Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

Al-Enhanced Lean Six Sigma Framework for
Building Software Sector Quality Competencies
in Engineering

!Sathyendra Bhat J, 2Rio D’Souza, *Shreeranga Bhat, *Athokpam Bikramjit Singh, *Ragesh Raju
L3 Department of Computer Science & Engineering, AJ Institute of Engineering and Technology, Visvesvaraya
Technological University, Karnataka, India
2 Department of Computer Science & Engineering, St Joseph Engineering College, Visvesvaraya Technological
University, Karnataka, India
3 Department of Mechanical Engineering, St Joseph Engineering College, Visvesvaraya Technological University,
Karnataka, India
* Department of Computer Science & Engineering, Yenepoya Institute of Technology, Visvesvaraya Technological
University, Karnataka, India
! sathyendrabhat@ajiet.edu.in, *riod@sjec.ac.in, 3shreerangab@sjec.ac.in, *bikramjits@yit.edu.in,

Srageshraju@ajiet.edu.in

Abstract— The goal of this study is to use an Al-enhanced
framework to systematically add Lean Six Sigma (LSS) ideas to
software engineering project-based courses. The goal is to help
software engineering students do better work that is useful to the
industry. The framework's goal is to include process thinking and
an emphasis on quality to the undergraduate engineering
curriculum. It employs a Design-Based Research (DBR) method to
put the DMAIC (Define-Measure-Analyze-Improve-Control)
quality improvement model into action. AI agents allow for
continual improvement by using contextual feedback loops, fault
grouping, documentation scaffolding, and real-time reflective
analytics. Results from empirical validation across the two
semesters demonstrate significant enhancement in both technical
and process-oriented learning, evidenced by a 35% reduction in
software faults and a 42% increase in DMAIC documentation
completeness. This research explains why the framework was
created, how Al fits into it, how it is used in the classroom, and
how it affects student success. The primary objective of the
intervention and its results, which are components of a broader
research initiative, is to enhance software engineering education
by establishing more structured and quality-focused learning
environments.

Keywords—Al in Education; DMAIC; Lean Six Sigma;
Software Sector; Engineering Education; Quality Competencies.

ICTIEE Track—Teaching and Learning
Education

ICTIEE Sub-Track—AI-Enhanced Pedagogy and Emerging
Learning Frameworks

in Engineering

I. INTRODUCTION
The software business is evolving because the standards for
size, complexity, and quality are rising very quickly.
Companies have to deal with problems such changing client

expectations, extended project timelines, high failure rates,
technical debt, poor team communication, and different ways
of developing (Sommerville & Rodden, 2017; Petersen et al.,
2015; Kuhrmann et al., 2017). To get around these problems,
companies in the service and manufacturing industries have
used Lean and Six Sigma methods (Middleton, 2001; Petersen
& Wohlin, 2011). Kwak & Anbari (2006) and Pernstal et al.
(2013) agree that Lean Six Sigma (LSS) is a good way to
improve software development processes over the last ten
years. This is because it might help come up with ways to make
fewer mistakes, speed up the flow, and finish a cycle faster.

The software industry is hesitant to adopt Lean Six Sigma
(LSS), even though it has several benefits (Ferreira & Proenca,
2021; Antony et al., 2020). Undergraduates' limited exposure to
quality-engineering tools, poor training, a lack of connection
between academic programs and industry objectives, and
engineers' unfamiliarity with LSS concepts are all relevant
problems. According to research on engineering education,
competency-based learning methods that include industry-
relevant skills into coursework are necessary to increase
students' preparation for the workforce (Crouch & Mazur,
2001). Graduate engineers lack enough preparation to connect
the divide between industry and academia regarding essential
engineering skills such as data-driven decision-making, process
mapping, root-cause analysis, and measurement literacy.

Zawacki-Richter et al. (2019), Bond et al. (2021), and
Kasneci et al. (2023) all point to the fact that Al is having a
profound impact on engineering education by way of intelligent
feedback, personalized learning paths, multi-agent mentoring,
and automated analytics (Hamouda et al., 2019). Integrating Al

Sathyendra Bhat J
Department of CSE, AJ Institute of Engineering and Technology
sathyendrabhat@ajiet.edu.in

538

JEET

mailto:sathyendrabhat@ajiet.edu.in
mailto:2riod@sjec.ac.in
mailto:3shreerangab@sjec.ac.in
mailto:4bikramjits@yit.edu.in

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

with LSS principles enhances engagement in learning,
facilitates problem-solving for students, and guides them
through the intricate phases of the DMAIC cycle. With the rise
of new types of generative Al, Al-assisted LSS training has
become more accessible and useful. This is because students
can now model real-world quality problems, come up with new
ideas, see how to improve processes, and obtain coaching in
small steps.

This study introduces an Al-Enhanced Lean Six Sigma
Framework (AI-LSS) aimed at assisting engineering students in
cultivating software quality competencies. Although LSS is
widely used in the software development business, there have
not been many studies that link these methodologies to
engineering education. So far, not much research has been done
on how the software industry's particular quality capabilities
connect to DMAIC-based learning and Al-enhanced teaching
methods. The growing demand for engineers proficient in data-
driven decision-making, continuous enhancement, waste
reduction, variance minimization, and India's rapidly growing
software sector makes this difference all the more striking.

