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Abstract— The goal of this study is to use an AI-enhanced 

framework to systematically add Lean Six Sigma (LSS) ideas to 

software engineering project-based courses. The goal is to help 

software engineering students do better work that is useful to the 

industry. The framework's goal is to include process thinking and 

an emphasis on quality to the undergraduate engineering 

curriculum. It employs a Design-Based Research (DBR) method to 

put the DMAIC (Define-Measure-Analyze-Improve-Control) 

quality improvement model into action. AI agents allow for 

continual improvement by using contextual feedback loops, fault 

grouping, documentation scaffolding, and real-time reflective 

analytics. Results from empirical validation across the two 

semesters demonstrate significant enhancement in both technical 

and process-oriented learning, evidenced by a 35% reduction in 

software faults and a 42% increase in DMAIC documentation 

completeness. This research explains why the framework was 

created, how AI fits into it, how it is used in the classroom, and 

how it affects student success. The primary objective of the 

intervention and its results, which are components of a broader 

research initiative, is to enhance software engineering education 

by establishing more structured and quality-focused learning 

environments. 

 

Keywords—AI in Education; DMAIC; Lean Six Sigma; 

Software Sector; Engineering Education; Quality Competencies. 
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I. INTRODUCTION 

The software business is evolving because the standards for 

size, complexity, and quality are rising very quickly. 

Companies have to deal with problems such changing client 
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expectations, extended project timelines, high failure rates, 

technical debt, poor team communication, and different ways 

of developing (Sommerville & Rodden, 2017; Petersen et al., 

2015; Kuhrmann et al., 2017). To get around these problems, 

companies in the service and manufacturing industries have 

used Lean and Six Sigma methods (Middleton, 2001; Petersen 

& Wohlin, 2011). Kwak & Anbari (2006) and Pernstål et al. 

(2013) agree that Lean Six Sigma (LSS) is a good way to 

improve software development processes over the last ten 

years. This is because it might help come up with ways to make 

fewer mistakes, speed up the flow, and finish a cycle faster. 

 

The software industry is hesitant to adopt Lean Six Sigma 

(LSS), even though it has several benefits (Ferreira & Proenca, 

2021; Antony et al., 2020). Undergraduates' limited exposure to 

quality-engineering tools, poor training, a lack of connection 

between academic programs and industry objectives, and 

engineers' unfamiliarity with LSS concepts are all relevant 

problems. According to research on engineering education, 

competency-based learning methods that include industry-

relevant skills into coursework are necessary to increase 

students' preparation for the workforce (Crouch & Mazur, 

2001). Graduate engineers lack enough preparation to connect 

the divide between industry and academia regarding essential 

engineering skills such as data-driven decision-making, process 

mapping, root-cause analysis, and measurement literacy. 

 

Zawacki-Richter et al. (2019), Bond et al. (2021), and 

Kasneci et al. (2023) all point to the fact that AI is having a 

profound impact on engineering education by way of intelligent 

feedback, personalized learning paths, multi-agent mentoring, 

and automated analytics (Hamouda et al., 2019). Integrating AI 
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with LSS principles enhances engagement in learning, 

facilitates problem-solving for students, and guides them 

through the intricate phases of the DMAIC cycle. With the rise 

of new types of generative AI, AI-assisted LSS training has 

become more accessible and useful. This is because students 

can now model real-world quality problems, come up with new 

ideas, see how to improve processes, and obtain coaching in 

small steps. 

 

This study introduces an AI-Enhanced Lean Six Sigma 

Framework (AI-LSS) aimed at assisting engineering students in 

cultivating software quality competencies. Although LSS is 

widely used in the software development business, there have 

not been many studies that link these methodologies to 

engineering education. So far, not much research has been done 

on how the software industry's particular quality capabilities 

connect to DMAIC-based learning and AI-enhanced teaching 

methods. The growing demand for engineers proficient in data-

driven decision-making, continuous enhancement, waste 

reduction, variance minimization, and India's rapidly growing 

software sector makes this difference all the more striking. 

