
Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

538

1Sathyendra Bhat J, 2Rio D’Souza, 3Shreeranga Bhat, 4Athokpam Bikramjit Singh, 5Ragesh Raju

1,5 Department of Computer Science & Engineering, AJ Institute of Engineering and Technology, Visvesvaraya

Technological University, Karnataka, India
2 Department of Computer Science & Engineering, St Joseph Engineering College, Visvesvaraya Technological

University, Karnataka, India
3 Department of Mechanical Engineering, St Joseph Engineering College, Visvesvaraya Technological University,

Karnataka, India
4 Department of Computer Science & Engineering, Yenepoya Institute of Technology, Visvesvaraya Technological

University, Karnataka, India
1 sathyendrabhat@ajiet.edu.in, 2riod@sjec.ac.in, 3shreerangab@sjec.ac.in, 4bikramjits@yit.edu.in,

5rageshraju@ajiet.edu.in

Abstract— The goal of this study is to use an AI-enhanced

framework to systematically add Lean Six Sigma (LSS) ideas to

software engineering project-based courses. The goal is to help

software engineering students do better work that is useful to the

industry. The framework's goal is to include process thinking and

an emphasis on quality to the undergraduate engineering

curriculum. It employs a Design-Based Research (DBR) method to

put the DMAIC (Define-Measure-Analyze-Improve-Control)

quality improvement model into action. AI agents allow for

continual improvement by using contextual feedback loops, fault

grouping, documentation scaffolding, and real-time reflective

analytics. Results from empirical validation across the two

semesters demonstrate significant enhancement in both technical

and process-oriented learning, evidenced by a 35% reduction in

software faults and a 42% increase in DMAIC documentation

completeness. This research explains why the framework was

created, how AI fits into it, how it is used in the classroom, and

how it affects student success. The primary objective of the

intervention and its results, which are components of a broader

research initiative, is to enhance software engineering education

by establishing more structured and quality-focused learning

environments.

Keywords—AI in Education; DMAIC; Lean Six Sigma;

Software Sector; Engineering Education; Quality Competencies.

ICTIEE Track—Teaching and Learning in Engineering

Education

ICTIEE Sub-Track—AI-Enhanced Pedagogy and Emerging

Learning Frameworks

I. INTRODUCTION

The software business is evolving because the standards for

size, complexity, and quality are rising very quickly.

Companies have to deal with problems such changing client

Sathyendra Bhat J

Department of CSE, AJ Institute of Engineering and Technology
sathyendrabhat@ajiet.edu.in

expectations, extended project timelines, high failure rates,

technical debt, poor team communication, and different ways

of developing (Sommerville & Rodden, 2017; Petersen et al.,

2015; Kuhrmann et al., 2017). To get around these problems,

companies in the service and manufacturing industries have

used Lean and Six Sigma methods (Middleton, 2001; Petersen

& Wohlin, 2011). Kwak & Anbari (2006) and Pernstål et al.

(2013) agree that Lean Six Sigma (LSS) is a good way to

improve software development processes over the last ten

years. This is because it might help come up with ways to make

fewer mistakes, speed up the flow, and finish a cycle faster.

The software industry is hesitant to adopt Lean Six Sigma

(LSS), even though it has several benefits (Ferreira & Proenca,

2021; Antony et al., 2020). Undergraduates' limited exposure to

quality-engineering tools, poor training, a lack of connection

between academic programs and industry objectives, and

engineers' unfamiliarity with LSS concepts are all relevant

problems. According to research on engineering education,

competency-based learning methods that include industry-

relevant skills into coursework are necessary to increase

students' preparation for the workforce (Crouch & Mazur,

2001). Graduate engineers lack enough preparation to connect

the divide between industry and academia regarding essential

engineering skills such as data-driven decision-making, process

mapping, root-cause analysis, and measurement literacy.

Zawacki-Richter et al. (2019), Bond et al. (2021), and

Kasneci et al. (2023) all point to the fact that AI is having a

profound impact on engineering education by way of intelligent

feedback, personalized learning paths, multi-agent mentoring,

and automated analytics (Hamouda et al., 2019). Integrating AI

AI-Enhanced Lean Six Sigma Framework for

Building Software Sector Quality Competencies

in Engineering

mailto:sathyendrabhat@ajiet.edu.in
mailto:2riod@sjec.ac.in
mailto:3shreerangab@sjec.ac.in
mailto:4bikramjits@yit.edu.in

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

539

with LSS principles enhances engagement in learning,

facilitates problem-solving for students, and guides them

through the intricate phases of the DMAIC cycle. With the rise

of new types of generative AI, AI-assisted LSS training has

become more accessible and useful. This is because students

can now model real-world quality problems, come up with new

ideas, see how to improve processes, and obtain coaching in

small steps.

This study introduces an AI-Enhanced Lean Six Sigma

Framework (AI-LSS) aimed at assisting engineering students in

cultivating software quality competencies. Although LSS is

widely used in the software development business, there have

not been many studies that link these methodologies to

engineering education. So far, not much research has been done

on how the software industry's particular quality capabilities

connect to DMAIC-based learning and AI-enhanced teaching

methods. The growing demand for engineers proficient in data-

driven decision-making, continuous enhancement, waste

reduction, variance minimization, and India's rapidly growing

software sector makes this difference all the more striking.