Using Design-Based Research (DBR) methodology, this
project involved 63 undergraduate and graduate students for
two semesters to evaluate and improve the proposed AI-LSS
framework iteratively. This study shows how software
industry-relevant technical, analytical, and process-
improvement abilities may be improved through project-based
learning that is Al-enhanced and centered on the DMAIC
model. Three main contributions are made by this work.:

1. Acquiring high-quality software capabilities is the
goal of this Al-driven instructional architecture.;

2. It evaluates the effectiveness of the framework by
analyzing both qualitative and quantitative data.; and

3. It offers a scalable framework for connecting
academic training with software industry quality
criteria aimed at LSS.

II. RELATED WORK AND LITERATURE REVIEW

A. Lean and Six Sigma in Software Development

Lean Thinking seeks to remove waste and create value by
highlighting the importance of flow efficiency, respect for
humans, and continuous improvement (Kilpatrick, 2003).
Within the framework of software development, the Lean
approach prioritises quicker customer value delivery, better
collaboration, and less task switching (Poppendieck &
Poppendieck, 2003). Lean methods like continuous flow, work-
in-progress (WIP) control, Value Stream Mapping (VSM), and
Kanban have helped software projects a lot (Middleton, 2001;
Petersen & Wohlin, 2011).

Kwaw and Anbari (2006) say that Six Sigma's DMAIC
method gives an organized way to lower variation, find errors,
and preserve the integrity of the process. Pernstél et al. (2013)
have discussed the application of Six Sigma in software
development for assessing process capabilities, improving code
quality, and preventing problems. Engineering schools don't

teach Six Sigma well enough, provide students enough chances
to learn about it, or give them enough exposure to it (Ferreira &
Proenca, 2021; Kasoju et al., 2013). This means that software
teams can't apply it.

When Lean and Six Sigma (LSS) are used together, they can
make software engineering much better. For example, they can
cut down on rework, speed up cycle times, make things more
predictable, and make customers happier (Middleton et al.,
2007). Organizations continue to face issues such as cultural
resistance, insufficient managerial commitment, unfamiliarity
with technologies, and a lack of comprehension about quality
indicators (Feldt et al., 2010). Due to these difficulties, it is
essential for engineering graduates to possess a comprehensive
understanding of LSS principles (Staron et al., 2012).

B. Wastes, Challenges, and CSFs
Development

The literature (Hicks, 2007) has a lot of information about
how software development might be inefficient. Some of these
inefficiencies are unnecessary features, downtime, rework
because of unclear requirements, poor transitions, and not using
people to their full potential. Herdika and Budiardjo (2020)
assert that these wastes align with Lean's conventional
categories and remain widespread in Agile, Scrum, XP, and
DevOps environments. Sometimes, software development
teams get into difficulties like scope creep, low quality, delays,
and misunderstandings because of process variability and non-
standard practices (Petersen & Wohlin, 2011; Madhani, 2020;
Sony & Naik, 2019).

in Software

A number of factors need to be in place for software
businesses to adopt Lean Six Sigma (LSS) well. Antony et al.
(2012) say that these things help a project succeed: support
from higher-ups, making decisions based on facts, having
competent personnel available, a commitment to always
becoming better, and making sure that development goals
match what customers want. Key Performance Indicators
(KPIs) including defect density, flow efficiency, throughput,
and lead time are also important for judging how well a project
is doing. These CSFs and KPIs offer a theoretical framework
for the competency enhancement objectives of this initiative
(Roveda & Tamburri, 2020; Rodriguez et al., 2017).

C. Lean Six Sigma Competencies and Engineering
Education

The incorporation of industry-specific quality frameworks
into engineering programs has the potential to enhance students'
readiness for the profession, according to mounting evidence
(Crouch & Mazur, 2001). Engineering graduates often lack
knowledge of quality instruments, measurement systems, and
process improvement, even though these concepts are crucial in
contemporary software engineering jobs (Esakia &
McCrickard, 2016). Integrating learning support systems (LSS)
into project-based learning (PBL) settings is an excellent
approach to teach ideas like value-based learning (VOC),
critical success factors (CTQ), process mapping, RCA, and

539

JEET

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

VOC through practical project examples, say Hamouda et al.
(2019).

Traditional methods to LSS training are sometimes time-
consuming, technology-dependent, and instructor-focused,
making scaling and integration with modern curriculum
challenging. In order for students to be able to use LSS
principles in real-world software industry issue scenarios, there
must be structured, scalable, education that makes use of
technology. (Hung, 2011; Blumenfeld et al., 1994; Ashton &
Newman, 2023)

D. Al-Supported Pedagogy, Constructivism, and
Heutagogy

Educational systems have been radically transformed by
recent advancements in artificial intelligence. The use of
generative Al models, intelligent tutoring systems, and multi-
agent learning environments improves students' problem-
solving skills by automating assessment, providing conceptual
help, and providing tailored feedback (Hamouda et al., 2019).
Active student participation in issue formulation, alternative
exploration, hypothesis testing, and result reflection is central
to constructivist learning theory (Bond et al., 2021).

By encouraging learner agency, developing metacognitive
abilities, and nurturing competencies for lifelong learning,
heutagogy (also known as self-determined learning)
strengthens constructivism (Hase & Kenyon, 2000). Prieto et al.
(2018) and Ifenthaler and Yau (2020) found that Al
technologies provide self-directed learning, timely help,
reflective inquiry, and quick analytics, which aligns well with
heutagogical ideals.

