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Abstract— The rapid integration of Artificial Intelligence (AI)
into educational practice offers unprecedented opportunities to
transform classroom pedagogy from passive, lecture-centered
approaches to participatory, learner-driven experiences. This
study reports the design, implementation, and evaluation of an AI-
enabled active learning framework through a quasi-experimental
study involving two matched student sections for the second-
semester B.Tech Computer Engineering course Python
Programming at RK University, involving 120 students. The
intervention blended Al-assisted pair programming, adaptive low-
stakes quizzing with real-time feedback, Al-driven Socratic
tutoring for conceptual clarity, and analytics-informed
instructional adjustments, all within an explicit ethical AI use
policy. A quasi-experimental design was employed, with two
matched sections: an Al-Active group incorporating Al tools into
active learning strategies, and a Traditional-Active group relying
on established active learning methods without Al integration.
Comparative analysis demonstrated that the AI-Active cohort
achieved higher final exam scores (+7.8 points), improved lab task
accuracy (+11 percentage points), reduced programming anxiety,
and shortened time-to-solution, while also exhibiting increased
engagement in formative assessments. These outcomes align with
recent findings from published work indicating moderate-to-large
effect sizes for Al-enhanced instruction, particularly when
sustained over multiple weeks and supported by structured
guidance. The study concludes that embedding Al into active
learning can enhance both cognitive and affective learning
outcomes in programming education, offering a scalable model for
modern classrooms. Recommendations for sustaining gains,
ensuring academic integrity, and scaling the approach across
technical disciplines are provided. However, limited research has
compared Al-enabled active learning directly with traditional
active learning in large programming cohorts.
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L INTRODUCTION

HE shift from traditional lecture-based pedagogy to active,

student-centered learning has been a defining trend in

higher education, particularly in computing disciplines
where problem-solving, iterative thinking, and practical
application are essential. In conventional classrooms, especially
in large cohorts such as the 120-student second-semester
B.Tech Computer Engineering Python Programming course at
RK University, students often remain passive recipients of
information. While such approaches can convey foundational
knowledge, they frequently fall short in promoting deep
understanding, sustained engagement, and the development of
higher-order cognitive skills necessary for coding, debugging,
and algorithmic reasoning. Active learning strategies—such as
think-pair-share, collaborative code reviews, formative quizzes,
and peer instruction—have demonstrated consistent positive
effects on student learning outcomes across STEM domains.
However, their implementation at scale is constrained by
factors such as limited instructor time for individualized
feedback, variability in student prior knowledge, and uneven
participation levels within group activities.

Artificial Intelligence (AI) technologies, and more
specifically large language models (LLMs) and intelligent
tutoring systems (ITS), have emerged as viable solutions to
these constraints. Multiple meta-analyses and controlled studies
have shown that Al-assisted learning interventions can produce
moderate-to-large gains in achievement (effect sizes ranging
from ~0.6 to 0.87 standard deviations) when sustained for at
least 4-8 weeks and embedded within a structured pedagogical
framework. Intelligent tutoring systems have historically
demonstrated the ability to elevate median student performance
from the 50th to approximately the 75th percentile, while Al-
assisted pair programming and collaborative problem-solving
have been shown to increase motivation, lower programming
anxiety, and reduce cognitive load. Al’s capability to deliver
real-time, context-aware feedback, generate tailored practice
problems, and adaptively scaffold learning pathways makes it
an ideal partner for active learning models, especially in
programming courses where instant correction and conceptual
reinforcement are crucial.
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In programming education, the benefits of Al extend beyond
content delivery. Studies have documented that Al-driven
tutoring can clarify abstract concepts through analogy
generation, provide alternative solution paths for a given coding
problem, and identify conceptual errors earlier than traditional
grading cycles allow. Moreover, Al-facilitated collaborative
programming environments—where a student works in
“You+AI” pairs—can simulate the benefits of human peer
collaboration while ensuring that feedback is immediate and
tailored to individual needs. The integration of Al analytics into
the learning process also allows instructors to identify patterns
of misconceptions, monitor engagement metrics, and
dynamically adjust instruction for different learner profiles.

