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Abstract— The rapid integration of Artificial Intelligence (AI) 

into educational practice offers unprecedented opportunities to 

transform classroom pedagogy from passive, lecture-centered 

approaches to participatory, learner-driven experiences. This 

study reports the design, implementation, and evaluation of an AI-

enabled active learning framework through a quasi-experimental 

study involving two matched student sections for the second-

semester B.Tech Computer Engineering course Python 

Programming at RK University, involving 120 students. The 

intervention blended AI-assisted pair programming, adaptive low-

stakes quizzing with real-time feedback, AI-driven Socratic 

tutoring for conceptual clarity, and analytics-informed 

instructional adjustments, all within an explicit ethical AI use 

policy. A quasi-experimental design was employed, with two 

matched sections: an AI-Active group incorporating AI tools into 

active learning strategies, and a Traditional-Active group relying 

on established active learning methods without AI integration. 

Comparative analysis demonstrated that the AI-Active cohort 

achieved higher final exam scores (+7.8 points), improved lab task 

accuracy (+11 percentage points), reduced programming anxiety, 

and shortened time-to-solution, while also exhibiting increased 

engagement in formative assessments. These outcomes align with 

recent findings from published work indicating moderate-to-large 

effect sizes for AI-enhanced instruction, particularly when 

sustained over multiple weeks and supported by structured 

guidance. The study concludes that embedding AI into active 

learning can enhance both cognitive and affective learning 

outcomes in programming education, offering a scalable model for 

modern classrooms. Recommendations for sustaining gains, 

ensuring academic integrity, and scaling the approach across 

technical disciplines are provided. However, limited research has  

compared AI-enabled active learning directly with traditional 

active learning in large programming cohorts. 

 

Keywords—Artificial Intelligence in Education, Active 

Learning Strategies, AI-Assisted Learning, Python Programming 

Pedagogy, Student Engagement  

 

ICTIEE Track— Emerging Technologies and Future Skills 

ICTIEE Sub-Track—AI, Machine Learning, and Digital Tools 

in Education  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I. INTRODUCTION 

HE shift from traditional lecture-based pedagogy to active, 

student-centered learning has been a defining trend in 

higher education, particularly in computing disciplines 

where problem-solving, iterative thinking, and practical 

application are essential. In conventional classrooms, especially 

in large cohorts such as the 120-student second-semester 

B.Tech Computer Engineering Python Programming course at 

RK University, students often remain passive recipients of 

information. While such approaches can convey foundational 

knowledge, they frequently fall short in promoting deep 

understanding, sustained engagement, and the development of 

higher-order cognitive skills necessary for coding, debugging, 

and algorithmic reasoning. Active learning strategies—such as 

think-pair-share, collaborative code reviews, formative quizzes, 

and peer instruction—have demonstrated consistent positive 

effects on student learning outcomes across STEM domains. 

However, their implementation at scale is constrained by 

factors such as limited instructor time for individualized 

feedback, variability in student prior knowledge, and uneven 

participation levels within group activities. 

    Artificial Intelligence (AI) technologies, and more 

specifically large language models (LLMs) and intelligent 

tutoring systems (ITS), have emerged as viable solutions to 

these constraints. Multiple meta-analyses and controlled studies 

have shown that AI-assisted learning interventions can produce 

moderate-to-large gains in achievement (effect sizes ranging 

from ~0.6 to 0.87 standard deviations) when sustained for at 

least 4–8 weeks and embedded within a structured pedagogical 

framework. Intelligent tutoring systems have historically 

demonstrated the ability to elevate median student performance 

from the 50th to approximately the 75th percentile, while AI-

assisted pair programming and collaborative problem-solving 

have been shown to increase motivation, lower programming 

anxiety, and reduce cognitive load. AI’s capability to deliver 

real-time, context-aware feedback, generate tailored practice 

problems, and adaptively scaffold learning pathways makes it 

an ideal partner for active learning models, especially in 

programming courses where instant correction and conceptual 

reinforcement are crucial.  
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In programming education, the benefits of AI extend beyond 

content delivery. Studies have documented that AI-driven 

tutoring can clarify abstract concepts through analogy 

generation, provide alternative solution paths for a given coding 

problem, and identify conceptual errors earlier than traditional 

grading cycles allow. Moreover, AI-facilitated collaborative 

programming environments—where a student works in 

“You+AI” pairs—can simulate the benefits of human peer 

collaboration while ensuring that feedback is immediate and 

tailored to individual needs. The integration of AI analytics into 

the learning process also allows instructors to identify patterns 

of misconceptions, monitor engagement metrics, and 

dynamically adjust instruction for different learner profiles. 