By combining Al with LSS-based PBL, students are given the
chance to:

1. Simulate real-world quality issues,
Receive personalized mentoring from virtual agents,
Perform root-cause analysis with automated insights,
Visualize process maps and defects,
Track improvement metrics,
and reflect on their decision-making pathways.

A il

Despite these advances, there is limited scholarly work
examining Al-enhanced LSS learning in the context of
developing software-sector quality competencies, a gap this
study aims to address.

E. Research Gaps
There are three main gaps that have been found by the
literature review:

1. 1. Lean Six Sigma is becoming more popular in
software development companies, but there is still a
noticeable gap in competence among recent
engineering grads.

2. There has been limited research connecting the
findings from studying LSS in software process
enhancement to structured engineering educational

frameworks.

3. To better educate students for quality practices in the
software business, the present LSS pedagogy does not
include heutagogical, constructivist, or Al-supported
approaches.

Using an Al-augmented Lean Six Sigma framework, this
study seeks to establish quality competences in line with
software industry requirements, therefore addressing these
weaknesses.

III. RESEARCH QUESTIONS AND PROPOSED
FRAMEWORK

Examining how well an AI-LSS instructional paradigm
fosters software quality abilities in engineering students is the
primary goal of this research. The following Research
Questions (RQs) were formulated to guide the development and
evaluation of the suggested framework, drawing from
principles of Lean Software Development, Six Sigma, research
on engineering education, and Al-enhanced constructivist
learning.

In order to bring together conventional process improvement
training and cutting-edge Al-based learning resources, the
proposed framework combines Lean Six Sigma methodology
with generative Al capabilities. Each phase of the DMAIC
cycle is mapped out in the instructional design to coincide with
certain competencies and interventions powered by technology.

Detine VO OGOt deiniion
aeel el (B e
Improve l?:)FC?ES Pr(gzzf:: ti:pdrzsg?:ent
Control Siowof || Gontiuous lemming

Fig. 1. Al-Enhanced Lean Six Sigma Pedagogical Framework

The five stages of the DMAIC methodology; Define,
Measure, Analyze, Improve, and Control, are laid out in the
framework, together with the complementary Lean Six Sigma
tools, generative Al agents (Tutor, Assessor, Evaluator), and
necessary software quality skills. Process optimization using
heutagogical and constructivist learning concepts is integrated
at every layer of the design.

As shown in Figure 1, the framework makes use of structured
tools like VOC, VSM, and DOE, together with Al agents that
act as Tutors, Assessors, and Evaluators. This method promotes
student comprehension of quality management principles while
facilitating tailored feedback and real-time analytics, hence
promoting deeper competency development.

540

JEET

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

A. Research Questions

RQIl: How can a learning system powered by artificial
intelligence successfully include software-related Lean Six
Sigma principles into engineering curricula?

RQ2: How can Al help students learn and use DMAIC
methods like VOC analysis, CTQs, RCA, and defect analytics
to solve problems in the software industry?

RQ3: Process mapping, issue identification, defect reduction,
and continuous improvement are software-sector quality
competences. How does the AI-LSS framework affect students'
capacity to develop these skills?

RQ4: How do students feel about the efficacy of reflective
analytics, multi-agent mentorship, and Al-supported coaching
in fostering independence, problem-solving abilities, and
heutagogical learning capacities?

B. Proposed AI-LSS Framework

In order to help students understand quality engineering
principles in software development environments, the AI-LSS-
Edu proposes a framework that combines the structured
discipline of DMAIC with Al-enabled pedagogical support.
The foundation of the framework is a competency model that is
based on some well-known Lean Six Sigma concepts, such as
the following: defect analytics, Value Stream Mapping, Critical
Success Factors (CSFs), Voice of the Customer (VOC), Critical
to Quality (CTQ) parameters, and Value Stream Mapping.
Problems with requirement instability, unnecessary rework,
communication gaps, and process variability are common in the
software industry, so these factors were chosen because of their
relevance to those issues. The software industry has high
standards for engineers, and by including these concepts into
engineering curricula, students can learn to reduce waste,
monitor performance, and solve problems in a systematic way.
The educational value chain was mapped out and stakeholder
expectations were aligned during the Define phase through a
SIPOC (Suppliers, Inputs, Process, Outputs, Customers) study.
At this point, we figured out what essential elements determine
how well people learn.

Al aids this model at all levels of DMAIC by delivering
precise, useful feedback, step-by-step coaching, and analytical
support. Students may employ generative Al agents to improve
their ability to think critically and understand concepts. These
agents can show process inefficiencies, look at data, and figure
out fault patterns, among other things. Students may be
confident that they will get rapid cognitive help and validation
from professionals thanks to the cooperation between Al bots
and human professors. The purpose of this full integration is to
provide an interesting learning environment where students can
easily understand, use, and build on LSS principles in software
engineering.