 

Using Design-Based Research (DBR) methodology, this 

project involved 63 undergraduate and graduate students for 

two semesters to evaluate and improve the proposed AI-LSS 

framework iteratively. This study shows how software 

industry-relevant technical, analytical, and process-

improvement abilities may be improved through project-based 

learning that is AI-enhanced and centered on the DMAIC 

model. Three main contributions are made by this work.: 

1. Acquiring high-quality software capabilities is the 

goal of this AI-driven instructional architecture.; 

2. It evaluates the effectiveness of the framework by 

analyzing both qualitative and quantitative data.; and 

3. It offers a scalable framework for connecting 

academic training with software industry quality 

criteria aimed at LSS.  

II. RELATED WORK AND LITERATURE REVIEW 

A. Lean and Six Sigma in Software Development 

Lean Thinking seeks to remove waste and create value by 

highlighting the importance of flow efficiency, respect for 

humans, and continuous improvement (Kilpatrick, 2003). 

Within the framework of software development, the Lean 

approach prioritises quicker customer value delivery, better 

collaboration, and less task switching (Poppendieck & 

Poppendieck, 2003). Lean methods like continuous flow, work-

in-progress (WIP) control, Value Stream Mapping (VSM), and 

Kanban have helped software projects a lot (Middleton, 2001; 

Petersen & Wohlin, 2011). 

 

Kwaw and Anbari (2006) say that Six Sigma's DMAIC 

method gives an organized way to lower variation, find errors, 

and preserve the integrity of the process. Pernstål et al. (2013) 

have discussed the application of Six Sigma in software 

development for assessing process capabilities, improving code 

quality, and preventing problems. Engineering schools don't 

teach Six Sigma well enough, provide students enough chances 

to learn about it, or give them enough exposure to it (Ferreira & 

Proenca, 2021; Kasoju et al., 2013). This means that software 

teams can't apply it. 

 

When Lean and Six Sigma (LSS) are used together, they can 

make software engineering much better. For example, they can 

cut down on rework, speed up cycle times, make things more 

predictable, and make customers happier (Middleton et al., 

2007). Organizations continue to face issues such as cultural 

resistance, insufficient managerial commitment, unfamiliarity 

with technologies, and a lack of comprehension about quality 

indicators (Feldt et al., 2010). Due to these difficulties, it is 

essential for engineering graduates to possess a comprehensive 

understanding of LSS principles (Staron et al., 2012).  

 

B.  Wastes, Challenges, and CSFs in Software 

Development 

The literature (Hicks, 2007) has a lot of information about 

how software development might be inefficient. Some of these 

inefficiencies are unnecessary features, downtime, rework 

because of unclear requirements, poor transitions, and not using 

people to their full potential. Herdika and Budiardjo (2020) 

assert that these wastes align with Lean's conventional 

categories and remain widespread in Agile, Scrum, XP, and 

DevOps environments. Sometimes, software development 

teams get into difficulties like scope creep, low quality, delays, 

and misunderstandings because of process variability and non-

standard practices (Petersen & Wohlin, 2011; Madhani, 2020; 

Sony & Naik, 2019). 

 

A number of factors need to be in place for software 

businesses to adopt Lean Six Sigma (LSS) well. Antony et al. 

(2012) say that these things help a project succeed: support 

from higher-ups, making decisions based on facts, having 

competent personnel available, a commitment to always 

becoming better, and making sure that development goals 

match what customers want. Key Performance Indicators 

(KPIs) including defect density, flow efficiency, throughput, 

and lead time are also important for judging how well a project 

is doing. These CSFs and KPIs offer a theoretical framework 

for the competency enhancement objectives of this initiative 

(Roveda & Tamburri, 2020; Rodriguez et al., 2017). 