      For RK University’s Python Programming course, the 

rationale for adopting AI-enabled active learning is twofold: (1) 

to transform classroom dynamics from passive listening to 

active participation by embedding AI as a participatory agent in 

the learning process, and (2) to address scalability challenges in 

delivering personalized feedback and adaptive learning 

experiences to a large, diverse cohort. The background 

literature provides strong evidence that when AI is positioned 

not as a replacement for the instructor but as an augmentation 

tool—supporting Socratic questioning, adaptive quizzing, code 

review assistance, and structured group collaboration—student 

outcomes improve in both cognitive (exam scores, coding 

accuracy) and affective (motivation, engagement, anxiety 

reduction) domains. 

     This study’s intervention is grounded in the hypothesis that 

strategically integrating AI tools into existing active learning 

structures will yield measurable gains in performance and 

engagement, consistent with, and potentially exceeding, 

improvements reported in related published work. By situating 

the implementation within a real-world institutional setting and 

aligning it with ethical AI use guidelines, the research aims to 

produce a replicable model for modern classrooms where 

technology and pedagogy co-evolve to meet the demands of 

21st-century technical education. While prior research has 

demonstrated the benefits of AI-assisted tutoring and feedback, 

few studies have examined how AI can be systematically 

embedded within an existing active learning framework in large 

undergraduate programming cohorts. Additionally, limited 

research has compared AI-enhanced active learning directly 

with equivalent non-AI active learning environments. This 

study addresses these gaps by evaluating the differential impact 

of AI-enabled instructional strategies on both cognitive and 

affective outcomes through a matched-section quasi-

experimental design. 

 

Research Question (RQ) 

“How does structured integration of AI-enhanced active 

learning strategies influence cognitive performance, affective 

outcomes, and participation levels in an undergraduate Python 

Programming course compared to traditional active learning 

alone?” 

Objectives: 

1. To evaluate the impact of AI-enabled active learning 

on academic performance. 

2. To assess changes in affective outcomes such as 

programming anxiety and cognitive load. 

3. To compare participation and engagement levels 

between AI-Active and Traditional-Active groups. 

 

Here’s a detailed Review of Literature for "From Passive to 

Participatory by Leveraging Artificial Intelligence for Active 

Learning Environments" tailored to RK University Python 

Programming context. I’ve integrated recent (2023–2025) 

studies, effect sizes, and a clear synthesis so it transitions 

smoothly into your methodology section. 

II. LITERATURE REVIEW  

The integration of Artificial Intelligence (AI) into higher 

education pedagogy has gained considerable momentum in 

recent years, particularly with the rise of large language models 

(LLMs) alongside established intelligent tutoring systems 

(ITS). A growing body of empirical evidence demonstrates that 

AI-enabled instruction can substantially enhance learning 

outcomes, engagement, and motivation, especially when 

coupled with active learning strategies. 

Wang and Fan (2025) conducted a comprehensive meta-

analysis of 51 empirical studies examining ChatGPT’s impact 

on education, reporting a pooled effect size of g = 0.867 for 

academic achievement and g = 0.591 for higher-order thinking 

skills. The analysis also highlighted improvements in learning 

perceptions and motivation, though effects on self-efficacy 

were limited. Importantly, sustained AI integration over 4–8 

weeks was found to yield stronger and more stable learning 

gains, reinforcing the need for consistent exposure rather than 

sporadic use. 

Earlier work by Fletcher and Kulik (2017) on intelligent 

tutoring systems (covering pre-LLM AI tools) found a median 

effect size of 0.66 when compared to traditional instruction. 

This improvement effectively moved an average student from 

the 50th to the 75th percentile in performance, underscoring 

AI’s ability to scale personalized instruction without 

proportional increases in human resource input. 