C. Framework Operationalisation through DMAIC

The AI-LSS-Edu framework uses the DMAIC cycle to plan
learning activities for software engineering projects. During the
Define phase, students use AI tools to give project

541

requirements, Voice of the Customer (VOC) metrics, and
Critical to Quality (CTQ) metrics. This enables them talk about
problems with software quality more clearly. During the
Measure phase, students learn how to collect data, tidy it up,
and then make a summary of it. using the use of Al systems,
visualization of baselines, identification of bottlenecks, and
delineation of flow efficiencies may be achieved using tools
like Value Stream Mapping (VSM). Using Al's diagnostic skills
to assist with activities like categorizing fault patterns,
performing hypothesis investigations, root-cause analysis, and
Pareto profiling, the Analyze phase helps students refine their
analytical ability.

Before going on to the Improve stage, students need to find
and evaluate possible ways to make the process better. Artificial
intelligence systems make it easier to model possible outcomes,
look at different solutions, and guess what could happen if you
use different methods to make things better. Al-powered
dashboards keep an eye on updated KPIs, motivate students to
think about what they are learning, and make sure they
completely understand the idea of continuous progress
throughout the Control phase. This DMAIC implementation
follows industry standards and provides students a disciplined,
step-by-step way to fix software quality problems. We used the
Voice of the Customer (VOC) survey and reflection sheets to
find Critical to Quality (CTQ) qualities. Some of these are
defined goals, peer evaluations that are organized, and timely
feedback. We used a Cause-and-Effect Matrix to link CTQ
results to possible educational interventions. The result was a
concentrated endeavor to improve the essential elements of
student success.

D. Framework Contribution

The AI-LSS-Edu platform links classroom teaching with
software industry quality standards to make engineering
education better. The framework teaches learners how to assess,
diagnose, and make choices in software development
environments that have quality problems by combining Al-
driven cognitive help with Lean Six Sigma ideas. Heutagogical
and constructivist educational approaches work well with
mentoring and Al-driven feedback because they encourage
students to take charge of their own learning and think about
what they learn. Furthermore, the framework depicts a method
for integrating LSS capabilities into the engineering curriculum
in its current form, offering a flexible and extensible strategy
for career preparation. It fixes long-standing problems with
high-quality engineering education as part of bigger efforts to
properly train the software industry's workers.

IV. METHODOLOGY

Using a Design-Based Research (DBR) technique, the Al-
Enhanced Lean Six Sigma Framework (AI-LSS-Edu) was
designed, put into use, and tested several times in real-world
engineering education settings. DBR is an excellent way to
come up with new ideas for education since it helps researchers
try out their ideas in real-life learning circumstances and
improve the intervention depending on what they find. There

JEET

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

were several rounds of designing, implementing, evaluating,
and revising the AI-LSS-Edu framework over its two semesters
of use.

When developing the AI-LSS-Edu framework, the Design-
Based Research (DBR) method was used. This approach places
an emphasis on real-world classroom settings that facilitate
iterative cycles of planning, doing, assessing, and improving. In
this research, we looked at a two-semester curriculum that
taught Lean Six Sigma (LSS) with the use of artificial
intelligence (Al) to see how well it worked. We can see the
planned path of execution in the figure below. In particular, it
shows how DBR acted as a guide for the whole framework
deployment procedure.

Implementing preventive pedagogical modifications became
simpler with the analytics layer's support for Root Cause
Analysis (RCA) on patterns of poor performance.

Pedagogical Design of
Al-LSS Framework

\ 4
2 M
Al-Enhanced Delivery
in Classroom/Project
N J
\ 4
e h
Data Collection and
Assessment
N\ J

Feedback and Iteration
of Framework

Fig. 2. Implementation Methodology of AI-LSS-Edu Framework using
Design-Based Research (DBR) Cycles

The picture shows that the implementation was separated
into iterative cycles using the DBR approach. In each cycle,
participants worked on Al-supported learning interventions, put
them into action via project-based learning (PBL) initiatives,
analyzed the results and participants' experiences, and finally,
revised the interventions accordingly. Hypotheses such as
DMAIC, quality competencies, and Al-driven scaffolding were
refined and evaluated in actual classrooms via the use of an
iterative approach. By always making sure that study goals
matched the requirements of the learners, the technique made
the intervention more rigorous and useful.

There were 63 engineering students in the study, including
both undergraduate and graduate students in computer science
and software. The students learnt about software engineering,
problem-solving, and software processes by taking project-
based learning (PBL) courses. Students could be certain that the

intervention was not an afterthought because the assignments
were educational rather than extracurricular. We were able to
look at the framework more closely across a range of skills by
bringing in students from other fields.

Students learnt about VSM, DMAIC, flow metrics, RCA,
CTQs, and VOC in instructor-led seminars. These concepts
helped them grasp how to use Lean Six Sigma principles in their
own work. In response to the reviewer's question on whether or
not learners have previous exposure to LSS ideas, this is
provided. Learning materials were arranged, tools were
demonstrated, sample case studies were conducted, and
students were guided on an ongoing basis to make sure they
were conceptually prepared. Following the development of
software-related issue contexts in their ongoing capstone or
guided projects, students applied these technologies to their
work.