 

C.  Lean Six Sigma Competencies and Engineering 

Education 

The incorporation of industry-specific quality frameworks 

into engineering programs has the potential to enhance students' 

readiness for the profession, according to mounting evidence 

(Crouch & Mazur, 2001). Engineering graduates often lack 

knowledge of quality instruments, measurement systems, and 

process improvement, even though these concepts are crucial in 

contemporary software engineering jobs (Esakia & 

McCrickard, 2016). Integrating learning support systems (LSS) 

into project-based learning (PBL) settings is an excellent 

approach to teach ideas like value-based learning (VOC), 

critical success factors (CTQ), process mapping, RCA, and 
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VOC through practical project examples, say Hamouda et al. 

(2019). 

 

Traditional methods to LSS training are sometimes time-

consuming, technology-dependent, and instructor-focused, 

making scaling and integration with modern curriculum 

challenging. In order for students to be able to use LSS 

principles in real-world software industry issue scenarios, there 

must be structured, scalable, education that makes use of 

technology. (Hung, 2011; Blumenfeld et al., 1994; Ashton & 

Newman, 2023) 

 

D.  AI-Supported Pedagogy, Constructivism, and 

Heutagogy 

Educational systems have been radically transformed by 

recent advancements in artificial intelligence. The use of 

generative AI models, intelligent tutoring systems, and multi-

agent learning environments improves students' problem-

solving skills by automating assessment, providing conceptual 

help, and providing tailored feedback (Hamouda et al., 2019). 

Active student participation in issue formulation, alternative 

exploration, hypothesis testing, and result reflection is central 

to constructivist learning theory (Bond et al., 2021). 

 

By encouraging learner agency, developing metacognitive 

abilities, and nurturing competencies for lifelong learning, 

heutagogy (also known as self-determined learning) 

strengthens constructivism (Hase & Kenyon, 2000). Prieto et al. 

(2018) and Ifenthaler and Yau (2020) found that AI 

technologies provide self-directed learning, timely help, 

reflective inquiry, and quick analytics, which aligns well with 

heutagogical ideals. 

 

By combining AI with LSS-based PBL, students are given the 

chance to: 

1. Simulate real-world quality issues, 

2. Receive personalized mentoring from virtual agents, 

3. Perform root-cause analysis with automated insights, 

4. Visualize process maps and defects, 

5. Track improvement metrics, 

6. and reflect on their decision-making pathways. 

 

Despite these advances, there is limited scholarly work 

examining AI-enhanced LSS learning in the context of 

developing software-sector quality competencies, a gap this 

study aims to address. 

 

E. Research Gaps 

There are three main gaps that have been found by the 

literature review: 

1. 1. Lean Six Sigma is becoming more popular in 

software development companies, but there is still a 

noticeable gap in competence among recent 

engineering grads. 

2. There has been limited research connecting the 

findings from studying LSS in software process 

enhancement to structured engineering educational 

frameworks. 

3. To better educate students for quality practices in the 

software business, the present LSS pedagogy does not 

include heutagogical, constructivist, or AI-supported 

approaches. 

 

Using an AI-augmented Lean Six Sigma framework, this 

study seeks to establish quality competences in line with 

software industry requirements, therefore addressing these 

weaknesses. 

III. RESEARCH QUESTIONS AND PROPOSED 

FRAMEWORK 

Examining how well an AI-LSS instructional paradigm 

fosters software quality abilities in engineering students is the 

primary goal of this research. The following Research 

Questions (RQs) were formulated to guide the development and 

evaluation of the suggested framework, drawing from 

principles of Lean Software Development, Six Sigma, research 

on engineering education, and AI-enhanced constructivist 

learning. 

 

In order to bring together conventional process improvement 

training and cutting-edge AI-based learning resources, the 

proposed framework combines Lean Six Sigma methodology 

with generative AI capabilities. Each phase of the DMAIC 

cycle is mapped out in the instructional design to coincide with 

certain competencies and interventions powered by technology. 

 

 
Fig. 1. AI-Enhanced Lean Six Sigma Pedagogical Framework 

 

The five stages of the DMAIC methodology; Define, 

Measure, Analyze, Improve, and Control, are laid out in the 

framework, together with the complementary Lean Six Sigma 

tools, generative AI agents (Tutor, Assessor, Evaluator), and 

necessary software quality skills. Process optimization using 

heutagogical and constructivist learning concepts is integrated 

at every layer of the design. 