In the context of programming, multiple studies have shown 

the benefits of AI integration for both cognitive and affective 

outcomes. Fan et al. (2025) investigated AI-assisted pair 

programming and found that students working with AI partners 

demonstrated higher motivation, lower programming anxiety, 

and better performance on programming tasks compared to 

students working individually or in human-human pairs. 

Similarly, Yan et al. (2025) reported that LLM-based 

collaborative programming significantly reduced cognitive 

load and enhanced computational thinking skills, although self-

efficacy did not show statistically significant change—

highlighting that skill confidence may require longer-term 

interventions. 

López-Fernández et al. (2025) examined the use of ChatGPT 

in database and SQL instruction. Students using the AI tool 

performed better on assessments and expressed positive 

attitudes toward its utility, provided they were trained in 

prompting techniques and verification strategies to avoid over-

reliance on potentially incorrect outputs. This aligns with 

findings from Deng et al. (2024), whose systematic review 

concluded that AI’s positive impact is maximized when 

embedded within structured guidance, formative feedback 

loops, and clear academic integrity policies. 
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Lathigara, Tanna, and Bhatt (2021) report that activity-based 

programming methods significantly improved hands-on 

proficiency and student engagement in second-semester 

programming courses, providing an empirical precedent for 

integrating activity-led AI supports. 

Yilmaz et al. (2024) conducted a randomized controlled trial 

comparing real-time AI feedback with expert human feedback. 

They found comparable learning gains, with AI feedback 

offering superior scalability and immediate responsiveness—

two factors especially relevant in large classes like the 120-

student Python Programming course at RK University. Kestin 

et al. (2025) also demonstrated that well-designed AI tutors 

could produce greater learning gains in less instructional time 

compared to standard in-class active learning approaches, 

suggesting that AI can serve as an effective multiplier of 

existing teaching strategies. Rajesh (2024) describes AI-

enhanced personalization practices and reports gains in concept 

mastery for simulation-based courses, lending support to the 

use of adaptive AI-generated quizzes in engineering subjects. 

Collectively, the literature indicates that AI is most effective 

in programming pedagogy when it: 

1. Provides immediate, personalized feedback (e.g., 

debugging hints, concept explanations). 

2. Supports active learning structures rather than 

replacing them. 

3. Incorporates guided prompting and verification skills 

to mitigate errors and over-reliance. 

4. Is sustained over multiple weeks for stable, lasting 

improvements. 

5. Is deployed with explicit academic integrity 

safeguards to maintain fairness and authenticity. 

 

For RK University’s Python Programming course, these 

findings suggest that embedding AI-assisted pair programming, 

adaptive quizzes, and AI-driven Socratic tutoring within a 

structured active learning framework can yield outcomes 

consistent with reported moderate-to-large effect sizes in the 

literature. The anticipated benefits include improved coding 

accuracy, reduced cognitive load, higher engagement, and 

better exam performance, all achieved without sacrificing 

academic rigor.  

Tanna et al. (2025) propose a NEP-driven holistic learning 

framework that integrates emerging technologies across 

curricula, reinforcing the need to align AI-enabled pedagogies 

with institutional policy and broad learning outcomes.  

Reddy (2024) provides comparative evidence that diverse 

active-learning strategies increase participation and higher-

order learning outcomes in B.Tech cohorts, supporting the 

decision to measure engagement metrics alongside exam 

performance. 

Despite the strong evidence supporting AI tools and active 

learning independently, the literature reveals a gap in 

understanding how these approaches interact when combined in 

real classroom settings. Tanna et al. (2020) describe an EduPCR 

peer-coding and evaluation framework that improved formative 

assessment fidelity in programming courses, suggesting 

concrete methods to document and validate student-authored 

solutions when AI tools are used. Specifically, few studies 

evaluate AI as a structured component within active learning 

workflows such as pair programming, collaborative problem-

solving, and adaptive formative assessments. This gap 

motivates the present study, which empirically evaluates an 

integrated AI-active learning model within a large 

programming course. Chavan (2024) demonstrates how 

structured narrative-based activities (‘storytelling with data’) 

enhanced conceptual understanding and motivation in C++ 

instruction, reinforcing the benefits of well-scaffolded active-

learning tasks in programming education. 