One important part of the approach was using tools powered
by Al Generative Al systems acted as facilitators, analyzers,
and reviewers while students worked through the DMAIC
cycle. Al helped with issue definitions, data pattern
interpretation, analytical approach suggestions, and opportunity
visualization by providing individualized feedback. Human
teachers were responsible for ensuring conceptual correctness,
domain relevance, and academic integrity, while Al provided
cognitive assistance and iterative feedback. Creative thinking,
openness about how they utilize tools, and evaluating Al-
generated recommendations critically are all parts of the ethical
issues that students learned about in relation to the responsible
use of AL

The data we gathered was the result of a mixed-methods
approach. Defect counts, processing times, flow efficiency
assessments, and improvement metrics were among the
quantitative data points gathered before and after the
intervention. Thematic analyses of learning artifacts created
throughout the DMAIC phases, together with student
perspectives, teacher field notes, and Project documentation
was used to get qualitative data. These two methodologies
worked together to let us do a full evaluation of how the
framework affected students' ability to learn skills needed in the
software business. Automated submission reminders and
evaluations that are linked to rubrics are two primary Poka-
Yoke tactics that were introduced to the learning management
system. These strategies helped students follow quality
standards and avoid making common blunders.

The AI-LSS-Edu framework's theoretical strength and
validation were greatly enhanced by using a strategy that
mimicked real-world software engineering methods. The next
parts demonstrate what happened after the installation and how
successfully the framework helped students learn about and use
quality standards.

V. RESULTS AND FINDINGS

The AI-LSS-Edu framework greatly helped students

542

JEET

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

understand Lean Six Sigma principles and how to use them to
solve problems in the software industry. A quantitative
examination of student project outcomes showed that quality
indicators including defect rate, clarity of issue
characterization, process mapping, and alignment between
stated CTQs and solutions all became better. Students made a
lot fewer mistakes over the course of two terms. Some teams
saved 18% to 35% after using DMAIC to assist them make
adjustments. The results showed that students grew better at
solving issues, which helped them get rid of process variance in
their work.

Table 1 compares quality indicators assessed before and after
the AI-LSS-Edu system was put in place. This helps us
understand how it changes the data. The figure illustrates
considerable gains in Lean Six Sigma outcomes based on key
performance metrics including cycle time, flow efficiency, and
defect count.

TABLE 1
COMPARATIVE QUALITY METRICS BEFORE AND AFTER AI-LSS-
EDU IMPLEMENTATION

Control Group
(Traditional LSS)

Average Defect Count 22 14

Experimental

Metric Group (Al-LS-Edu)

Defect Reduction (%) - 35%

Process Cycle Efficiency Low High-real-mo

Completeness of DMAIC Medium High

Documentation

Feedback Loop Frequency 1-2 formal reviews 4-6 Al-asisted
iterations

Note: Values are veraged acros similar project types over two semesters.

Table 1 illustrates that using Al-assisted DMAIC instruction
improves the results of processes. Students have become better
at finding out, diagnosing, and fixing quality problems in
software development projects, as shown by the evident gains
in minimizing defects, optimizing throughput, and enhancing
flow efficiency.

Petersen and Wohlin (2011) and Kuhrmann et al. (2017)
assert that several project groups had reduced cycle times and
enhanced efficiency in workflow. When students utilized both
Al-powered evaluation tools and value-stream mapping
software, they were better able to discover activities and
processes that weren't working well. These teams were able to
lower cycle times by a lot in subsequent rounds by talking to
each other more, getting rid of stages that weren't necessary,
and collecting feedback faster. This is what happens when
companies create software using lean principles. The
framework is very valuable since the curriculum does a good
job of preparing students for careers in the field.

The qualitative results show that the framework has several
educational benefits. Students reported that the Al-powered
instructions helped them develop stronger problem statements,
feel more sure of themselves while looking at data, and use the

543

DMAIC method. People involved argue that Al-assisted defect
and root cause analysis would have found problems that would
have kept hidden. Holmes et al. (2019) and Zawacki-Richter et
al. (2019) discovered that students' capacity to discern patterns
and formulate novel hypotheses enhanced their decision-
making and analytical thinking.

The framework has many technological advantages, but the
fact that it was easy to use to increase heutagogical abilities was
a welcome extra. Al's iterative feedback made it easier for
students to ask for and gain explanation, review their work, and
improve their analysis. During the interactions of multi-agent
Al, students were encouraged to undertake reflective practice,
which is a skill that is associated with advanced learning and
career growth in engineering. This prompted them rethink their
ideas, talk about why they chose certain design choices, and do
other things. Artificial intelligence (Al) mediated scaffolding
decreased cognitive fatigue in challenging analytical tasks,
allowing students to concentrate on conceptual depth rather
than procedural complexities.

It was clear from comparing project artifacts before and after
the intervention that DMAIC documentation was more
complete and consistent. They developed better value-stream
maps, more ordered VOC evaluations, clearer CTQ matrices,
and better reasons for making changes. We have been able to
make better products because we know how to use LSS
technologies and set them up correctly in the software
development process. This strategy may help make academic
courses more in accordance with the quality standards of the
software industry.

The findings indicate that the AI-LSS-Edu framework
facilitates the acquisition of essential skills for engineering
students in the software industry. Adding Al to DMAIC-based
training improved the quality of documentation, self-directed
learning, technical metrics, and analytical thinking. This means
that this strategy could help students get ready for quality-
driven positions in the software industry better. We discuss
about what the results mean for standards of software quality
and engineering education in this section.