 

As shown in Figure 1, the framework makes use of structured 

tools like VOC, VSM, and DOE, together with AI agents that 

act as Tutors, Assessors, and Evaluators. This method promotes 

student comprehension of quality management principles while 

facilitating tailored feedback and real-time analytics, hence 

promoting deeper competency development. 
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A.  Research Questions 

RQ1: How can a learning system powered by artificial 

intelligence successfully include software-related Lean Six 

Sigma principles into engineering curricula? 

RQ2: How can AI help students learn and use DMAIC 

methods like VOC analysis, CTQs, RCA, and defect analytics 

to solve problems in the software industry? 

RQ3: Process mapping, issue identification, defect reduction, 

and continuous improvement are software-sector quality 

competences. How does the AI-LSS framework affect students' 

capacity to develop these skills? 

RQ4: How do students feel about the efficacy of reflective 

analytics, multi-agent mentorship, and AI-supported coaching 

in fostering independence, problem-solving abilities, and 

heutagogical learning capacities? 

 

B.  Proposed AI-LSS Framework 

In order to help students understand quality engineering 

principles in software development environments, the AI-LSS-

Edu proposes a framework that combines the structured 

discipline of DMAIC with AI-enabled pedagogical support. 

The foundation of the framework is a competency model that is 

based on some well-known Lean Six Sigma concepts, such as 

the following: defect analytics, Value Stream Mapping, Critical 

Success Factors (CSFs), Voice of the Customer (VOC), Critical 

to Quality (CTQ) parameters, and Value Stream Mapping. 

Problems with requirement instability, unnecessary rework, 

communication gaps, and process variability are common in the 

software industry, so these factors were chosen because of their 

relevance to those issues. The software industry has high 

standards for engineers, and by including these concepts into 

engineering curricula, students can learn to reduce waste, 

monitor performance, and solve problems in a systematic way. 

The educational value chain was mapped out and stakeholder 

expectations were aligned during the Define phase through a 

SIPOC (Suppliers, Inputs, Process, Outputs, Customers) study. 

At this point, we figured out what essential elements determine 

how well people learn. 

 

AI aids this model at all levels of DMAIC by delivering 

precise, useful feedback, step-by-step coaching, and analytical 

support. Students may employ generative AI agents to improve 

their ability to think critically and understand concepts. These 

agents can show process inefficiencies, look at data, and figure 

out fault patterns, among other things. Students may be 

confident that they will get rapid cognitive help and validation 

from professionals thanks to the cooperation between AI bots 

and human professors. The purpose of this full integration is to 

provide an interesting learning environment where students can 

easily understand, use, and build on LSS principles in software 

engineering. 

 

C.  Framework Operationalisation through DMAIC  

The AI-LSS-Edu framework uses the DMAIC cycle to plan 

learning activities for software engineering projects. During the 

Define phase, students use AI tools to give project 

requirements, Voice of the Customer (VOC) metrics, and 

Critical to Quality (CTQ) metrics. This enables them talk about 

problems with software quality more clearly. During the 

Measure phase, students learn how to collect data, tidy it up, 

and then make a summary of it. using the use of AI systems, 

visualization of baselines, identification of bottlenecks, and 

delineation of flow efficiencies may be achieved using tools 

like Value Stream Mapping (VSM). Using AI's diagnostic skills 

to assist with activities like categorizing fault patterns, 

performing hypothesis investigations, root-cause analysis, and 

Pareto profiling, the Analyze phase helps students refine their 

analytical ability. 