To complement the narrative review above, the following 

table summarizes the key empirical studies and highlights how 

each aligns with the rationale for the current study. 

 
TABLE I 

 SUMMARY OF KEY STUDIES ON AI-ENHANCED ACTIVE LEARNING IN 

PROGRAMMING EDUCATION 

Author(s) 

& Year 

Study 

Context 

Key 

Intervention 

Key 

Findings 

Relevance 

to Current 
Study 

Wang & 

Fan 
(2025) 

Meta-

analysis of 
51 studies 

across 

disciplines 

Use of 

ChatGPT for 
teaching/learni

ng over 4–8 

weeks 

g = 0.867 

for 
academic 

achievemen

t; g = 0.591 
for higher-

order 

thinking; 
improved 

perceptions 

& 
motivation; 

minimal 

effect on 
self-

efficacy 

Supports 

sustained 
AI 

integration 

in RKU 
Python 

course to 

maximize 
achieveme

nt and 

higher-
order 

thinking 

gains 

Fletcher 
& Kulik 

(2017) 

Multiple 
subjects, 

intelligent 

tutoring 
systems 

(ITS) 

AI-driven 
personalized 

tutoring 

Median ES 
= 0.66; 

improved 

performanc
e from 50th 

to 75th 

percentile 

Validates 
AI’s 

scalability 

for large 
cohorts 

(e.g., 120 

students) 
without 

proportiona

l increase 
in faculty 

workload 

Fan et al. 

(2025) 

Programmin

g courses 

AI-assisted 

pair 

programming 

(“You+AI” 
model) 

Higher 

motivation, 

lower 

anxiety, 
better 

programmin

g task 
performanc

e vs. solo or 

human-
human pairs 

Justifies 

AI-assisted 

pair 

programmi
ng in 

RKU’s 

active 
learning 

labs 

Yan et al. 

(2025) 

LLM-based 

collaborativ
e 

programmin

g 

Students 

collaborate 
with LLM to 

solve 

programming 
tasks 

Reduced 

cognitive 
load, 

improved 

computatio
nal 

thinking; no 

Highlights 

cognitive 
load 

reduction 

benefits for 
Python labs 

with 
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significant 
change in 

self-

efficacy 

diverse 
learner 

profiles 

López-

Fernánde

z et al. 
(2025) 

Database/S

QL 

instruction 
in CS 

education 

ChatGPT for 

problem-

solving with 
guided 

prompting 

Improved 

assessment 

scores; 
positive 

student 

attitudes; 
importance 

of prompt 

training 

Reinforces 

need for 

AI-
prompting 

and 

verification 
skills in 

Python 

course 
Deng et 

al. (2024) 

Systematic 

review of 

AI in 
education 

Multiple AI 

tools 

embedded in 
active learning 

Positive 

effects on 

academic 
performanc

e and 

motivation; 
limited 

effect on 

self-
efficacy 

Aligns with 

expectation 

of 
improved 

motivation 

and 
achieveme

nt in RKU 

setting 

Yilmaz et 

al. (2024) 

RCT with 

AI vs. 
human 

feedback 

Real-time AI-

generated 
formative 

feedback 

Comparable 

gains to 
expert 

feedback; 
AI offered 

faster 

scalability 

Supports 

AI-driven 
adaptive 

quizzes for 
immediate 

feedback in 

large 
classes 

Kestin et 

al. (2025) 

AI tutor vs. 

traditional 
active 

learning 

Well-designed 

AI tutoring 

Greater 

learning 
gains in less 

time 

compared 
to standard 

active 

learning 

Suggests 

efficiency 
gains 

possible for 

RKU 
Python 

course 

through AI 

integration 

III. METHODOLOGY AND IMPLEMENTATION  

 

This study adopted a quasi-experimental design to evaluate the 

impact of AI-enhanced active learning strategies on student 

performance, engagement, and affective outcomes in the 

Python Programming course for second-semester B.Tech 

Computer Engineering students at RK University. The cohort 

comprised 120 students, divided into two intact sections of 

approximately equal size and comparable prior academic 

performance based on first-semester GPAs and a Python 

diagnostic pre-test. One section was designated as the AI-

Active group, integrating AI-enabled strategies within an active 

learning framework, while the other section served as the 

Traditional-Active group, employing conventional active 

learning methods without AI integration. Both sections were 

taught by the same instructor and supported by the same team 

of teaching assistants to control for instructional variability. 