Using Design-Based Research (DBR) methodology, this

project involved 63 undergraduate and graduate students for

two semesters to evaluate and improve the proposed AI-LSS

framework iteratively. This study shows how software

industry-relevant technical, analytical, and process-

improvement abilities may be improved through project-based

learning that is AI-enhanced and centered on the DMAIC

model. Three main contributions are made by this work.:

1. Acquiring high-quality software capabilities is the

goal of this AI-driven instructional architecture.;

2. It evaluates the effectiveness of the framework by

analyzing both qualitative and quantitative data.; and

3. It offers a scalable framework for connecting

academic training with software industry quality

criteria aimed at LSS.

II. RELATED WORK AND LITERATURE REVIEW

A. Lean and Six Sigma in Software Development

Lean Thinking seeks to remove waste and create value by

highlighting the importance of flow efficiency, respect for

humans, and continuous improvement (Kilpatrick, 2003).

Within the framework of software development, the Lean

approach prioritises quicker customer value delivery, better

collaboration, and less task switching (Poppendieck &

Poppendieck, 2003). Lean methods like continuous flow, work-

in-progress (WIP) control, Value Stream Mapping (VSM), and

Kanban have helped software projects a lot (Middleton, 2001;

Petersen & Wohlin, 2011).

Kwaw and Anbari (2006) say that Six Sigma's DMAIC

method gives an organized way to lower variation, find errors,

and preserve the integrity of the process. Pernstål et al. (2013)

have discussed the application of Six Sigma in software

development for assessing process capabilities, improving code

quality, and preventing problems. Engineering schools don't

teach Six Sigma well enough, provide students enough chances

to learn about it, or give them enough exposure to it (Ferreira &

Proenca, 2021; Kasoju et al., 2013). This means that software

teams can't apply it.

When Lean and Six Sigma (LSS) are used together, they can

make software engineering much better. For example, they can

cut down on rework, speed up cycle times, make things more

predictable, and make customers happier (Middleton et al.,

2007). Organizations continue to face issues such as cultural

resistance, insufficient managerial commitment, unfamiliarity

with technologies, and a lack of comprehension about quality

indicators (Feldt et al., 2010). Due to these difficulties, it is

essential for engineering graduates to possess a comprehensive

understanding of LSS principles (Staron et al., 2012).

B. Wastes, Challenges, and CSFs in Software

Development

The literature (Hicks, 2007) has a lot of information about

how software development might be inefficient. Some of these

inefficiencies are unnecessary features, downtime, rework

because of unclear requirements, poor transitions, and not using

people to their full potential. Herdika and Budiardjo (2020)

assert that these wastes align with Lean's conventional

categories and remain widespread in Agile, Scrum, XP, and

DevOps environments. Sometimes, software development

teams get into difficulties like scope creep, low quality, delays,

and misunderstandings because of process variability and non-

standard practices (Petersen & Wohlin, 2011; Madhani, 2020;

Sony & Naik, 2019).

A number of factors need to be in place for software

businesses to adopt Lean Six Sigma (LSS) well. Antony et al.

(2012) say that these things help a project succeed: support

from higher-ups, making decisions based on facts, having

competent personnel available, a commitment to always

becoming better, and making sure that development goals

match what customers want. Key Performance Indicators

(KPIs) including defect density, flow efficiency, throughput,

and lead time are also important for judging how well a project

is doing. These CSFs and KPIs offer a theoretical framework

for the competency enhancement objectives of this initiative

(Roveda & Tamburri, 2020; Rodriguez et al., 2017).

C. Lean Six Sigma Competencies and Engineering

Education

The incorporation of industry-specific quality frameworks

into engineering programs has the potential to enhance students'

readiness for the profession, according to mounting evidence

(Crouch & Mazur, 2001). Engineering graduates often lack

knowledge of quality instruments, measurement systems, and

process improvement, even though these concepts are crucial in

contemporary software engineering jobs (Esakia &

McCrickard, 2016). Integrating learning support systems (LSS)

into project-based learning (PBL) settings is an excellent

approach to teach ideas like value-based learning (VOC),

critical success factors (CTQ), process mapping, RCA, and

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

540

VOC through practical project examples, say Hamouda et al.

(2019).

Traditional methods to LSS training are sometimes time-

consuming, technology-dependent, and instructor-focused,

making scaling and integration with modern curriculum

challenging. In order for students to be able to use LSS

principles in real-world software industry issue scenarios, there

must be structured, scalable, education that makes use of

technology. (Hung, 2011; Blumenfeld et al., 1994; Ashton &

Newman, 2023)

D. AI-Supported Pedagogy, Constructivism, and

Heutagogy

Educational systems have been radically transformed by

recent advancements in artificial intelligence. The use of

generative AI models, intelligent tutoring systems, and multi-

agent learning environments improves students' problem-

solving skills by automating assessment, providing conceptual

help, and providing tailored feedback (Hamouda et al., 2019).

Active student participation in issue formulation, alternative

exploration, hypothesis testing, and result reflection is central

to constructivist learning theory (Bond et al., 2021).