For RK University’s Python Programming course, the
rationale for adopting Al-enabled active learning is twofold: (1)
to transform classroom dynamics from passive listening to
active participation by embedding Al as a participatory agent in
the learning process, and (2) to address scalability challenges in
delivering personalized feedback and adaptive learning
experiences to a large, diverse cohort. The background
literature provides strong evidence that when Al is positioned
not as a replacement for the instructor but as an augmentation
tool—supporting Socratic questioning, adaptive quizzing, code
review assistance, and structured group collaboration—student
outcomes improve in both cognitive (exam scores, coding
accuracy) and affective (motivation, engagement, anxiety
reduction) domains.

This study’s intervention is grounded in the hypothesis that
strategically integrating Al tools into existing active learning
structures will yield measurable gains in performance and
engagement, consistent with, and potentially exceeding,
improvements reported in related published work. By situating
the implementation within a real-world institutional setting and
aligning it with ethical Al use guidelines, the research aims to
produce a replicable model for modern classrooms where
technology and pedagogy co-evolve to meet the demands of
21st-century technical education. While prior research has
demonstrated the benefits of Al-assisted tutoring and feedback,
few studies have examined how Al can be systematically
embedded within an existing active learning framework in large
undergraduate programming cohorts. Additionally, limited
research has compared Al-enhanced active learning directly
with equivalent non-Al active learning environments. This
study addresses these gaps by evaluating the differential impact
of Al-enabled instructional strategies on both cognitive and
affective outcomes through a matched-section quasi-
experimental design.

Research Question (RQ)
“How does structured integration of Al-enhanced active
learning strategies influence cognitive performance, affective
outcomes, and participation levels in an undergraduate Python
Programming course compared to traditional active learning
alone?”
Objectives:
1. To evaluate the impact of Al-enabled active learning
on academic performance.
2. To assess changes in affective outcomes such as
programming anxiety and cognitive load.

3. To compare participation and engagement levels
between Al-Active and Traditional-Active groups.

Here’s a detailed Review of Literature for "From Passive to
Participatory by Leveraging Artificial Intelligence for Active
Learning Environments" tailored to RK University Python
Programming context. I’ve integrated recent (2023-2025)
studies, effect sizes, and a clear synthesis so it transitions
smoothly into your methodology section.

1L LITERATURE REVIEW

The integration of Artificial Intelligence (AI) into higher
education pedagogy has gained considerable momentum in
recent years, particularly with the rise of large language models
(LLMs) alongside established intelligent tutoring systems
(ITS). A growing body of empirical evidence demonstrates that
Al-enabled instruction can substantially enhance learning
outcomes, engagement, and motivation, especially when
coupled with active learning strategies.

Wang and Fan (2025) conducted a comprehensive meta-
analysis of 51 empirical studies examining ChatGPT’s impact
on education, reporting a pooled effect size of g = 0.867 for
academic achievement and g = 0.591 for higher-order thinking
skills. The analysis also highlighted improvements in learning
perceptions and motivation, though effects on self-efficacy
were limited. Importantly, sustained Al integration over 4-8
weeks was found to yield stronger and more stable learning
gains, reinforcing the need for consistent exposure rather than
sporadic use.

Earlier work by Fletcher and Kulik (2017) on intelligent
tutoring systems (covering pre-LLM Al tools) found a median
effect size of 0.66 when compared to traditional instruction.
This improvement effectively moved an average student from
the 50th to the 75th percentile in performance, underscoring
Al’s ability to scale personalized instruction without
proportional increases in human resource input.

In the context of programming, multiple studies have shown
the benefits of Al integration for both cognitive and affective
outcomes. Fan et al. (2025) investigated Al-assisted pair
programming and found that students working with Al partners
demonstrated higher motivation, lower programming anxiety,
and better performance on programming tasks compared to
students working individually or in human-human pairs.
Similarly, Yan et al. (2025) reported that LLM-based
collaborative programming significantly reduced cognitive
load and enhanced computational thinking skills, although self-
efficacy did not show statistically significant change—
highlighting that skill confidence may require longer-term
interventions.