 

Before going on to the Improve stage, students need to find 

and evaluate possible ways to make the process better. Artificial 

intelligence systems make it easier to model possible outcomes, 

look at different solutions, and guess what could happen if you 

use different methods to make things better. AI-powered 

dashboards keep an eye on updated KPIs, motivate students to 

think about what they are learning, and make sure they 

completely understand the idea of continuous progress 

throughout the Control phase. This DMAIC implementation 

follows industry standards and provides students a disciplined, 

step-by-step way to fix software quality problems. We used the 

Voice of the Customer (VOC) survey and reflection sheets to 

find Critical to Quality (CTQ) qualities. Some of these are 

defined goals, peer evaluations that are organized, and timely 

feedback. We used a Cause-and-Effect Matrix to link CTQ 

results to possible educational interventions. The result was a 

concentrated endeavor to improve the essential elements of 

student success. 

 

D.  Framework Contribution 

The AI-LSS-Edu platform links classroom teaching with 

software industry quality standards to make engineering 

education better. The framework teaches learners how to assess, 

diagnose, and make choices in software development 

environments that have quality problems by combining AI-

driven cognitive help with Lean Six Sigma ideas. Heutagogical 

and constructivist educational approaches work well with 

mentoring and AI-driven feedback because they encourage 

students to take charge of their own learning and think about 

what they learn. Furthermore, the framework depicts a method 

for integrating LSS capabilities into the engineering curriculum 

in its current form, offering a flexible and extensible strategy 

for career preparation. It fixes long-standing problems with 

high-quality engineering education as part of bigger efforts to 

properly train the software industry's workers. 

IV. METHODOLOGY 

Using a Design-Based Research (DBR) technique, the AI-

Enhanced Lean Six Sigma Framework (AI-LSS-Edu) was 

designed, put into use, and tested several times in real-world 

engineering education settings. DBR is an excellent way to 

come up with new ideas for education since it helps researchers 

try out their ideas in real-life learning circumstances and 

improve the intervention depending on what they find. There 
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were several rounds of designing, implementing, evaluating, 

and revising the AI-LSS-Edu framework over its two semesters 

of use. 

 

When developing the AI-LSS-Edu framework, the Design-

Based Research (DBR) method was used. This approach places 

an emphasis on real-world classroom settings that facilitate 

iterative cycles of planning, doing, assessing, and improving. In 

this research, we looked at a two-semester curriculum that 

taught Lean Six Sigma (LSS) with the use of artificial 

intelligence (AI) to see how well it worked. We can see the 

planned path of execution in the figure below. In particular, it 

shows how DBR acted as a guide for the whole framework 

deployment procedure. 

 

Implementing preventive pedagogical modifications became 

simpler with the analytics layer's support for Root Cause 

Analysis (RCA) on patterns of poor performance. 

 
Fig. 2. Implementation Methodology of AI-LSS-Edu Framework using 

Design-Based Research (DBR) Cycles 

 

The picture shows that the implementation was separated 

into iterative cycles using the DBR approach. In each cycle, 

participants worked on AI-supported learning interventions, put 

them into action via project-based learning (PBL) initiatives, 

analyzed the results and participants' experiences, and finally, 

revised the interventions accordingly. Hypotheses such as 

DMAIC, quality competencies, and AI-driven scaffolding were 

refined and evaluated in actual classrooms via the use of an 

iterative approach. By always making sure that study goals 

matched the requirements of the learners, the technique made 

the intervention more rigorous and useful. 

 

There were 63 engineering students in the study, including 

both undergraduate and graduate students in computer science 

and software. The students learnt about software engineering, 

problem-solving, and software processes by taking project-

based learning (PBL) courses. Students could be certain that the 

intervention was not an afterthought because the assignments 

were educational rather than extracurricular. We were able to 

look at the framework more closely across a range of skills by 

bringing in students from other fields. 

 

Students learnt about VSM, DMAIC, flow metrics, RCA, 

CTQs, and VOC in instructor-led seminars. These concepts 

helped them grasp how to use Lean Six Sigma principles in their 

own work. In response to the reviewer's question on whether or 

not learners have previous exposure to LSS ideas, this is 

provided. Learning materials were arranged, tools were 

demonstrated, sample case studies were conducted, and 

students were guided on an ongoing basis to make sure they 

were conceptually prepared. Following the development of 

software-related issue contexts in their ongoing capstone or 

guided projects, students applied these technologies to their 

work. 