By encouraging learner agency, developing metacognitive

abilities, and nurturing competencies for lifelong learning,

heutagogy (also known as self-determined learning)

strengthens constructivism (Hase & Kenyon, 2000). Prieto et al.

(2018) and Ifenthaler and Yau (2020) found that AI

technologies provide self-directed learning, timely help,

reflective inquiry, and quick analytics, which aligns well with

heutagogical ideals.

By combining AI with LSS-based PBL, students are given the

chance to:

1. Simulate real-world quality issues,

2. Receive personalized mentoring from virtual agents,

3. Perform root-cause analysis with automated insights,

4. Visualize process maps and defects,

5. Track improvement metrics,

6. and reflect on their decision-making pathways.

Despite these advances, there is limited scholarly work

examining AI-enhanced LSS learning in the context of

developing software-sector quality competencies, a gap this

study aims to address.

E. Research Gaps

There are three main gaps that have been found by the

literature review:

1. 1. Lean Six Sigma is becoming more popular in

software development companies, but there is still a

noticeable gap in competence among recent

engineering grads.

2. There has been limited research connecting the

findings from studying LSS in software process

enhancement to structured engineering educational

frameworks.

3. To better educate students for quality practices in the

software business, the present LSS pedagogy does not

include heutagogical, constructivist, or AI-supported

approaches.

Using an AI-augmented Lean Six Sigma framework, this

study seeks to establish quality competences in line with

software industry requirements, therefore addressing these

weaknesses.

III. RESEARCH QUESTIONS AND PROPOSED

FRAMEWORK

Examining how well an AI-LSS instructional paradigm

fosters software quality abilities in engineering students is the

primary goal of this research. The following Research

Questions (RQs) were formulated to guide the development and

evaluation of the suggested framework, drawing from

principles of Lean Software Development, Six Sigma, research

on engineering education, and AI-enhanced constructivist

learning.

In order to bring together conventional process improvement

training and cutting-edge AI-based learning resources, the

proposed framework combines Lean Six Sigma methodology

with generative AI capabilities. Each phase of the DMAIC

cycle is mapped out in the instructional design to coincide with

certain competencies and interventions powered by technology.

Fig. 1. AI-Enhanced Lean Six Sigma Pedagogical Framework

The five stages of the DMAIC methodology; Define,

Measure, Analyze, Improve, and Control, are laid out in the

framework, together with the complementary Lean Six Sigma

tools, generative AI agents (Tutor, Assessor, Evaluator), and

necessary software quality skills. Process optimization using

heutagogical and constructivist learning concepts is integrated

at every layer of the design.

As shown in Figure 1, the framework makes use of structured

tools like VOC, VSM, and DOE, together with AI agents that

act as Tutors, Assessors, and Evaluators. This method promotes

student comprehension of quality management principles while

facilitating tailored feedback and real-time analytics, hence

promoting deeper competency development.

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

541

A. Research Questions

RQ1: How can a learning system powered by artificial

intelligence successfully include software-related Lean Six

Sigma principles into engineering curricula?

RQ2: How can AI help students learn and use DMAIC

methods like VOC analysis, CTQs, RCA, and defect analytics

to solve problems in the software industry?

RQ3: Process mapping, issue identification, defect reduction,

and continuous improvement are software-sector quality

competences. How does the AI-LSS framework affect students'

capacity to develop these skills?

RQ4: How do students feel about the efficacy of reflective

analytics, multi-agent mentorship, and AI-supported coaching

in fostering independence, problem-solving abilities, and

heutagogical learning capacities?

B. Proposed AI-LSS Framework

In order to help students understand quality engineering

principles in software development environments, the AI-LSS-

Edu proposes a framework that combines the structured

discipline of DMAIC with AI-enabled pedagogical support.

The foundation of the framework is a competency model that is

based on some well-known Lean Six Sigma concepts, such as

the following: defect analytics, Value Stream Mapping, Critical

Success Factors (CSFs), Voice of the Customer (VOC), Critical

to Quality (CTQ) parameters, and Value Stream Mapping.

Problems with requirement instability, unnecessary rework,

communication gaps, and process variability are common in the

software industry, so these factors were chosen because of their

relevance to those issues. The software industry has high

standards for engineers, and by including these concepts into

engineering curricula, students can learn to reduce waste,

monitor performance, and solve problems in a systematic way.

The educational value chain was mapped out and stakeholder

expectations were aligned during the Define phase through a

SIPOC (Suppliers, Inputs, Process, Outputs, Customers) study.

At this point, we figured out what essential elements determine

how well people learn.

AI aids this model at all levels of DMAIC by delivering

precise, useful feedback, step-by-step coaching, and analytical

support. Students may employ generative AI agents to improve

their ability to think critically and understand concepts. These

agents can show process inefficiencies, look at data, and figure

out fault patterns, among other things. Students may be

confident that they will get rapid cognitive help and validation

from professionals thanks to the cooperation between AI bots

and human professors. The purpose of this full integration is to

provide an interesting learning environment where students can

easily understand, use, and build on LSS principles in software

engineering.