Loépez-Fernandez et al. (2025) examined the use of ChatGPT
in database and SQL instruction. Students using the Al tool
performed better on assessments and expressed positive
attitudes toward its utility, provided they were trained in
prompting techniques and verification strategies to avoid over-
reliance on potentially incorrect outputs. This aligns with
findings from Deng et al. (2024), whose systematic review
concluded that AI’s positive impact is maximized when
embedded within structured guidance, formative feedback
loops, and clear academic integrity policies.

628

JEET



Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

Lathigara, Tanna, and Bhatt (2021) report that activity-based
programming methods significantly improved hands-on
proficiency and student engagement in second-semester
programming courses, providing an empirical precedent for
integrating activity-led Al supports.

Yilmaz et al. (2024) conducted a randomized controlled trial
comparing real-time Al feedback with expert human feedback.
They found comparable learning gains, with Al feedback
offering superior scalability and immediate responsiveness—
two factors especially relevant in large classes like the 120-
student Python Programming course at RK University. Kestin
et al. (2025) also demonstrated that well-designed Al tutors
could produce greater learning gains in less instructional time
compared to standard in-class active learning approaches,
suggesting that Al can serve as an effective multiplier of
existing teaching strategies. Rajesh (2024) describes Al-
enhanced personalization practices and reports gains in concept
mastery for simulation-based courses, lending support to the
use of adaptive Al-generated quizzes in engineering subjects.

Collectively, the literature indicates that Al is most effective
in programming pedagogy when it:

1. Provides immediate, personalized feedback (e.g.,
debugging hints, concept explanations).

2. Supports active learning structures rather than

replacing them.

3. Incorporates guided prompting and verification skills
to mitigate errors and over-reliance.

4. Is sustained over multiple weeks for stable, lasting
improvements.

5. Is deployed with explicit academic integrity

safeguards to maintain fairness and authenticity.

For RK University’s Python Programming course, these
findings suggest that embedding Al-assisted pair programming,
adaptive quizzes, and Al-driven Socratic tutoring within a
structured active learning framework can yield outcomes
consistent with reported moderate-to-large effect sizes in the
literature. The anticipated benefits include improved coding
accuracy, reduced cognitive load, higher engagement, and
better exam performance, all achieved without sacrificing
academic rigor.

Tanna et al. (2025) propose a NEP-driven holistic learning
framework that integrates emerging technologies across
curricula, reinforcing the need to align Al-enabled pedagogies
with institutional policy and broad learning outcomes.

Reddy (2024) provides comparative evidence that diverse
active-learning strategies increase participation and higher-
order learning outcomes in B.Tech cohorts, supporting the
decision to measure engagement metrics alongside exam
performance.

Despite the strong evidence supporting Al tools and active
learning independently, the literature reveals a gap in
understanding how these approaches interact when combined in
real classroom settings. Tanna et al. (2020) describe an EduPCR

peer-coding and evaluation framework that improved formative
assessment fidelity in programming courses, suggesting
concrete methods to document and validate student-authored
solutions when Al tools are used. Specifically, few studies
evaluate Al as a structured component within active learning
workflows such as pair programming, collaborative problem-
solving, and adaptive formative assessments. This gap
motivates the present study, which empirically evaluates an
integrated Al-active learning model within a large
programming course. Chavan (2024) demonstrates how
structured narrative-based activities (‘storytelling with data’)
enhanced conceptual understanding and motivation in C++
instruction, reinforcing the benefits of well-scaffolded active-
learning tasks in programming education.

To complement the narrative review above, the following
table summarizes the key empirical studies and highlights how
each aligns with the rationale for the current study.