 

One important part of the approach was using tools powered 

by AI. Generative AI systems acted as facilitators, analyzers, 

and reviewers while students worked through the DMAIC 

cycle. AI helped with issue definitions, data pattern 

interpretation, analytical approach suggestions, and opportunity 

visualization by providing individualized feedback. Human 

teachers were responsible for ensuring conceptual correctness, 

domain relevance, and academic integrity, while AI provided 

cognitive assistance and iterative feedback. Creative thinking, 

openness about how they utilize tools, and evaluating AI-

generated recommendations critically are all parts of the ethical 

issues that students learned about in relation to the responsible 

use of AI. 

 

The data we gathered was the result of a mixed-methods 

approach. Defect counts, processing times, flow efficiency 

assessments, and improvement metrics were among the 

quantitative data points gathered before and after the 

intervention. Thematic analyses of learning artifacts created 

throughout the DMAIC phases, together with student 

perspectives, teacher field notes, and Project documentation 

was used to get qualitative data. These two methodologies 

worked together to let us do a full evaluation of how the 

framework affected students' ability to learn skills needed in the 

software business. Automated submission reminders and 

evaluations that are linked to rubrics are two primary Poka-

Yoke tactics that were introduced to the learning management 

system. These strategies helped students follow quality 

standards and avoid making common blunders. 

 

The AI-LSS-Edu framework's theoretical strength and 

validation were greatly enhanced by using a strategy that 

mimicked real-world software engineering methods. The next 

parts demonstrate what happened after the installation and how 

successfully the framework helped students learn about and use 

quality standards. 

V. RESULTS AND FINDINGS 

The AI-LSS-Edu framework greatly helped students 
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understand Lean Six Sigma principles and how to use them to 

solve problems in the software industry. A quantitative 

examination of student project outcomes showed that quality 

indicators including defect rate, clarity of issue 

characterization, process mapping, and alignment between 

stated CTQs and solutions all became better. Students made a 

lot fewer mistakes over the course of two terms. Some teams 

saved 18% to 35% after using DMAIC to assist them make 

adjustments. The results showed that students grew better at 

solving issues, which helped them get rid of process variance in 

their work. 

 

Table 1 compares quality indicators assessed before and after 

the AI-LSS-Edu system was put in place. This helps us 

understand how it changes the data. The figure illustrates 

considerable gains in Lean Six Sigma outcomes based on key 

performance metrics including cycle time, flow efficiency, and 

defect count. 

 
TABLE 1 

COMPARATIVE QUALITY METRICS BEFORE AND AFTER AI-LSS-

EDU IMPLEMENTATION 

 
 

Table 1 illustrates that using AI-assisted DMAIC instruction 

improves the results of processes. Students have become better 

at finding out, diagnosing, and fixing quality problems in 

software development projects, as shown by the evident gains 

in minimizing defects, optimizing throughput, and enhancing 

flow efficiency. 

 

Petersen and Wohlin (2011) and Kuhrmann et al. (2017) 

assert that several project groups had reduced cycle times and 

enhanced efficiency in workflow. When students utilized both 

AI-powered evaluation tools and value-stream mapping 

software, they were better able to discover activities and 

processes that weren't working well. These teams were able to 

lower cycle times by a lot in subsequent rounds by talking to 

each other more, getting rid of stages that weren't necessary, 

and collecting feedback faster. This is what happens when 

companies create software using lean principles. The 

framework is very valuable since the curriculum does a good 

job of preparing students for careers in the field. 

 

The qualitative results show that the framework has several 

educational benefits. Students reported that the AI-powered 

instructions helped them develop stronger problem statements, 

feel more sure of themselves while looking at data, and use the 

DMAIC method. People involved argue that AI-assisted defect 

and root cause analysis would have found problems that would 

have kept hidden. Holmes et al. (2019) and Zawacki-Richter et 

al. (2019) discovered that students' capacity to discern patterns 

and formulate novel hypotheses enhanced their decision-

making and analytical thinking. 