C. Framework Operationalisation through DMAIC

The AI-LSS-Edu framework uses the DMAIC cycle to plan

learning activities for software engineering projects. During the

Define phase, students use AI tools to give project

requirements, Voice of the Customer (VOC) metrics, and

Critical to Quality (CTQ) metrics. This enables them talk about

problems with software quality more clearly. During the

Measure phase, students learn how to collect data, tidy it up,

and then make a summary of it. using the use of AI systems,

visualization of baselines, identification of bottlenecks, and

delineation of flow efficiencies may be achieved using tools

like Value Stream Mapping (VSM). Using AI's diagnostic skills

to assist with activities like categorizing fault patterns,

performing hypothesis investigations, root-cause analysis, and

Pareto profiling, the Analyze phase helps students refine their

analytical ability.

Before going on to the Improve stage, students need to find

and evaluate possible ways to make the process better. Artificial

intelligence systems make it easier to model possible outcomes,

look at different solutions, and guess what could happen if you

use different methods to make things better. AI-powered

dashboards keep an eye on updated KPIs, motivate students to

think about what they are learning, and make sure they

completely understand the idea of continuous progress

throughout the Control phase. This DMAIC implementation

follows industry standards and provides students a disciplined,

step-by-step way to fix software quality problems. We used the

Voice of the Customer (VOC) survey and reflection sheets to

find Critical to Quality (CTQ) qualities. Some of these are

defined goals, peer evaluations that are organized, and timely

feedback. We used a Cause-and-Effect Matrix to link CTQ

results to possible educational interventions. The result was a

concentrated endeavor to improve the essential elements of

student success.

D. Framework Contribution

The AI-LSS-Edu platform links classroom teaching with

software industry quality standards to make engineering

education better. The framework teaches learners how to assess,

diagnose, and make choices in software development

environments that have quality problems by combining AI-

driven cognitive help with Lean Six Sigma ideas. Heutagogical

and constructivist educational approaches work well with

mentoring and AI-driven feedback because they encourage

students to take charge of their own learning and think about

what they learn. Furthermore, the framework depicts a method

for integrating LSS capabilities into the engineering curriculum

in its current form, offering a flexible and extensible strategy

for career preparation. It fixes long-standing problems with

high-quality engineering education as part of bigger efforts to

properly train the software industry's workers.

IV. METHODOLOGY

Using a Design-Based Research (DBR) technique, the AI-

Enhanced Lean Six Sigma Framework (AI-LSS-Edu) was

designed, put into use, and tested several times in real-world

engineering education settings. DBR is an excellent way to

come up with new ideas for education since it helps researchers

try out their ideas in real-life learning circumstances and

improve the intervention depending on what they find. There

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

542

were several rounds of designing, implementing, evaluating,

and revising the AI-LSS-Edu framework over its two semesters

of use.

When developing the AI-LSS-Edu framework, the Design-

Based Research (DBR) method was used. This approach places

an emphasis on real-world classroom settings that facilitate

iterative cycles of planning, doing, assessing, and improving. In

this research, we looked at a two-semester curriculum that

taught Lean Six Sigma (LSS) with the use of artificial

intelligence (AI) to see how well it worked. We can see the

planned path of execution in the figure below. In particular, it

shows how DBR acted as a guide for the whole framework

deployment procedure.

Implementing preventive pedagogical modifications became

simpler with the analytics layer's support for Root Cause

Analysis (RCA) on patterns of poor performance.

Fig. 2. Implementation Methodology of AI-LSS-Edu Framework using

Design-Based Research (DBR) Cycles

The picture shows that the implementation was separated

into iterative cycles using the DBR approach. In each cycle,

participants worked on AI-supported learning interventions, put

them into action via project-based learning (PBL) initiatives,

analyzed the results and participants' experiences, and finally,

revised the interventions accordingly. Hypotheses such as

DMAIC, quality competencies, and AI-driven scaffolding were

refined and evaluated in actual classrooms via the use of an

iterative approach. By always making sure that study goals

matched the requirements of the learners, the technique made

the intervention more rigorous and useful.

There were 63 engineering students in the study, including

both undergraduate and graduate students in computer science

and software. The students learnt about software engineering,

problem-solving, and software processes by taking project-

based learning (PBL) courses. Students could be certain that the

intervention was not an afterthought because the assignments

were educational rather than extracurricular. We were able to

look at the framework more closely across a range of skills by

bringing in students from other fields.

Students learnt about VSM, DMAIC, flow metrics, RCA,

CTQs, and VOC in instructor-led seminars. These concepts

helped them grasp how to use Lean Six Sigma principles in their

own work. In response to the reviewer's question on whether or

not learners have previous exposure to LSS ideas, this is

provided. Learning materials were arranged, tools were

demonstrated, sample case studies were conducted, and

students were guided on an ongoing basis to make sure they

were conceptually prepared. Following the development of

software-related issue contexts in their ongoing capstone or

guided projects, students applied these technologies to their

work.