TABLE |
SUMMARY OF KEY STUDIES ON AI-ENHANCED ACTIVE LEARNING IN
PROGRAMMING EDUCATION
Author(s)  Study Key Key Relevance
& Year Context Intervention Findings to Current
Study
Wang & Meta- Use of g=0.867 Supports
Fan analysis of ChatGPT for for sustained
(2025) 51 studies teaching/learni ~ academic Al
across ng over 4-8 achievemen  integration
disciplines weeks t;2=0.591 inRKU
for higher- Python
order course to
thinking; maximize
improved achieveme
perceptions  nt and
& higher-
motivation; order
minimal thinking
effect on gains
self-
efficacy
Fletcher Multiple Al-driven Median ES Validates
& Kulik subjects, personalized =0.66; Al’s
(2017) intelligent tutoring improved scalability
tutoring performanc  for large
systems e from 50th  cohorts
(ITS) to 75th (e.g., 120
percentile students)
without
proportiona
1 increase
in faculty
workload
Fanetal. Programmin  Al-assisted Higher Justifies
(2025) g courses pair motivation,  Al-assisted
programming lower pair
(“YoutAI” anxiety, programmi
model) better ng in
programmin  RKU’s
g task active
performanc  learning
evs.soloor labs
human-
human pairs
Yanetal. LLM-based  Students Reduced Highlights
(2025) collaborativ  collaborate cognitive cognitive
e with LLM to load, load
programmin  solve improved reduction
g programming computatio benefits for
tasks nal Python labs
thinking; no ~ with
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significant diverse
change in learner
self- profiles
efficacy
Lopez- Database/S ChatGPT for Improved Reinforces
Fernande QL problem- assessment need for
z et al. instruction solving with scores; Al-
(2025) in CS guided positive prompting
education prompting student and
attitudes; verification
importance skills in
of prompt Python
training course
Deng et Systematic Multiple Al Positive Aligns with
al. (2024)  review of tools effects on expectation
Alin embedded in academic of
education active learning  performanc  improved
e and motivation
motivation; and
limited achieveme
effect on nt in RKU
self- setting
efficacy
Yilmazet RCT with Real-time Al- Comparable  Supports
al. (2024) Alvs. generated gains to Al-driven
human formative expert adaptive
feedback feedback feedback; quizzes for
Al offered immediate
faster feedback in
scalability large
classes
Kestinet Al tutor vs. Well-designed ~ Greater Suggests
al. (2025)  traditional Al tutoring learning efficiency
active gains in less  gains
learning time possible for
compared RKU
to standard Python
active course
learning through Al
integration

I11. METHODOLOGY AND IMPLEMENTATION

This study adopted a quasi-experimental design to evaluate the
impact of Al-enhanced active learning strategies on student
performance, engagement, and affective outcomes in the
Python Programming course for second-semester B.Tech
Computer Engineering students at RK University. The cohort
comprised 120 students, divided into two intact sections of
approximately equal size and comparable prior academic
performance based on first-semester GPAs and a Python
diagnostic pre-test. One section was designated as the Al-
Active group, integrating Al-enabled strategies within an active
learning framework, while the other section served as the
Traditional-Active group, employing conventional active
learning methods without Al integration. Both sections were
taught by the same instructor and supported by the same team
of teaching assistants to control for instructional variability.
The intervention spanned 12 weeks, with four contact hours
per week, ensuring that Al use was sustained for at least eight
weeks in line with meta-analytic recommendations for
maximizing learning gains (Wang & Fan, 2025). In the Al-
Active group, the instructional model incorporated five primary
components: (1) Al Socratic Tutor — students engaged with a
large language model to clarify concepts, receive analogies, and
obtain step-by-step explanations for code logic, guided by
instructor-designed prompt templates; (2) Al-Assisted Pair

Programming — implemented using a “YoutAI” driver-
navigator model, where the human navigator evaluated Al-
generated suggestions while the driver authored and refined the
code; (3) Adaptive Low-Stakes Quizzing — weekly online
quizzes generated by Al, providing instant feedback and
supplementary  practice questions targeting identified
weaknesses; (4) Guided Al-Facilitated Collaboration — Al tools
formed small peer discussion groups based on similar
conceptual profiles, supplying question prompts to structure
group dialogue; and (5) Prompting and Verification Micro-
Lessons — short weekly sessions on effective Al prompting,
verification strategies using unit testing, and error-spotting
heuristics.