 

The framework has many technological advantages, but the 

fact that it was easy to use to increase heutagogical abilities was 

a welcome extra. AI's iterative feedback made it easier for 

students to ask for and gain explanation, review their work, and 

improve their analysis. During the interactions of multi-agent 

AI, students were encouraged to undertake reflective practice, 

which is a skill that is associated with advanced learning and 

career growth in engineering. This prompted them rethink their 

ideas, talk about why they chose certain design choices, and do 

other things. Artificial intelligence (AI) mediated scaffolding 

decreased cognitive fatigue in challenging analytical tasks, 

allowing students to concentrate on conceptual depth rather 

than procedural complexities. 

 

It was clear from comparing project artifacts before and after 

the intervention that DMAIC documentation was more 

complete and consistent. They developed better value-stream 

maps, more ordered VOC evaluations, clearer CTQ matrices, 

and better reasons for making changes. We have been able to 

make better products because we know how to use LSS 

technologies and set them up correctly in the software 

development process. This strategy may help make academic 

courses more in accordance with the quality standards of the 

software industry. 

 

The findings indicate that the AI-LSS-Edu framework 

facilitates the acquisition of essential skills for engineering 

students in the software industry. Adding AI to DMAIC-based 

training improved the quality of documentation, self-directed 

learning, technical metrics, and analytical thinking. This means 

that this strategy could help students get ready for quality-

driven positions in the software industry better. We discuss 

about what the results mean for standards of software quality 

and engineering education in this section. 

VI. DISCUSSION 

This study utilized the AI-LSS-Edu platform to identify an 

effective and pertinent method for enhancing the software 

quality skills of engineering students. In PBL contexts, using 

DMAIC-driven problem-solving makes things go more 

smoothly, helps control cycle time, and reduces defects. These 

findings can be quantified. Similar findings from additional 

studies (Ferreira & Proenca, 2021; Antony et al., 2020) 

corroborate the notion that LSS tools positively influence 

software development processes and outcomes. The framework 

stresses problem-solving and the development of a practical 

comprehension of LSS ideas to better prepare students for 

entry-level positions in the sector. 

 

Bond et al. (2021), Kasneci et al. (2023), and Prieto et al. 
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(2018) all agree that artificial intelligence (AI) is needed to 

make the hard analytical processes of DMAIC easier. In the 

past, students have had issues adopting Lean Six Sigma in the 

classroom because they couldn't understand statistics, figure out 

what went wrong, or write issue statements. These mental 

blocks were simpler to get over using AI, which delivered 

personalized advice, step-by-step feedback, and visual 

representations of analytical data. There is a lot of research on 

AI-assisted learning that backs up this viewpoint. It shows that 

analytical and generative AI systems might help students in 

three ways: by helping them comprehend difficult concepts 

better, by making them more confident, and by encouraging 

them to dig deeper into problem-solving. This study illustrates 

that AI improved engineering accessibility and efficiency by 

allowing students to concentrate on the conceptual core of LSS, 

rather than being obstructed by procedural difficulties. 

 

The development of heutagogical and constructivist abilities 

represents a notable ancillary result. Ashton and Newman 

(2023) assert that participants had more autonomy when 

confirming improvement evaluations, revising analyses, and 

exploring supplementary ideas. The acts observed indicate a 

shift from instructor-dependent learning to self-directed 

inquiry, an essential skill for engineering graduates to manage 

uncertainty and tackle complex industrial difficulties. The 

incorporation of AI technology into the framework facilitated 

learners' metacognitive development by allowing a methodical 

examination of their reasoning and decision-making processes. 

This result is in line with what engineering education requires 

right now: student-centered, adaptable methods. 

 

The better quality of DMAIC papers, notably in terms of 

CTQ clarity, VSM correctness, RCA coherence, and 

improvement justification, shows that the framework may teach 

individuals how to think analytically in an organized way. To 

understand the process, lower risk, and maintain quality high, 

software development teams require full documentation. By 

turning in increasingly difficult and detailed work, students 

have shown that they have mastered the technical abilities, 

discipline, and logical framework that are necessary for Lean 

Six Sigma. 