The intervention spanned 12 weeks, with four contact hours 

per week, ensuring that AI use was sustained for at least eight 

weeks in line with meta-analytic recommendations for 

maximizing learning gains (Wang & Fan, 2025). In the AI-

Active group, the instructional model incorporated five primary 

components: (1) AI Socratic Tutor – students engaged with a 

large language model to clarify concepts, receive analogies, and 

obtain step-by-step explanations for code logic, guided by 

instructor-designed prompt templates; (2) AI-Assisted Pair 

Programming – implemented using a “You+AI” driver-

navigator model, where the human navigator evaluated AI-

generated suggestions while the driver authored and refined the 

code; (3) Adaptive Low-Stakes Quizzing – weekly online 

quizzes generated by AI, providing instant feedback and 

supplementary practice questions targeting identified 

weaknesses; (4) Guided AI-Facilitated Collaboration – AI tools 

formed small peer discussion groups based on similar 

conceptual profiles, supplying question prompts to structure 

group dialogue; and (5) Prompting and Verification Micro-

Lessons – short weekly sessions on effective AI prompting, 

verification strategies using unit testing, and error-spotting 

heuristics. 

The Traditional-Active group participated in equivalent 

active learning activities, such as think-pair-share, peer code 

review, formative quizzes, and collaborative lab exercises, but 

without the use of AI tools. Feedback and additional practice 

materials were provided by teaching assistants rather than AI. 

Both groups covered identical course content, followed the 

same syllabus, and completed the same assessments. 

The two intact sections were matched based on prior 

semester GPA distributions and performance on a Python 

diagnostic test conducted at the beginning of the course, 

ensuring comparable baseline proficiency. 

 

 

 

 
Fig. 1.  Leveraging Artificial Intelligence for Active Learning 

Environments – Methodology 

 

Figure 1 illustrates the proposed AI-enabled active learning 

model, showing how Socratic tutoring, AI-assisted pair 
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programming, adaptive quizzes, and prompting modules 

interact to create a participatory learning environment. 

 

Data collection included cognitive and affective measures. 

Cognitive outcomes comprised final exam scores (conceptual 

and coding components), lab task accuracy (measured via 

automated unit testing), and pass rates (C grade or better). 

Affective measures included programming anxiety (7-point 

Likert scale), cognitive load (NASA-TLX short form), 

programming self-efficacy (5-point scale), and engagement 

metrics (quiz completion rates, attendance, LMS activity logs). 

To ensure academic integrity, AI use was prohibited during 

summative assessments, and students were required to 

document AI prompts and outputs for all formative work. 

Random oral code walkthroughs and change-history reviews 

were conducted to validate authorship and conceptual 

understanding. 

Data analysis involved descriptive statistics to summarize 

group performance and inferential tests to evaluate differences 

between groups. Independent-samples t-tests were applied for 

continuous variables (exam scores, task accuracy, anxiety, 

cognitive load, self-efficacy), while chi-square tests assessed 

categorical outcomes (pass rates, quiz completion). To control 

for potential pre-existing differences, ANCOVA was 

performed with the Python diagnostic pre-test and prior 

semester GPA as covariates. Effect sizes (Cohen’s d) were 

reported to interpret the magnitude of observed differences. 

The implementation strategy was informed by previous 

research demonstrating that AI integration is most effective 

when paired with active learning (Fletcher & Kulik, 2017; Fan 

et al., 2025; Yan et al., 2025). The design intentionally balanced 

AI’s capabilities for personalization, immediate feedback, and 

adaptive learning with structured pedagogical oversight to 

prevent over-reliance and ensure accuracy. This blended 

approach sought to foster a participatory classroom 

environment where students actively engaged with both content 

and technology, building technical competence alongside AI 

literacy—a skill increasingly vital in modern engineering 

practice. 

IV. RESULT, ANALYSIS & DISCUSSION 

The results indicate a clear performance advantage for the 

AI-Active group across both cognitive and affective measures.  

