Cognitive Processes Assessment Methods Research

and Application. Proceedings of the Brazilian

Symposium on Information Systems, 31–38.

Shet, A., Bhavani, P., Kumarasamy, N., Arumugam, K.,

Poongulali, S., Elumalai, S., & Swaminathan, S.

(2015). Anemia, diet and therapeutic iron among

children living with HIV: A prospective cohort study.

BMC Pediatrics.

Silva, W., Gadelha, B. F., Steinmacher, I., & Conte, T. (2020).

Towards an open repository for teaching software

modeling applying active learning strategies. 2020

IEEE/ACM 42nd International Conference on

Software Engineering: Software Engineering

Education and Training (ICSE-SEET), 162–172.

Silva, W., Steinmacher, I., & Conte, T. (2019). Students’ and

instructors’ perceptions of five different active

learning strategies used to teach software modeling.

IEEE Access, 7, 184063–184077.

Syed, K., M, V., Kandakatla, R., & Narayanan, S. (2024).

Inculcating Multidisciplinary Learning in Electrical

Engineering Undergraduate Curriculum through

https://consensus.app/papers/improving-student-engagement-with-projectbased-learning-morais-ferreira/a0281131a4ff56a39fae6fb8df675dd3/?utm_source=chatgpt
https://consensus.app/papers/peer-instruction-in-software-testing-and-continuous-gopal-cooper/64ca5b1a3ea95a89bde831ffe2dd18cd/?utm_source=chatgpt

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

645

Problem-Based Learning. Journal of Engineering

Education Transformations 38(is1), 210–215.

https://doi.org/10.16920/jeet/2024/v38is1/24234

Upchurch, R., & Sims-Knight, J. (1997). Designing process-

based software curriculum. Proceedings Tenth

Conference on Software Engineering Education and

Training, 28–38.

Winter, V., Friend, M., Matthews, M., Love, B., & Vasireddy,

S. (2019). Using visualization to reduce the cognitive

load of threshold concepts in computer programming.

2019 IEEE Frontiers in Education Conference (FIE),

1–9.

Yousoof, M., Sapiyan, M., & Kamaluddin, K. (2007).

Reducing cognitive load in learning computer

programming. World Academy of Science,

Engineering and Technology, International Journal of

Computer, Electrical, Automation, Control and

Information Engineering, 1(11), 4100–4103.