 

Kuhrmann et al. (2017) and Rodriguez et al. (2017) both 

came to the same conclusion: that the results might have an 

impact on the overall utilization of high-quality engineering 

education. Both undergraduate and graduate students have 

demonstrated versatility in employing the framework, 

indicating its relevance across many academic contexts. To 

make sure that students are equipped for the job market, 

engineering schools need to connect their curriculum to real-

world software development problems. The study's framework 

was revised several times using the DBR approach to make it 

more valuable and give it more opportunities to become a part 

of the institution. 

 

Along with these benefits, the report also points up areas that 

need more investigation. AI's role must be meticulously 

adjusted to prevent students from becoming overly reliant on 

tool-generated insights, so compromising their critical thinking 

abilities, notwithstanding AI's utility. In the future, the system 

might include ways to slowly reduce AI help as students get 

better. We may learn more about how the intervention performs 

over time and in other scenarios if we add it to other schools or 

full-course curricula. 

 

The findings demonstrate that the AI-LSS-Edu system can 

connect engineering education to the quality benchmarks 

anticipated by the software industry. The framework offers a 

feasible way to prepare engineering graduates for quality-

focused positions in the software industry by integrating active, 

competency-based learning with structured problem-solving 

and AI-enabled help. 

CONCLUSION AND FUTURE WORK 

This study presented and evaluated the AI-Enhanced Lean 

Six Sigma Framework (AI-LSS-Edu) as a structured approach 

to teaching engineering students software quality capabilities. 

The framework combines constructivist and heutagogical 

learning methods with DMAIC-based problem solving. It is 

built on generative AI technology and Lean Six Sigma ideas. 

Students' improved ability to identify inefficiencies in software 

development processes, analyze defect patterns, and propose 

significant process modifications is evidence that the technique 

is useful. Quantitative evidence of enhanced conceptual 

understanding and reflective learning and qualitative evidence 

of enhanced process efficiency and defect reduction both point 

to the framework's usefulness in educating students for software 

quality assurance roles. 

 

Engineering education may be greatly enhanced by using AI-

driven pedagogical scaffolding, as shown in this paper. In 

particular, it demonstrates how to lower the cognitive barriers 

often associated with Lean Six Sigma in order to incorporate it 

into both undergraduate and graduate schools. The changes in 

students' analytical thinking and the quality of their MLA 

papers show that they have internalized the technical resources 

and systematic discipline necessary for continuous growth. 

Furthermore, the framework facilitates the development of self-

directed learning habits in students, which are increasingly vital 

in the ever-changing software industry of today, where 

adaptability is paramount to success. 

 

The report acknowledges certain shortcomings of the system, 

although its promising future. The findings may not be 

applicable to other situations since the intervention was limited 

to a single school for only two terms. The use of AI tools also 

raises problems regarding continued competency, especially if 

students learn to depend on AI ideas for critical analysis. The 

different project scopes of the student groups may have made 

things more difficult, which may have varied how much the 

advantages were. These limitations highlight the necessity for 

more in-depth research and a broader chronological context to 

accurately comprehend the framework's ramifications. 

 



Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707 
 

545 

 

It could be used at more than one school in the future to test 

how well it works with different subjects. More research might 

be done on sophisticated AI-driven analytics, including 

predictive quality modeling or automated code-quality 

evaluations, to uncover better methods to integrate AI in quality 

engineering education. Longitudinal studies that follow 

students as they move from school to work may give us useful 

information about how long LSS skills learned through the AI-

LSS-Edu method last. Lastly, systematically lowering the 

amount of AI support during different learning cycles might 

help find a balance between AI help and the growth of 

independent analytical judgment. 

 

In conclusion, compared to earlier efforts, the AI-LSS-Edu 

system significantly improves software industry quality 

standards and engineering school curricula. The competency-

based architecture, AI-powered learning support, and 

systematic methodology of this practical and scalable solution 

make it easy to train future software engineers who are quality-

conscious. 
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