
Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

444

Abstract— Operating Systems is often perceived as a

challenging course for many undergraduate IT students because

the concepts are abstract, algorithm-heavy, and difficult to

visualize. This makes it harder for learners to build strong

conceptual connections using traditional lecture-based teaching

alone. The gap becomes more visible when students struggle to

apply theoretical ideas to real-world scenarios, especially in topics

such as CPU scheduling, memory management, and disk

operations. To address these limitations, this study implemented a

blended instructional approach combining simulation-based

learning, module-wise formative quizzes, and problem-driven

tutorials for 60 second-semester B.Tech IT students during the

2024–25 academic year. Students designed and experimented with

simulators for scheduling, paging, and disk algorithms, while

continuous assessments encouraged steady learning throughout

the semester. The intervention led to notable improvements in

academic performance, including a complete 100% pass rate,

higher average marks compared with the previous cohort, and a

marked reduction in the number of low-performing students.

Student feedback further indicated that simulations made

complex algorithms easier to understand, and the regular quizzes

helped them stay engaged with the course material. Overall, these

findings show that the blended approach not only enhanced

understanding but also fostered deeper participation and

confidence in learning OS concepts. This study highlights the

potential of integrating simulations and formative assessments to

strengthen student learning outcomes in algorithm-intensive

courses and offers a practical model that can be scaled to similar

engineering subjects.

Keywords—Simulation-Based Learning; Formative

Assessment; Operating Systems Education; Active Learning

Strategies; Student Engagement; Conceptual Understanding;

ICTIEE Track—Assessment, Feedback, and Learning

Outcomes

ICTIEE Sub—Track: Enhancing Student Performance

through Formative Feedback

R.Parkavi

Assistant Professor, Department of Information Technology, Thiagarajar College of Engineering,
Madurai.rpit@tce.edu

I. INTRODUCTION

perating Systems (OS) is a foundational course in the

B.Tech Information Technology curriculum. It covers

essential concepts such as process scheduling, memory

management, deadlocks, and file systems, which form the

backbone of system-level computing. Despite its importance,

many students perceive the subject as abstract and difficult due

to its algorithmic complexity and lack of tangible visualization.

Traditional lecture-based instruction often fails to bridge the

gap between theoretical knowledge and practical application.

Challenges in Teaching Operating Systems

Operating Systems is taught across several computing

disciplines, including Computer Science, Software

Engineering, and Big Data Analytics. However, students often

find the subject challenging and disengaging. A closer

examination of existing instructional practices reveals several

barriers to effective learning:

Gap Between Theory and Practice

Although OS is inherently practical, instruction frequently

emphasizes theory with minimal integration of hands-on

activities. Fragmented examples rarely translate into real-world

understanding, limiting knowledge retention and problem-

solving skills.

Missed Opportunities for Value-Based Learning

The course naturally allows for discussions on societal and

ethical dimensions, such as software licensing, fair resource

allocation, and responsible multi-user system design. However,

such opportunities are often overlooked, restricting students’

exposure to broader perspectives.

Outdated Teaching Approaches

Traditional lecture-based methods dominate OS teaching,

offering limited opportunities for curiosity-driven exploration

or innovation. This restricts the development of critical and

Enhancing Student Engagement and Success in

Operating Systems through Simulation based

Learning and Formative Assessments

 1Parkavi R, 2Sujitha S, 3Sheik Abdullah A
1,2 Department of Information Technology, Thiagarajar College of Engineering, Madurai, Tamil

Nadu, India

 3School of Computer Science and Engineering, Vellore Institute of Technology, Chennai
 1 rpit@tce.edu 2 ssiit@tce.edu 3 sheikabdullah.a@vit.ac.in

O

mailto:rpit@tce.edu
mailto:ssiit@tce.edu
mailto:sheikabdullah.a@vit.ac.in

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

445

creative thinking, which are vital for modern computing

careers.

Limited and Ineffective Assessment Methods

Assessment in OS courses typically relies on assignments

and a final exam. While useful for evaluating basic knowledge,

this approach may not adequately capture students’ applied

problem-solving abilities, sometimes resulting in strong grades

but limited competence.

To address these challenges, a pedagogical intervention was

designed that combined simulation-based learning, problem-

driven tutorials, and formative assessments delivered through

online quizzes. Students were tasked with developing

simulators for CPU scheduling, disk scheduling, and page

replacement policies—three of the most algorithm-intensive

areas of the course. This hands-on approach, supported by

structured quizzes and problem-solving sessions, aimed to

foster conceptual clarity, sustained engagement, and improved

learning outcomes.