VI. DISCUSSION

This study utilized the AI-LSS-Edu platform to identify an
effective and pertinent method for enhancing the software
quality skills of engineering students. In PBL contexts, using
DMAIC-driven problem-solving makes things go more
smoothly, helps control cycle time, and reduces defects. These
findings can be quantified. Similar findings from additional
studies (Ferreira & Proenca, 2021; Antony et al., 2020)
corroborate the notion that LSS tools positively influence
software development processes and outcomes. The framework
stresses problem-solving and the development of a practical
comprehension of LSS ideas to better prepare students for
entry-level positions in the sector.

Bond et al. (2021), Kasneci et al. (2023), and Prieto et al.

JEET

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

(2018) all agree that artificial intelligence (Al) is needed to
make the hard analytical processes of DMAIC easier. In the
past, students have had issues adopting Lean Six Sigma in the
classroom because they couldn't understand statistics, figure out
what went wrong, or write issue statements. These mental
blocks were simpler to get over using Al, which delivered
personalized advice, step-by-step feedback, and visual
representations of analytical data. There is a lot of research on
Al-assisted learning that backs up this viewpoint. It shows that
analytical and generative Al systems might help students in
three ways: by helping them comprehend difficult concepts
better, by making them more confident, and by encouraging
them to dig deeper into problem-solving. This study illustrates
that Al improved engineering accessibility and efficiency by
allowing students to concentrate on the conceptual core of LSS,
rather than being obstructed by procedural difficulties.

The development of heutagogical and constructivist abilities
represents a notable ancillary result. Ashton and Newman
(2023) assert that participants had more autonomy when
confirming improvement evaluations, revising analyses, and
exploring supplementary ideas. The acts observed indicate a
shift from instructor-dependent learning to self-directed
inquiry, an essential skill for engineering graduates to manage
uncertainty and tackle complex industrial difficulties. The
incorporation of Al technology into the framework facilitated
learners' metacognitive development by allowing a methodical
examination of their reasoning and decision-making processes.
This result is in line with what engineering education requires
right now: student-centered, adaptable methods.

The better quality of DMAIC papers, notably in terms of
CTQ clarity, VSM correctness, RCA coherence, and
improvement justification, shows that the framework may teach
individuals how to think analytically in an organized way. To
understand the process, lower risk, and maintain quality high,
software development teams require full documentation. By
turning in increasingly difficult and detailed work, students
have shown that they have mastered the technical abilities,
discipline, and logical framework that are necessary for Lean
Six Sigma.

Kuhrmann et al. (2017) and Rodriguez et al. (2017) both
came to the same conclusion: that the results might have an
impact on the overall utilization of high-quality engineering
education. Both undergraduate and graduate students have
demonstrated versatility in employing the framework,
indicating its relevance across many academic contexts. To
make sure that students are equipped for the job market,
engineering schools need to connect their curriculum to real-
world software development problems. The study's framework
was revised several times using the DBR approach to make it
more valuable and give it more opportunities to become a part
of the institution.

Along with these benefits, the report also points up areas that
need more investigation. Al's role must be meticulously

adjusted to prevent students from becoming overly reliant on
tool-generated insights, so compromising their critical thinking
abilities, notwithstanding Al's utility. In the future, the system
might include ways to slowly reduce Al help as students get
better. We may learn more about how the intervention performs
over time and in other scenarios if we add it to other schools or
full-course curricula.

The findings demonstrate that the AI-LSS-Edu system can
connect engineering education to the quality benchmarks
anticipated by the software industry. The framework offers a
feasible way to prepare engineering graduates for quality-
focused positions in the software industry by integrating active,
competency-based learning with structured problem-solving
and Al-enabled help.

CONCLUSION AND FUTURE WORK

This study presented and evaluated the Al-Enhanced Lean
Six Sigma Framework (AI-LSS-Edu) as a structured approach
to teaching engineering students software quality capabilities.
The framework combines constructivist and heutagogical
learning methods with DMAIC-based problem solving. It is
built on generative Al technology and Lean Six Sigma ideas.
Students' improved ability to identify inefficiencies in software
development processes, analyze defect patterns, and propose
significant process modifications is evidence that the technique
is useful. Quantitative evidence of enhanced conceptual
understanding and reflective learning and qualitative evidence
of enhanced process efficiency and defect reduction both point
to the framework's usefulness in educating students for software
quality assurance roles.

Engineering education may be greatly enhanced by using Al-
driven pedagogical scaffolding, as shown in this paper. In
particular, it demonstrates how to lower the cognitive barriers
often associated with Lean Six Sigma in order to incorporate it
into both undergraduate and graduate schools. The changes in
students' analytical thinking and the quality of their MLA
papers show that they have internalized the technical resources
and systematic discipline necessary for continuous growth.
Furthermore, the framework facilitates the development of self-
directed learning habits in students, which are increasingly vital
in the ever-changing software industry of today, where
adaptability is paramount to success.

The report acknowledges certain shortcomings of the system,
although its promising future. The findings may not be
applicable to other situations since the intervention was limited
to a single school for only two terms. The use of Al tools also
raises problems regarding continued competency, especially if
students learn to depend on Al ideas for critical analysis. The
different project scopes of the student groups may have made
things more difficult, which may have varied how much the
advantages were. These limitations highlight the necessity for
more in-depth research and a broader chronological context to
accurately comprehend the framework's ramifications.