In terms of final exam scores, the AI-Active group achieved an 

average of 69.0, compared to 61.2 for the Traditional-Active 

group, representing a mean difference of 7.8 points (~12.7% 

improvement).  

   Lab task accuracy improved from 72% in the 

Traditional group to 83% in the AI-Active group, a gain of 11 

percentage points, suggesting enhanced problem-solving 

efficiency through AI-assisted learning.  

  Pass rates improved from 78% to 90%, indicating that 

AI integration supported a greater proportion of students in 

achieving a passing grade. Time-to-solution was reduced from 

48 to 41 minutes, a 14.6% decrease, consistent with cognitive 

load theory and prior findings that AI support reduces 

extraneous load. 

Programming anxiety scores (on a 1–7 scale, where lower is 

better) decreased from 3.9 to 3.3, reflecting reduced 

apprehension in approaching coding tasks.  

Similarly, cognitive load (measured via NASA-TLX) dropped 

from 56 to 48, indicating more efficient cognitive resource 

allocation. Self-efficacy remained relatively stable (3.4 to 3.5), 

consistent with the literature suggesting that confidence 

changes require longer-term exposure.  

Engagement, measured as quiz completion rates, improved 

from 82% to 93%, demonstrating higher participation in 

formative assessments. 

To statistically quantify these differences, independent-samples 

t-tests were conducted for continuous variables, while chi-

square tests assessed categorical outcomes such as pass rates.  

 

Effect sizes were calculated using Cohen’s d: 

 

d = (M_AI - M_Traditional) / SD_pooled 

Where: 

M_AI = Mean of AI-Active group 

M_Traditional = Mean of Traditional-Active group 

SD_pooled = Pooled standard deviation of both groups. 

 

These results align with published literature, such as Wang & 

Fan (2025), which reports large effect sizes for sustained AI 

integration in education, and Fan et al. (2025), who found 

improved motivation and reduced anxiety through AI-assisted 

pair programming. 

 

 
 
Fig. 2. Comparative Results: AI-Active vs Traditional-Active 
 

These improvements are consistent with findings reported by 

Wang & Fan (2025), Fan et al. (2025), and Yan et al. (2025), 

further validating that AI-enhanced active learning 

environments produce measurable cognitive and affective 

gains. The AI-Active group also demonstrated higher 

participation in peer discussions and formative quiz cycles, 

indicating that AI-enabled strategies encouraged more active 

involvement compared to the Traditional-Active cohort. A 

supplementary chart describing item-wise assessment 

components has been added to ensure clarity and completeness 

of the Fig-2 comparative results. 

 

Discussion: The study demonstrates that AI-supported active 

learning can address common instructional challenges in large 

programming courses by improving engagement, reducing 
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anxiety, and offering scalable feedback. These findings can 

guide faculty in other engineering disciplines to adopt AI-

enabled pedagogical models that enhance participation, support 

diverse learners, and streamline formative assessment 

processes. Belim et al. (2025) discuss generative AI’s 

pedagogical potential and caution about verification skills — 

underscoring our emphasis on prompting/verification micro-

lessons in the intervention. 

 

Innovation and Applicability: 

This work introduces a structured AI-active learning framework 

that integrates Socratic tutoring, adaptive quizzes, and AI-

supported collaboration. The approach is applicable beyond 

programming—to courses involving problem-solving, 

simulation, design thinking, and computational modelling 

across engineering domains. 

CONCLUSION 

In conclusion, this study contributes to both the empirical and 

practical understanding of how AI can be harnessed to promote 

deeper learning, reduce barriers to engagement, and prepare 

students for the demands of a technology-driven professional 

landscape. Future research should explore multi-course, multi-

institution implementations, longitudinal impacts on skill 

retention and self-efficacy, and the development of discipline-

specific AI literacy frameworks to ensure that students emerge 

not only as competent coders but also as discerning, responsible 

AI users. 