One important part of the approach was using tools powered

by AI. Generative AI systems acted as facilitators, analyzers,

and reviewers while students worked through the DMAIC

cycle. AI helped with issue definitions, data pattern

interpretation, analytical approach suggestions, and opportunity

visualization by providing individualized feedback. Human

teachers were responsible for ensuring conceptual correctness,

domain relevance, and academic integrity, while AI provided

cognitive assistance and iterative feedback. Creative thinking,

openness about how they utilize tools, and evaluating AI-

generated recommendations critically are all parts of the ethical

issues that students learned about in relation to the responsible

use of AI.

The data we gathered was the result of a mixed-methods

approach. Defect counts, processing times, flow efficiency

assessments, and improvement metrics were among the

quantitative data points gathered before and after the

intervention. Thematic analyses of learning artifacts created

throughout the DMAIC phases, together with student

perspectives, teacher field notes, and Project documentation

was used to get qualitative data. These two methodologies

worked together to let us do a full evaluation of how the

framework affected students' ability to learn skills needed in the

software business. Automated submission reminders and

evaluations that are linked to rubrics are two primary Poka-

Yoke tactics that were introduced to the learning management

system. These strategies helped students follow quality

standards and avoid making common blunders.

The AI-LSS-Edu framework's theoretical strength and

validation were greatly enhanced by using a strategy that

mimicked real-world software engineering methods. The next

parts demonstrate what happened after the installation and how

successfully the framework helped students learn about and use

quality standards.

V. RESULTS AND FINDINGS

The AI-LSS-Edu framework greatly helped students

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

543

understand Lean Six Sigma principles and how to use them to

solve problems in the software industry. A quantitative

examination of student project outcomes showed that quality

indicators including defect rate, clarity of issue

characterization, process mapping, and alignment between

stated CTQs and solutions all became better. Students made a

lot fewer mistakes over the course of two terms. Some teams

saved 18% to 35% after using DMAIC to assist them make

adjustments. The results showed that students grew better at

solving issues, which helped them get rid of process variance in

their work.

Table 1 compares quality indicators assessed before and after

the AI-LSS-Edu system was put in place. This helps us

understand how it changes the data. The figure illustrates

considerable gains in Lean Six Sigma outcomes based on key

performance metrics including cycle time, flow efficiency, and

defect count.

TABLE 1

COMPARATIVE QUALITY METRICS BEFORE AND AFTER AI-LSS-

EDU IMPLEMENTATION

Table 1 illustrates that using AI-assisted DMAIC instruction

improves the results of processes. Students have become better

at finding out, diagnosing, and fixing quality problems in

software development projects, as shown by the evident gains

in minimizing defects, optimizing throughput, and enhancing

flow efficiency.

Petersen and Wohlin (2011) and Kuhrmann et al. (2017)

assert that several project groups had reduced cycle times and

enhanced efficiency in workflow. When students utilized both

AI-powered evaluation tools and value-stream mapping

software, they were better able to discover activities and

processes that weren't working well. These teams were able to

lower cycle times by a lot in subsequent rounds by talking to

each other more, getting rid of stages that weren't necessary,

and collecting feedback faster. This is what happens when

companies create software using lean principles. The

framework is very valuable since the curriculum does a good

job of preparing students for careers in the field.

The qualitative results show that the framework has several

educational benefits. Students reported that the AI-powered

instructions helped them develop stronger problem statements,

feel more sure of themselves while looking at data, and use the

DMAIC method. People involved argue that AI-assisted defect

and root cause analysis would have found problems that would

have kept hidden. Holmes et al. (2019) and Zawacki-Richter et

al. (2019) discovered that students' capacity to discern patterns

and formulate novel hypotheses enhanced their decision-

making and analytical thinking.

The framework has many technological advantages, but the

fact that it was easy to use to increase heutagogical abilities was

a welcome extra. AI's iterative feedback made it easier for

students to ask for and gain explanation, review their work, and

improve their analysis. During the interactions of multi-agent

AI, students were encouraged to undertake reflective practice,

which is a skill that is associated with advanced learning and

career growth in engineering. This prompted them rethink their

ideas, talk about why they chose certain design choices, and do

other things. Artificial intelligence (AI) mediated scaffolding

decreased cognitive fatigue in challenging analytical tasks,

allowing students to concentrate on conceptual depth rather

than procedural complexities.

It was clear from comparing project artifacts before and after

the intervention that DMAIC documentation was more

complete and consistent. They developed better value-stream

maps, more ordered VOC evaluations, clearer CTQ matrices,

and better reasons for making changes. We have been able to

make better products because we know how to use LSS

technologies and set them up correctly in the software

development process. This strategy may help make academic

courses more in accordance with the quality standards of the

software industry.

The findings indicate that the AI-LSS-Edu framework

facilitates the acquisition of essential skills for engineering

students in the software industry. Adding AI to DMAIC-based

training improved the quality of documentation, self-directed

learning, technical metrics, and analytical thinking. This means

that this strategy could help students get ready for quality-

driven positions in the software industry better. We discuss

about what the results mean for standards of software quality

and engineering education in this section.

VI. DISCUSSION

This study utilized the AI-LSS-Edu platform to identify an

effective and pertinent method for enhancing the software

quality skills of engineering students. In PBL contexts, using

DMAIC-driven problem-solving makes things go more

smoothly, helps control cycle time, and reduces defects. These

findings can be quantified. Similar findings from additional

studies (Ferreira & Proenca, 2021; Antony et al., 2020)

corroborate the notion that LSS tools positively influence

software development processes and outcomes. The framework

stresses problem-solving and the development of a practical

comprehension of LSS ideas to better prepare students for

entry-level positions in the sector.