544

JEET

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

It could be used at more than one school in the future to test
how well it works with different subjects. More research might
be done on sophisticated Al-driven analytics, including
predictive quality modeling or automated code-quality
evaluations, to uncover better methods to integrate Al in quality
engineering education. Longitudinal studies that follow
students as they move from school to work may give us useful
information about how long LSS skills learned through the Al-
LSS-Edu method last. Lastly, systematically lowering the
amount of Al support during different learning cycles might
help find a balance between Al help and the growth of
independent analytical judgment.

In conclusion, compared to earlier efforts, the AI-LSS-Edu
system significantly improves software industry quality
standards and engineering school curricula. The competency-
based architecture, Al-powered learning support, and
systematic methodology of this practical and scalable solution
make it easy to train future software engineers who are quality-
conscious.

ACKNOWLEDGMENT

The authors express their sincere gratitude to St Joseph
Engineering College and AJ Institute of Engineering and
Technology, Mangaluru, for their unwavering encouragement,
academic guidance, and provision of state-of-the-art facilities
that made this research possible. Their commitment to research
excellence and continuous professional development has been
instrumental in shaping the direction and quality of this work.

The authors also extend their thanks to Visvesvaraya
Technological University (VTU), Belagavi, Karnataka, India,
for its institutional support and for fostering a vibrant research
environment through its policies and initiatives.

Special appreciation is due to our colleagues, research
participants, and all those who contributed valuable insights and
assistance throughout the course of this study.

REFERENCES

CresAlao, D., & Malinowski, A. (2020). Machine learning for
defect prediction: A systematic mapping study.
Journal of Systems and Software, 165, 110569.

Antony, J., Snee, R., & Hoerl, R. (2012). Lean Six Sigma:
Yesterday, today and tomorrow. International Journal
of Quality & Reliability Management, 29(1), 2—7.

Antony, J., Sony, M., & Kumar, M. (2020). The critical
success factors of Lean Six Sigma in software
development companies. International Journal of
Quality & Reliability Management, 37(9), 1327-
1351.

Ashton, J., & Newman, L. (2023). Heutagogy as a framework
for lifelong learning: A systematic review. Education
and Information Technologies, 28(5), 6221-6245.

Basili, V. R., Caldiera, G., & Rombach, H. D. (1994). The
Goal Question Metric approach. In Encyclopedia of

545

Software Engineering (pp. 528—532). (This entry
follows APA style for encyclopedia chapters.)

Blumenfeld, P. C., Krajcik, J. S., Marx, R. W., & Soloway, E.
(1994). Lessons learned from implementing project-
based science. The Elementary School Journal, 94(5),
455-471.

Bond, M., Zawacki-Richter, O., & Nichols, M. (2021).
Systematic review of research on artificial
intelligence in higher education: Trends and
frameworks. Computers & Education: Artificial
Intelligence, 2, 100026.

Chen, X., Zou, D., Cheng, G., & Xie, H. (2020). Detecting
latent topics and trends in educational technologies
over four decades. Computers & Education, 151,
103855.

Crouch, C. H., & Mazur, E. (2001). Peer instruction: Ten
years of experience and results. American Journal of
Physics, 69(9), 970-977.

Dingseyr, T., & Moe, N. B. (2014). Towards principles of
large-scale agile development. IEEE Software, 31(5),
38-45.

Esakia, A., & McCrickard, D. S. (2016). Teaching software
quality through iterative peer-reviewed projects.
IEEE Transactions on Education, 59(4), 271-278.

Feldt, R., Torkar, R., Angelis, L., & Samuelsson, M. (2010).
Links between the personalities, views and attitudes
of software engineers. Information and Software
Technology, 52(6), 611-624.

Ferreira, S., & Proenca, D. (2021). Lean Six Sigma applied to
software development: A systematic literature
review. Journal of Software: Evolution and Process,
33(10), e2387.

Gupta, M., & George, J. F. (2016). Toward the development
of a big data analytics capability. Information &
Management, 53(8), 1049-1064.

Hamouda, A. M., Dado, M. S., El-Khatib, A., & Abdelsalam,
R. (2019). An intelligent tutoring system for
engineering education. International Journal of
Engineering Education, 35(1), 2—15.

Herdika, A., & Budiardjo, E. K. (2020). Identifying wastes in
agile software development: A systematic literature
review. Journal of Systems and Software, 159,
110451.

Hicks, B. J. (2007). Lean information management:
Understanding and eliminating waste. International
Journal of Information Management, 27(4), 233-249.

Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial
intelligence in education: Promises and implications
for teaching and learning. Journal of Educational
Technology & Society, 22(1), 14-28.

Hung, W. (2011). Theory to reality: A few issues in
implementing problem-based learning. Educational
Technology Research and Development, 59(4), 529—
552.

Ifenthaler, D., & Yau, J. Y. K. (2020). Utilising learning
analytics to support study success in higher
education: A systematic review. British Journal of
Educational Technology, 51(5), 1041-1059.

Kasneci, E., Sessler, K., Kiichemann, S., Bannert, M.,
Dementieva, D., Fischer, F., & Kasneci, G. (2023).

JEET

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

ChatGPT for good? On opportunities and challenges
of large language models for education. Learning and
Individual Differences, 103, 102274.