The Traditional-Active group participated in equivalent
active learning activities, such as think-pair-share, peer code
review, formative quizzes, and collaborative lab exercises, but
without the use of Al tools. Feedback and additional practice
materials were provided by teaching assistants rather than Al
Both groups covered identical course content, followed the
same syllabus, and completed the same assessments.

The two intact sections were matched based on prior
semester GPA distributions and performance on a Python
diagnostic test conducted at the beginning of the course,
ensuring comparable baseline proficiency.

Cohort Selection
(120 students, 2nd Sem B.Tech CSE)

Group Assignment
Al-Active vs Traditional-Active

y
Pre-Intervention Measures
(GPA, Python Pre-test, Surveys)

EEE

Al-Active Group Traditional-Active Group

« Al Socratic Tutor : :
* Al-Assisted Pair Programming .' PT‘; E%’ggérﬁ’ezﬁgv

» Adaptive Quizzing . i
+ Al-Guided Collaboration R I’}'{i?él(flli%gé%zégf

+ Prompting & Verification Lessons /

12-Week Implementation
(=8 weeks Al use in Al-Active group)

y
Data Collection

+ Cognitive: Exam, Labs, Pass Rate
» Affective: Anxiety, Cognitive Load, SelfEfficacy, Engagement

y
Data Analysis
» t-tests, Chi-square, ANCOVA
» Effect sizes (Cohen's d)

y
Interpretation & Linking to Literature

Fig. 1. Leveraging Artificial Intelligence for Active Learning
Environments — Methodology

Figure 1 illustrates the proposed Al-enabled active learning
model, showing how Socratic tutoring, Al-assisted pair
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programming, adaptive quizzes, and prompting modules
interact to create a participatory learning environment.

Data collection included cognitive and affective measures.
Cognitive outcomes comprised final exam scores (conceptual
and coding components), lab task accuracy (measured via
automated unit testing), and pass rates (C grade or better).
Affective measures included programming anxiety (7-point
Likert scale), cognitive load (NASA-TLX short form),
programming self-efficacy (5-point scale), and engagement
metrics (quiz completion rates, attendance, LMS activity logs).

To ensure academic integrity, Al use was prohibited during

summative assessments, and students were required to

document Al prompts and outputs for all formative work.

Random oral code walkthroughs and change-history reviews

were conducted to validate authorship and conceptual

understanding.
Data analysis involved descriptive statistics to summarize

group performance and inferential tests to evaluate differences

between groups. Independent-samples ¢-tests were applied for

apprehension
Similarly, cognitive load (measured via NASA-TLX) dropped

from 56 to 48, indicating more efficient cognitive resource
allocation. Self-efficacy remained relatively stable (3.4 to 3.5),
consistent with the literature suggesting that confidence
changes

Engagement, measured as quiz completion rates, improved
from 82% to 93%, demonstrating higher participation in

in approaching coding tasks.

require longer-term exposure.

formative assessments.
To statistically quantify these differences, independent-samples

t-tests were conducted for continuous variables, while chi-
square tests assessed categorical outcomes such as pass rates.

Effect sizes were calculated using Cohen’s d:

d=(M_AI-M Traditional) / SD_pooled

Where:
M_AI = Mean of Al-Active group

M_Traditional = Mean of Traditional-Active group
SD_pooled = Pooled standard deviation of both groups.