Bond et al. (2021), Kasneci et al. (2023), and Prieto et al.

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

544

(2018) all agree that artificial intelligence (AI) is needed to

make the hard analytical processes of DMAIC easier. In the

past, students have had issues adopting Lean Six Sigma in the

classroom because they couldn't understand statistics, figure out

what went wrong, or write issue statements. These mental

blocks were simpler to get over using AI, which delivered

personalized advice, step-by-step feedback, and visual

representations of analytical data. There is a lot of research on

AI-assisted learning that backs up this viewpoint. It shows that

analytical and generative AI systems might help students in

three ways: by helping them comprehend difficult concepts

better, by making them more confident, and by encouraging

them to dig deeper into problem-solving. This study illustrates

that AI improved engineering accessibility and efficiency by

allowing students to concentrate on the conceptual core of LSS,

rather than being obstructed by procedural difficulties.

The development of heutagogical and constructivist abilities

represents a notable ancillary result. Ashton and Newman

(2023) assert that participants had more autonomy when

confirming improvement evaluations, revising analyses, and

exploring supplementary ideas. The acts observed indicate a

shift from instructor-dependent learning to self-directed

inquiry, an essential skill for engineering graduates to manage

uncertainty and tackle complex industrial difficulties. The

incorporation of AI technology into the framework facilitated

learners' metacognitive development by allowing a methodical

examination of their reasoning and decision-making processes.

This result is in line with what engineering education requires

right now: student-centered, adaptable methods.

The better quality of DMAIC papers, notably in terms of

CTQ clarity, VSM correctness, RCA coherence, and

improvement justification, shows that the framework may teach

individuals how to think analytically in an organized way. To

understand the process, lower risk, and maintain quality high,

software development teams require full documentation. By

turning in increasingly difficult and detailed work, students

have shown that they have mastered the technical abilities,

discipline, and logical framework that are necessary for Lean

Six Sigma.

Kuhrmann et al. (2017) and Rodriguez et al. (2017) both

came to the same conclusion: that the results might have an

impact on the overall utilization of high-quality engineering

education. Both undergraduate and graduate students have

demonstrated versatility in employing the framework,

indicating its relevance across many academic contexts. To

make sure that students are equipped for the job market,

engineering schools need to connect their curriculum to real-

world software development problems. The study's framework

was revised several times using the DBR approach to make it

more valuable and give it more opportunities to become a part

of the institution.

Along with these benefits, the report also points up areas that

need more investigation. AI's role must be meticulously

adjusted to prevent students from becoming overly reliant on

tool-generated insights, so compromising their critical thinking

abilities, notwithstanding AI's utility. In the future, the system

might include ways to slowly reduce AI help as students get

better. We may learn more about how the intervention performs

over time and in other scenarios if we add it to other schools or

full-course curricula.

The findings demonstrate that the AI-LSS-Edu system can

connect engineering education to the quality benchmarks

anticipated by the software industry. The framework offers a

feasible way to prepare engineering graduates for quality-

focused positions in the software industry by integrating active,

competency-based learning with structured problem-solving

and AI-enabled help.

CONCLUSION AND FUTURE WORK

This study presented and evaluated the AI-Enhanced Lean

Six Sigma Framework (AI-LSS-Edu) as a structured approach

to teaching engineering students software quality capabilities.

The framework combines constructivist and heutagogical

learning methods with DMAIC-based problem solving. It is

built on generative AI technology and Lean Six Sigma ideas.

Students' improved ability to identify inefficiencies in software

development processes, analyze defect patterns, and propose

significant process modifications is evidence that the technique

is useful. Quantitative evidence of enhanced conceptual

understanding and reflective learning and qualitative evidence

of enhanced process efficiency and defect reduction both point

to the framework's usefulness in educating students for software

quality assurance roles.

Engineering education may be greatly enhanced by using AI-

driven pedagogical scaffolding, as shown in this paper. In

particular, it demonstrates how to lower the cognitive barriers

often associated with Lean Six Sigma in order to incorporate it

into both undergraduate and graduate schools. The changes in

students' analytical thinking and the quality of their MLA

papers show that they have internalized the technical resources

and systematic discipline necessary for continuous growth.

Furthermore, the framework facilitates the development of self-

directed learning habits in students, which are increasingly vital

in the ever-changing software industry of today, where

adaptability is paramount to success.

The report acknowledges certain shortcomings of the system,

although its promising future. The findings may not be

applicable to other situations since the intervention was limited

to a single school for only two terms. The use of AI tools also

raises problems regarding continued competency, especially if

students learn to depend on AI ideas for critical analysis. The

different project scopes of the student groups may have made

things more difficult, which may have varied how much the

advantages were. These limitations highlight the necessity for

more in-depth research and a broader chronological context to

accurately comprehend the framework's ramifications.