Kasoju, A., Murugesan, S., & Ahmed, A. (2013). How Lean,
Agile and Six Sigma methods can contribute to
software quality improvement. International Journal
of Software Engineering & Applications, 4(5), 15—
33.

Kim, S., Zimmermann, T., Whitehead, E. J., & Zeller, A.
(2007). Predicting faults from cached history.
Proceedings of the International Conference on
Software Engineering (pp. 489-498). IEEE.

Kitchenham, B., & Madeyski, L. (2021). Meta-analysis for
software engineering: Methodological issues and case
studies. Empirical Software Engineering, 26(3), 1-
36.

Kose, U., & Arslan, A. (2016). An intelligent tutoring system
for teaching—learning processes in engineering
education. Computer Applications in Engineering
Education, 24(3), 344-355.

Kuhrmann, M., Diebold, P., & Miinch, J. (2017). Software
process improvement: Where is the evidence?
Journal of Systems and Software, 133, 190-212.

Kwak, Y. H., & Anbari, F. T. (2006). Benefits, obstacles, and
future of Six Sigma approach. Technovation, 26(5—
6), 708-715.

Madhani, P. (2020). Lean Six Sigma deployment: Critical
success factors and implementation roadmap.
International Journal of Productivity and
Performance Management, 69(2), 363—-390.

Middleton, P. (2001). Lean software development: Two case
studies. Software Quality Journal, 9(4), 241-252.

Middleton, P., Flaxel, A., & Cookson, A. (2007). Lean
software management case study: Timberline Inc.
Software Quality Journal, 15,221-236.

Nascimento, D. C., Miranda, R. C., & Borges, R. P. (2023).
Artificial intelligence for continuous improvement: A
systematic literature review. Journal of
Manufacturing Technology Management, 34(7),
1321-1344.

Pernstal, J., Feldt, R., & Pettersson, O. (2013). Towards
evidence-based Lean software development.
Empirical Software Engineering, 18, 1346—1381.

Petersen, K., & Wohlin, C. (2011). Measuring the flow in
Lean software development. Software: Practice and
Experience, 41(9), 975-996.

Petersen, K., Vakkalanka, S., & Kuzniarz, L. (2015).
Guidelines for conducting systematic mapping
studies in software engineering: An update.
Information and Software Technology, 64, 1-18.

Prieto, L. P., Sharma, K., Dillenbourg, P., & Jestis, M. (2018).
Teaching analytics: Towards automatic extraction of
orchestration graphs using wearables. Computers &
Education, 123, 1-15.

Rahman, F., & Posnett, D. (2013). Recidivism in software
defects. Proceedings of the International Conference
on Software Engineering (pp. 82-91). IEEE.

Rodriguez, P., Haghighatkhah, A., Oivo, M., Kuvaja, P.,
Verner, J., & Sauvola, T. (2017). Continuous
deployment of software intensive products and

services: A systematic mapping study. Journal of
Systems and Software, 123, 263-291.

Roveda, R., & Tamburri, D. A. (2020). Measuring developer
productivity: A systematic review. Empirical
Software Engineering, 25(4), 2696-2740.

Sony, M., & Naik, S. (2019). Critical success factors for Lean
implementation: A review. Benchmarking: An
International Journal, 26(1), 205-228.

Sommerville, I., & Rodden, T. (2017). Managing software
process variability. IEEE Software, 34(4), 71-75.

Sreedharan, R. V., & Raju, R. (2016). A systematic literature
review of Lean Six Sigma in manufacturing. Total
Quality Management & Business Excellence, 27(11-
12), 1318-1340.

Staron, M., Meding, W., & Palm, K. (2012). Release readiness
indicator for mature agile and Lean software
development projects. Information and Software
Technology, 54(12), 1297-1309.

Van der Aalst, W. M. P. (2016). Process mining: Data science
in action. Process Mining and Knowledge Discovery,
2(1), 89-120.

Zawacki-Richter, O., Marin, V. 1., Bond, M., & Gouverneur,
F. (2019). Systematic review of research on artificial
intelligence applications in higher education.
International Journal of Educational Technology in
Higher Education, 16(1), 39.

well, J. W. (2012). Educational research: Planning,
conducting, and evaluating quantitative and
qualitative research (4th ed). Pearson.

Crouch, C. H., & Mazur, E. (2001). Peer Instruction: Ten
years of experience and results. American Journal of
Physics, 69(9), 970-977.

Esakia, A., & McCrickard, D. S. (2016). An adaptable model
for teaching mobile app development. 2016 IEEE
Frontiers in Education Conference (FIE), 1-9.

Fellah, A., & Bandi, A. (2018). The Essence of Recursion:
Reduction, Delegation, and Visualization. Journal of
Computing Sciences in Colleges, 33(5), 115-123.

Guzdial, M., & du Boulay, B. (2019). The History of
Computing Education Research. In S. A. Fincher &
A. V. Robins (Eds.), The Cambridge Handbook of
Computing Education Research (1st ed., pp. 11-39).
Cambridge University Press.

Hamouda, S., Edwards, S. H., Elmongui, H. G., Ernst, J. V., &
Shaffer, C. A. (2019). RecurTutor: An Interactive
Tutorial for Learning Recursion. ACM Transactions
on Computing Education, 19(1), 1-25.

546

JEET