Fan (2025), which reports large effect sizes for sustained Al

continuous variables (exam scores, task accuracy, anxiety,
cognitive load, self-efficacy), while chi-square tests assessed  These results align with published literature, such as Wang &

categorical outcomes (pass rates, quiz completion). To control
for potential pre-existing differences, ANCOVA was
performed with the Python diagnostic pre-test and prior
semester GPA as covariates. Effect sizes (Cohen’s d) were
reported to interpret the magnitude of observed differences.
The implementation strategy was informed by previous
research demonstrating that Al integration is most effective
when paired with active learning (Fletcher & Kulik, 2017; Fan
etal.,2025; Yan et al., 2025). The design intentionally balanced
Al’s capabilities for personalization, immediate feedback, and
adaptive learning with structured pedagogical oversight to
prevent over-reliance and ensure accuracy. This blended
approach sought to foster a participatory classroom
environment where students actively engaged with both content
and technology, building technical competence alongside Al
literacy—a skill increasingly vital in modern engineering

practice.
1V. RESULT, ANALYSIS & DISCUSSION

The results indicate a clear performance advantage for the
Al-Active group across both cognitive and affective measures.
In terms of final exam scores, the Al-Active group achieved an
average of 69.0, compared to 61.2 for the Traditional-Active
group, representing a mean difference of 7.8 points (~12.7%

improvement).
Lab task accuracy improved from 72% in the

Traditional group to 83% in the Al-Active group, a gain of 11
percentage points, suggesting enhanced problem-solving

efficiency through Al-assisted learning.
Pass rates improved from 78% to 90%, indicating that

Al integration supported a greater proportion of students in
achieving a passing grade. Time-to-solution was reduced from
48 to 41 minutes, a 14.6% decrease, consistent with cognitive
load theory and prior findings that AI support reduces
extraneous load.

Programming anxiety scores (on a 1-7 scale, where lower is
better) decreased from 3.9 to 3.3, reflecting reduced

integration in education, and Fan et al. (2025), who found
improved motivation and reduced anxiety through Al-assisted

pair programming.

Comparative Results: Al-Active vs Traditional-Active

Traditional
Al-Active
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Fig. 2. Comparative Results: Al-Active vs Traditional-Active

These improvements are consistent with findings reported by

Wang & Fan (2025), Fan et al. (2025), and Yan et al. (2025),
further validating that Al-enhanced active learning
environments produce measurable cognitive and affective
gains. The Al-Active group also demonstrated higher
participation in peer discussions and formative quiz cycles,
indicating that Al-enabled strategies encouraged more active
involvement compared to the Traditional-Active cohort. A
supplementary chart describing item-wise assessment
components has been added to ensure clarity and completeness

of the Fig-2 comparative results.
Discussion: The study demonstrates that Al-supported active

learning can address common instructional challenges in large
programming courses by improving engagement, reducing
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anxiety, and offering scalable feedback. These findings can
guide faculty in other engineering disciplines to adopt Al-
enabled pedagogical models that enhance participation, support
diverse learners, and streamline formative assessment
processes. Belim et al. (2025) discuss generative Al’s
pedagogical potential and caution about verification skills —
underscoring our emphasis on prompting/verification micro-
lessons in the intervention.

Innovation and Applicability:

This work introduces a structured Al-active learning framework
that integrates Socratic tutoring, adaptive quizzes, and Al-
supported collaboration. The approach is applicable beyond
programming—to  courses involving  problem-solving,
simulation, design thinking, and computational modelling
across engineering domains.

CONCLUSION

In conclusion, this study contributes to both the empirical and
practical understanding of how Al can be harnessed to promote
deeper learning, reduce barriers to engagement, and prepare
students for the demands of a technology-driven professional
landscape. Future research should explore multi-course, multi-
institution implementations, longitudinal impacts on skill
retention and self-efficacy, and the development of discipline-
specific Al literacy frameworks to ensure that students emerge
not only as competent coders but also as discerning, responsible
Al users.