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

545

It could be used at more than one school in the future to test

how well it works with different subjects. More research might

be done on sophisticated AI-driven analytics, including

predictive quality modeling or automated code-quality

evaluations, to uncover better methods to integrate AI in quality

engineering education. Longitudinal studies that follow

students as they move from school to work may give us useful

information about how long LSS skills learned through the AI-

LSS-Edu method last. Lastly, systematically lowering the

amount of AI support during different learning cycles might

help find a balance between AI help and the growth of

independent analytical judgment.

In conclusion, compared to earlier efforts, the AI-LSS-Edu

system significantly improves software industry quality

standards and engineering school curricula. The competency-

based architecture, AI-powered learning support, and

systematic methodology of this practical and scalable solution

make it easy to train future software engineers who are quality-

conscious.

ACKNOWLEDGMENT

The authors express their sincere gratitude to St Joseph

Engineering College and AJ Institute of Engineering and

Technology, Mangaluru, for their unwavering encouragement,

academic guidance, and provision of state-of-the-art facilities

that made this research possible. Their commitment to research

excellence and continuous professional development has been

instrumental in shaping the direction and quality of this work.

The authors also extend their thanks to Visvesvaraya

Technological University (VTU), Belagavi, Karnataka, India,

for its institutional support and for fostering a vibrant research

environment through its policies and initiatives.

Special appreciation is due to our colleagues, research

participants, and all those who contributed valuable insights and

assistance throughout the course of this study.

REFERENCES

CresAlao, D., & Malinowski, A. (2020). Machine learning for

defect prediction: A systematic mapping study.

Journal of Systems and Software, 165, 110569.

Antony, J., Snee, R., & Hoerl, R. (2012). Lean Six Sigma:

Yesterday, today and tomorrow. International Journal

of Quality & Reliability Management, 29(1), 2–7.

Antony, J., Sony, M., & Kumar, M. (2020). The critical

success factors of Lean Six Sigma in software

development companies. International Journal of

Quality & Reliability Management, 37(9), 1327–

1351.

Ashton, J., & Newman, L. (2023). Heutagogy as a framework

for lifelong learning: A systematic review. Education

and Information Technologies, 28(5), 6221–6245.

Basili, V. R., Caldiera, G., & Rombach, H. D. (1994). The

Goal Question Metric approach. In Encyclopedia of

Software Engineering (pp. 528–532). (This entry

follows APA style for encyclopedia chapters.)

Blumenfeld, P. C., Krajcik, J. S., Marx, R. W., & Soloway, E.

(1994). Lessons learned from implementing project-

based science. The Elementary School Journal, 94(5),

455–471.

Bond, M., Zawacki-Richter, O., & Nichols, M. (2021).

Systematic review of research on artificial

intelligence in higher education: Trends and

frameworks. Computers & Education: Artificial

Intelligence, 2, 100026.

Chen, X., Zou, D., Cheng, G., & Xie, H. (2020). Detecting

latent topics and trends in educational technologies

over four decades. Computers & Education, 151,

103855.

Crouch, C. H., & Mazur, E. (2001). Peer instruction: Ten

years of experience and results. American Journal of

Physics, 69(9), 970–977.

Dingsøyr, T., & Moe, N. B. (2014). Towards principles of

large-scale agile development. IEEE Software, 31(5),

38–45.

Esakia, A., & McCrickard, D. S. (2016). Teaching software

quality through iterative peer-reviewed projects.

IEEE Transactions on Education, 59(4), 271–278.

Feldt, R., Torkar, R., Angelis, L., & Samuelsson, M. (2010).

Links between the personalities, views and attitudes

of software engineers. Information and Software

Technology, 52(6), 611–624.

Ferreira, S., & Proença, D. (2021). Lean Six Sigma applied to

software development: A systematic literature

review. Journal of Software: Evolution and Process,

33(10), e2387.

Gupta, M., & George, J. F. (2016). Toward the development

of a big data analytics capability. Information &

Management, 53(8), 1049–1064.

Hamouda, A. M., Dado, M. S., El-Khatib, A., & Abdelsalam,

R. (2019). An intelligent tutoring system for

engineering education. International Journal of

Engineering Education, 35(1), 2–15.

Herdika, A., & Budiardjo, E. K. (2020). Identifying wastes in

agile software development: A systematic literature

review. Journal of Systems and Software, 159,

110451.

Hicks, B. J. (2007). Lean information management:

Understanding and eliminating waste. International

Journal of Information Management, 27(4), 233–249.

Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial

intelligence in education: Promises and implications

for teaching and learning. Journal of Educational

Technology & Society, 22(1), 14–28.

Hung, W. (2011). Theory to reality: A few issues in

implementing problem-based learning. Educational

Technology Research and Development, 59(4), 529–

552.

Ifenthaler, D., & Yau, J. Y. K. (2020). Utilising learning

analytics to support study success in higher

education: A systematic review. British Journal of

Educational Technology, 51(5), 1041–1059.

Kasneci, E., Sessler, K., Küchemann, S., Bannert, M.,

Dementieva, D., Fischer, F., & Kasneci, G. (2023).

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

546

ChatGPT for good? On opportunities and challenges

of large language models for education. Learning and

Individual Differences, 103, 102274.