Over the past few academic years, internal course reviews

and student feedback consistently showed that conventional

lecture-driven teaching left a substantial portion of learners

struggling with core OS topics. For instance, in earlier batches,

more than 40% of students reported difficulty in visualizing

how scheduling algorithms behave under different workloads,

even after repeated classroom explanations. Students also

tended to memorize steps for algorithms like LRU or Optimal

Page Replacement without understanding why certain decisions

were taken by the OS. These gaps were reflected in assessments

as well, where lower-performing students made similar

conceptual errors such as misinterpreting Gantt charts or

confusing memory management terminologies. These recurring

patterns highlighted the need for a more interactive and

experience-based learning approach, providing the motivation

for the present study.

This paper presents a case study of the instructional model

applied to 60 second-semester B.Tech IT students during the

2024–2025 academic year. The results indicate that integrating

simulation-based learning with formative assessments can

significantly enhance student comprehension and success in

complex engineering subjects such as Operating Systems.

II. RELATED WORKS

Teaching Operating Systems has long been recognized as a

demanding task in engineering education because it requires

learners to understand abstract concepts, analyze algorithms,

and apply system-level thinking. Earlier work has emphasized

the importance of aligning OS education with engineering

accreditation standards, especially in strengthening analytical

and problem-solving skills. For instance, Zhang & Zhang

(2021) examined OS curriculum requirements and proposed

mechanisms to better align course outcomes with accreditation

expectations, highlighting the need for continuous

improvement in pedagogy.

Several researchers have focused on redesigning the OS

learning environment to address challenges such as steep

learning curves and limited opportunities for hands-on

experimentation. A notable contribution is the scalable OS lab

platform developed by Wang et al. (2020), which supports large

classes and enables automated behavior tracking. Their findings

from 2015 to 2018 demonstrate that timely feedback and

structured laboratory practice significantly improve student

learning.

The need for scalable, well-designed infrastructure is even

more apparent in large university settings. Zemanek & Muzikar

(2023) describe the complexities of managing OS courses with

nearly 1,000 students and emphasize robust automation,

tailored exercises, and structured assessment approaches. Their

work shows that without the right instructional design and

infrastructure, maintaining quality becomes difficult at scale.

In addition to infrastructure-based solutions, blended and

hybrid pedagogies have been explored to improve conceptual

understanding. Chen (2022) introduced a hybrid online–offline

teaching approach that helped students deepen engagement

through staged learning activities and continuous reflection.

Similarly, Hakiki et al. (2023) combined simulation-based

tasks, targeted tutorials, and formative assessments to bridge

the gap between theory and practice, demonstrating that a

blended approach can make algorithm-heavy topics more

approachable.

Mobile and web-based learning tools continue to gain

traction in OS pedagogy. Using the 4D design framework,

Ebling (2024) developed a mobile learning platform and

reported high practicality scores from both teachers and

students, reinforcing the value of accessible, self-paced learning

materials.

Simulation tools specifically designed for OS topics are also

emerging. Wadmare et al. (2024) presented an online tool that

enables learners to visualize scheduling algorithms, memory

processes, and resource allocation strategies. Although

effective, the authors note areas for enhancement, such as

integrating more realistic evaluation metrics and refining

complex simulations like the Banker’s Algorithm.

Recent advancements in generative AI have further

influenced OS education research. Zhou et al. (2025)

demonstrated that integrating generative AI within the BOPPPS

teaching model supports active learning, improves conceptual

clarity, and encourages student participation at deeper levels.

Their study suggests that AI-augmented teaching strategies can

be successfully adapted to engineering domains.

Virtual models of operating systems are another evolving

theme. Gaziz et al. (2025) compared OS instruction delivered

through virtual models versus traditional physical systems and

found that virtual environments significantly improve

accessibility, student motivation, and independent exploration.

Their findings highlight the relevance of virtual simulations for

teacher-training programs and universities working toward

scalable solutions.

Learners often struggle with programming courses, but this

research (Parkavi et al., 2024) aims to enhance their

understanding through methods like flipped classrooms, online

quizzes, and virtual labs. It integrates fuzzy logic, factor

analysis, and machine learning to identify key factors affecting

active learning strategies in IT courses. Using real-time data,

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

446

the study compares the performance of various machine

learning models, with Naive Bayes and K-Nearest Neighbors

achieving the highest accuracy.