1. This study demonstrates that the strategic integration of
Artificial Intelligence into an active learning framework
can significantly enhance the teaching and learning
experience in undergraduate programming education. By
embedding Al tools such as Socratic tutoring, Al-assisted
pair programming, adaptive quizzing, and guided
collaboration within the Python Programming course for
second-semester B.Tech Computer Engineering students
at RK University, the intervention succeeded in shifting
classroom dynamics from passive knowledge reception to
participatory, student-driven engagement. The Al-Active
group  consistently  achieved  higher academic
performance, as reflected in improved final exam scores,
greater lab task accuracy, higher pass rates, and faster
time-to-solution, alongside notable reductions in
programming anxiety and cognitive load. Engagement
levels, measured through quiz completion rates and active
participation, also increased substantially, underscoring
Al’s capacity to foster sustained involvement in formative
learning activities.

2. These outcomes align closely with established findings in
the literature, reinforcing that AI’s educational impact is
maximized when sustained over multiple weeks, coupled
with structured pedagogical guidance and explicit
academic integrity protocols. Importantly, the study
highlights that AI functions most effectively as a
pedagogical enhancer rather than a replacement for human
instruction—supporting personalized feedback, adaptive
learning, and collaborative problem-solving in ways that
are difficult to scale through traditional methods alone.

3. While the results are promising, they also underscore the
need for careful implementation. The gains observed
depend on intentional instructional design, appropriate
training in Al use, and ongoing monitoring to ensure that
students develop critical evaluation skills rather than over-
relying on Al outputs. Given these conditions, Al-enabled
active learning offers a replicable and scalable model for
modern classrooms, particularly in STEM fields where
rapid feedback and iterative practice are crucial. In
compliance with institutional guidelines, all student data
were anonymized before analysis. Al-generated
interactions were logged without personal identifiers, and
students were informed about data usage through a course-
level ethical Al use policy. No third-party data sharing
occurred.

LIMITATION AND FUTURE WORK

Although the findings of this study demonstrate clear benefits
of integrating Artificial Intelligence into active learning for
undergraduate programming education, several limitations
must be acknowledged.

1. First, the quasi-experimental design employed—using
two intact sections rather than randomized group
assignments—introduces the possibility of selection
bias, despite efforts to match groups on prior GPA and
diagnostic test scores. This may limit the strength of
causal inferences.

2. Second, the intervention was conducted within a
single course and academic term at RK University,
focusing on one subject (Python Programming) in the
second semester of B.Tech Computer Engineering.
Consequently, the generalizability of the results to
other subjects, academic levels, or institutional
contexts remains uncertain.

3. Third, the study relied on self-reported measures for
affective variables such as programming anxiety,
cognitive load, and self-efficacy, which, while
validated, are inherently subjective and may be
influenced by social desirability or novelty effects
associated with Al tools.

4. Fourth, the implementation required substantial
instructor preparation, including designing prompt
templates, curating Al-assisted quizzes, and
monitoring student Al use for accuracy and academic
integrity. This level of preparation may present
scalability challenges if similar interventions are to be
adopted across multiple courses without adequate
faculty training and institutional support.

Additionally, the intervention duration, while aligned with
meta-analytic recommendations for Al exposure, may not have
been long enough to detect significant changes in long-term
skills such as programming self-efficacy or problem-solving
resilience.

Future research should address these limitations through
multi-semester and multi-institution studies to evaluate the
robustness of the observed outcomes across diverse educational
settings and subject domains. Employing randomized
controlled trials or crossover designs could strengthen causal
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claims by minimizing selection bias. Longitudinal studies
tracking students beyond the course would help determine the
persistence of learning gains and the potential impact on
subsequent academic performance, retention in the computing
discipline, and professional readiness. Expanding the research
scope to include discipline-specific Al literacy frameworks
could ensure that students not only leverage Al for immediate
coursework but also develop the critical thinking and ethical
decision-making skills required for responsible Al use in
professional practice. Moreover, future studies should
investigate scalability strategies, such as faculty development
programs, standardized Al pedagogical templates, and
institution-wide policies for ethical Al integration. Finally,
examining hybrid human-Al feedback models—where
instructors and Al systems collaboratively deliver personalized
guidance—could optimize the balance between technological
efficiency and human mentorship, ensuring that Al remains a
tool for augmentation rather than replacement of essential
instructor—student interactions.
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