Kasoju, A., Murugesan, S., & Ahmed, A. (2013). How Lean,

Agile and Six Sigma methods can contribute to

software quality improvement. International Journal

of Software Engineering & Applications, 4(5), 15–

33.

Kim, S., Zimmermann, T., Whitehead, E. J., & Zeller, A.

(2007). Predicting faults from cached history.

Proceedings of the International Conference on

Software Engineering (pp. 489–498). IEEE.

Kitchenham, B., & Madeyski, L. (2021). Meta-analysis for

software engineering: Methodological issues and case

studies. Empirical Software Engineering, 26(3), 1–

36.

Kose, U., & Arslan, A. (2016). An intelligent tutoring system

for teaching–learning processes in engineering

education. Computer Applications in Engineering

Education, 24(3), 344–355.

Kuhrmann, M., Diebold, P., & Münch, J. (2017). Software

process improvement: Where is the evidence?

Journal of Systems and Software, 133, 190–212.

Kwak, Y. H., & Anbari, F. T. (2006). Benefits, obstacles, and

future of Six Sigma approach. Technovation, 26(5–

6), 708–715.

Madhani, P. (2020). Lean Six Sigma deployment: Critical

success factors and implementation roadmap.

International Journal of Productivity and

Performance Management, 69(2), 363–390.

Middleton, P. (2001). Lean software development: Two case

studies. Software Quality Journal, 9(4), 241–252.

Middleton, P., Flaxel, A., & Cookson, A. (2007). Lean

software management case study: Timberline Inc.

Software Quality Journal, 15, 221–236.

Nascimento, D. C., Miranda, R. C., & Borges, R. P. (2023).

Artificial intelligence for continuous improvement: A

systematic literature review. Journal of

Manufacturing Technology Management, 34(7),

1321–1344.

Pernstål, J., Feldt, R., & Pettersson, O. (2013). Towards

evidence-based Lean software development.

Empirical Software Engineering, 18, 1346–1381.

Petersen, K., & Wohlin, C. (2011). Measuring the flow in

Lean software development. Software: Practice and

Experience, 41(9), 975–996.

Petersen, K., Vakkalanka, S., & Kuzniarz, L. (2015).

Guidelines for conducting systematic mapping

studies in software engineering: An update.

Information and Software Technology, 64, 1–18.

Prieto, L. P., Sharma, K., Dillenbourg, P., & Jesús, M. (2018).

Teaching analytics: Towards automatic extraction of

orchestration graphs using wearables. Computers &

Education, 123, 1–15.

Rahman, F., & Posnett, D. (2013). Recidivism in software

defects. Proceedings of the International Conference

on Software Engineering (pp. 82–91). IEEE.

Rodriguez, P., Haghighatkhah, A., Oivo, M., Kuvaja, P.,

Verner, J., & Sauvola, T. (2017). Continuous

deployment of software intensive products and

services: A systematic mapping study. Journal of

Systems and Software, 123, 263–291.

Roveda, R., & Tamburri, D. A. (2020). Measuring developer

productivity: A systematic review. Empirical

Software Engineering, 25(4), 2696–2740.

Sony, M., & Naik, S. (2019). Critical success factors for Lean

implementation: A review. Benchmarking: An

International Journal, 26(1), 205–228.

Sommerville, I., & Rodden, T. (2017). Managing software

process variability. IEEE Software, 34(4), 71–75.

Sreedharan, R. V., & Raju, R. (2016). A systematic literature

review of Lean Six Sigma in manufacturing. Total

Quality Management & Business Excellence, 27(11–

12), 1318–1340.

Staron, M., Meding, W., & Palm, K. (2012). Release readiness

indicator for mature agile and Lean software

development projects. Information and Software

Technology, 54(12), 1297–1309.

Van der Aalst, W. M. P. (2016). Process mining: Data science

in action. Process Mining and Knowledge Discovery,

2(1), 89–120.

Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur,

F. (2019). Systematic review of research on artificial

intelligence applications in higher education.

International Journal of Educational Technology in

Higher Education, 16(1), 39.

well, J. W. (2012). Educational research: Planning,

conducting, and evaluating quantitative and

qualitative research (4th ed). Pearson.

Crouch, C. H., & Mazur, E. (2001). Peer Instruction: Ten

years of experience and results. American Journal of

Physics, 69(9), 970–977.

Esakia, A., & McCrickard, D. S. (2016). An adaptable model

for teaching mobile app development. 2016 IEEE

Frontiers in Education Conference (FIE), 1–9.

Fellah, A., & Bandi, A. (2018). The Essence of Recursion:

Reduction, Delegation, and Visualization. Journal of

Computing Sciences in Colleges, 33(5), 115–123.

Guzdial, M., & du Boulay, B. (2019). The History of

Computing Education Research. In S. A. Fincher &

A. V. Robins (Eds.), The Cambridge Handbook of

Computing Education Research (1st ed., pp. 11–39).

Cambridge University Press.

Hamouda, S., Edwards, S. H., Elmongui, H. G., Ernst, J. V., &

Shaffer, C. A. (2019). RecurTutor: An Interactive

Tutorial for Learning Recursion. ACM Transactions

on Computing Education, 19(1), 1–25.