1. This study demonstrates that the strategic integration of 

Artificial Intelligence into an active learning framework 

can significantly enhance the teaching and learning 

experience in undergraduate programming education. By 

embedding AI tools such as Socratic tutoring, AI-assisted 

pair programming, adaptive quizzing, and guided 

collaboration within the Python Programming course for 

second-semester B.Tech Computer Engineering students 

at RK University, the intervention succeeded in shifting 

classroom dynamics from passive knowledge reception to 

participatory, student-driven engagement. The AI-Active 

group consistently achieved higher academic 

performance, as reflected in improved final exam scores, 

greater lab task accuracy, higher pass rates, and faster 

time-to-solution, alongside notable reductions in 

programming anxiety and cognitive load. Engagement 

levels, measured through quiz completion rates and active 

participation, also increased substantially, underscoring 

AI’s capacity to foster sustained involvement in formative 

learning activities. 

2. These outcomes align closely with established findings in 

the literature, reinforcing that AI’s educational impact is 

maximized when sustained over multiple weeks, coupled 

with structured pedagogical guidance and explicit 

academic integrity protocols. Importantly, the study 

highlights that AI functions most effectively as a 

pedagogical enhancer rather than a replacement for human 

instruction—supporting personalized feedback, adaptive 

learning, and collaborative problem-solving in ways that 

are difficult to scale through traditional methods alone. 

3. While the results are promising, they also underscore the 

need for careful implementation. The gains observed 

depend on intentional instructional design, appropriate 

training in AI use, and ongoing monitoring to ensure that 

students develop critical evaluation skills rather than over-

relying on AI outputs. Given these conditions, AI-enabled 

active learning offers a replicable and scalable model for 

modern classrooms, particularly in STEM fields where 

rapid feedback and iterative practice are crucial. In 

compliance with institutional guidelines, all student data 

were anonymized before analysis. AI-generated 

interactions were logged without personal identifiers, and 

students were informed about data usage through a course-

level ethical AI use policy. No third-party data sharing 

occurred. 

 

LIMITATION AND FUTURE WORK 

Although the findings of this study demonstrate clear benefits 

of integrating Artificial Intelligence into active learning for 

undergraduate programming education, several limitations 

must be acknowledged.  

1. First, the quasi-experimental design employed—using 

two intact sections rather than randomized group 

assignments—introduces the possibility of selection 

bias, despite efforts to match groups on prior GPA and 

diagnostic test scores. This may limit the strength of 

causal inferences.  

2. Second, the intervention was conducted within a 

single course and academic term at RK University, 

focusing on one subject (Python Programming) in the 

second semester of B.Tech Computer Engineering. 

Consequently, the generalizability of the results to 

other subjects, academic levels, or institutional 

contexts remains uncertain.  

3. Third, the study relied on self-reported measures for 

affective variables such as programming anxiety, 

cognitive load, and self-efficacy, which, while 

validated, are inherently subjective and may be 

influenced by social desirability or novelty effects 

associated with AI tools.  

4. Fourth, the implementation required substantial 

instructor preparation, including designing prompt 

templates, curating AI-assisted quizzes, and 

monitoring student AI use for accuracy and academic 

integrity. This level of preparation may present 

scalability challenges if similar interventions are to be 

adopted across multiple courses without adequate 

faculty training and institutional support.  

Additionally, the intervention duration, while aligned with 

meta-analytic recommendations for AI exposure, may not have 

been long enough to detect significant changes in long-term 

skills such as programming self-efficacy or problem-solving 

resilience. 

Future research should address these limitations through 

multi-semester and multi-institution studies to evaluate the 

robustness of the observed outcomes across diverse educational 

settings and subject domains. Employing randomized 

controlled trials or crossover designs could strengthen causal 
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claims by minimizing selection bias. Longitudinal studies 

tracking students beyond the course would help determine the 

persistence of learning gains and the potential impact on 

subsequent academic performance, retention in the computing 

discipline, and professional readiness. Expanding the research 

scope to include discipline-specific AI literacy frameworks 

could ensure that students not only leverage AI for immediate 

coursework but also develop the critical thinking and ethical 

decision-making skills required for responsible AI use in 

professional practice. Moreover, future studies should 

investigate scalability strategies, such as faculty development 

programs, standardized AI pedagogical templates, and 

institution-wide policies for ethical AI integration. Finally, 

examining hybrid human–AI feedback models—where 

instructors and AI systems collaboratively deliver personalized 

guidance—could optimize the balance between technological 

efficiency and human mentorship, ensuring that AI remains a 

tool for augmentation rather than replacement of essential 

instructor–student interactions. 
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