Personalized learning in Educational Technology is crucial

but challenging, particularly when predicting students' abilities

based on their learning styles and ICT usage. This study

(Parkavi et al., 2024) proposes a decision support system

combining Machine Learning, swarm intelligence, and

explainable AI to assess performance, using Chaotic Particle

Swarm Optimization (C-PSO), which outperforms other

algorithms. The results demonstrate C-PSO’s effectiveness in

educational data analysis, emphasizing ICT's role in self-

progress and suggesting future studies on real-world

applications and comparative optimizations.

Evaluating student performance manually is time-consuming

for educators, but using a Learning Management System (LMS)

helps monitor and analyze students' behavior efficiently. This

study (Parkavi et al., 2025) applies Exploratory Data Analysis

(EDA) and Machine Learning techniques like KNN and

Multiple Regression to predict and visualize students' cognitive

and psychomotor skills. The model achieves an impressive 99%

accuracy with Multiple Regression, offering valuable insights

for educational institutions.

Predicting student performance is vital for higher education

institutions, as academic records often determine admission to

quality institutions. This paper (Parkavi & Karthikeyan, 2025)

aims to predict students' future academic outcomes by

analyzing their personal and academic data using classification

techniques. The study applies methods like Multiple Linear

Regression, Naive Bayes, and Decision Tree, achieving 88.44%

accuracy, helping identify key factors for improvement and

enabling better support for students to enhance their success

rates.

Collaborative Learning, where knowledge is constructed

through peer interaction, is essential in modern education,

especially with the rise of smart devices. This study (Parkavi et

al., 2022) examines the impact of Collaborative Learning in an

elective Information Technology course, involving 176

undergraduate students. Through individual, group, formative,

and summative assessments, the study finds that incorporating

Collaborative Learning significantly improves course

outcomes, surpassing the performance of previous student

cohorts.

Despite these valuable contributions, existing research

largely examines individual components such as simulation

tools, hybrid teaching, mobile learning, or scalable labs in

isolation. There remains limited work that integrates

simulations, problem-based tutorials, and structured formative

assessments into a single instructional model for Operating

Systems. Moreover, few studies systematically evaluate both

performance outcomes and student perceptions within large

classroom contexts.

This paper addresses that gap by presenting a unified,

student-centered instructional approach and examining its

impact on engagement, conceptual understanding, and

academic success.

III. RESEARCH METHODOLOGY

A. Motivation and Contribution

OS remains one of the most challenging subjects in computer

science education due to its abstract concepts, algorithmic

complexity, and lack of immediate visual feedback. Despite

being a foundational course, many students struggle to connect

theoretical knowledge with practical application, leading to

disengagement and poor academic outcomes. Traditional

lecture-based methods often fall short in fostering critical

thinking, problem-solving abilities, and the ability to apply

concepts in real-world contexts. This gap in pedagogy becomes

even more pronounced when teaching large cohorts, where

individual attention and personalized learning opportunities are

limited.

Motivated by these challenges, this study explores an

integrated instructional approach that combines simulation-

based learning, problem-based tutorials, and module-wise

formative assessments. Unlike previous studies that examine

these strategies in isolation, this work evaluates their combined

impact on student engagement, understanding, and

performance in an OS course. The central contribution of this

research lies in demonstrating how hands-on simulation

projects help demystify complex algorithms, how formative

assessments promote continuous learning, and how problem-

based sessions reinforce critical thinking. By aligning with

outcome-based education (OBE) principles and engineering

accreditation goals, this model not only improves student

success rates but also provides a scalable, adaptable framework

for teaching OS in both traditional and blended learning

environments.

While several studies have explored simulation tools,

blended teaching, or formative assessments individually, very

few have examined how these strategies can work together as a

continuous learning ecosystem. The uniqueness of this work

lies in integrating simulator development, problem-based

tutorials, and module-wise formative assessments into a single

structured pedagogy, and evaluating their combined influence

on engagement and academic success. The study also

contributes by showing how this model can be scaled for large

cohorts without compromising the depth of learning an area

where existing literature offers limited empirical evidence.

Proposed methodology framework is given in Figure 1.

This work was undertaken to address persistent learning gaps

observed in OS courses particularly difficulty in visualizing

algorithms, inconsistent engagement, and performance gaps

among students. To guide the investigation, the following

research questions were framed:

B. Research Questions

RQ1: To what extent does simulation-based learning

improve students’ ability to accurately interpret and apply core

OS algorithms such as CPU scheduling and page replacement?

Measure: Improvement in quiz scores, assignment accuracy,

and reduction in common conceptual errors.

RQ2: How do module-wise formative assessments influence

student engagement and continuous learning in an OS course?

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

447

Measure: Quiz participation rate, score progression across

modules, and consistency in CAT performance.

RQ3: Does the blended instructional model (simulation +

tutorials + formative assessments) lead to measurable

improvements in overall academic performance compared to

the previous year’s traditional approach?

Measure: Differences in pass percentage, average marks,

lowest marks, and distribution of score ranges.

C. Approach

This study follows a mixed-methods case study design,

incorporating both qualitative and quantitative data to evaluate

the effectiveness of a blended instructional model in teaching

Operating Systems.

1) Participants

The participants were 60 second-semester B.Tech IT

students, most of whom had prior exposure to basic

programming. However, only a small proportion had hands-on

experience with low-level system concepts such as process

scheduling or memory management. Their performance in

earlier core subjects reflected a wide range of academic

backgrounds, making them a representative group for assessing

the generalizability of the proposed approach.

2) Teaching Interventions

 Simulation Design and Evaluation Criteria: Each simulator

was designed to mimic the behaviour of real OS algorithms by

requiring students to accept user inputs, generate visual

timelines, and compute performance metrics such as waiting

time and turnaround time. Students were evaluated based on

correctness of logic, clarity of documentation, interface

usability, and their ability to explain algorithmic behaviour

during review sessions.

Assessment Criteria: Quizzes were designed with a mix of

conceptual MCQs and short analytical problems to check

immediate understanding. Tutorials were graded for

completeness and accuracy, with emphasis on students’ step-

by-step reasoning. This structured approach ensured

consistency across the cohort and supported reproducibility of

the intervention.

3) Data Collection

Data was collected through multiple channels:

1. Simulator project submissions (evaluated on

functionality and documentation)

2. Quiz scores for each module

3. Tutorial participation and completion records

4. Final examination results

5. Optional student feedback via reflections or

anonymous surveys

4) Analysis

Descriptive statistics were used because the primary aim was

to compare performance trends between two academic years

and observe shifts in score distributions across assessments.

Given the case-study nature of the research and the moderate

sample size, descriptive analysis offered a practical way to

capture both improvements and variations. Qualitative

feedback was intentionally integrated to complement numerical

results, as student reflections provided context to explain why

certain changes occurred. A limitation of this approach is that it

does not include inferential statistical tests; hence, future work

could employ methods such as paired t-tests or regression

analysis to provide deeper validation of the observed

improvements.

IV. RESULTS AND DISCUSSION

Beyond measurable improvements, this study highlights how

simulation-based learning can strengthen the broader teaching

community by offering a practical, scalable model for difficult

engineering subjects. Students reported that building simulators

helped them ‘see’ abstract algorithms in action, which reduced

cognitive load and increased confidence. The integration of

formative assessments fostered consistent learning habits

instead of last-minute preparation. These insights demonstrate

that algorithm-heavy courses benefit from visual, hands-on

pedagogies, underscoring the value of redesigning traditional

classrooms to promote deeper, experiential learning.

The redesigned instructional model combining simulation

projects, problem-based tutorials, and formative assessments

was implemented with 60 second-semester B.Tech IT students.

The results across exams, assignments, and feedback provide

compelling evidence of its impact. A comparison of outcomes

between the 2023–24 (traditional approach) and 2024–25

(simulation + formative assessment) cohorts shows clear

improvement (Table 1). The pass percentage increased from

97% to 100%, while the average marks rose by 11 points.

Importantly, the lowest score also improved from 30 to 50,

showing that weaker students benefited significantly from the

interventions. These results indicate not only stronger

performance at the top but also a narrowing of the performance

gap, suggesting more equitable learning outcomes.

A. Continuous Assessment Tests

The analysis of CAT 1 and CAT 2 results across both years

highlights striking differences. It is shown in Figure 2 and 3.

CAT 1: In 2023–24, most students scored in the 46–55 range,

with very few above 55. In contrast, in 2024–25, a substantial

shift occurred: many students moved into the >55

category, and the proportion of students in the lower

ranges (25–35 and <25) almost disappeared.

CAT 2: A similar trend was observed. The 2024–25

cohort showed a sharp rise in the >55 group compared to

the previous year, while the lowest-scoring categories nearly

vanished.
TABLE I

STUDENT PERFORMANCE COMPARISON

ACADEMIC

YEAR

PASS

PERCENTAGE

AVERAGE

MARKS

HIGHEST

MARKS

LOWEST

MARKS

2023–2024

(TRADITIONAL)
97% 61 87 30

2024–2025

(SIMULATION +

FORMATIVE

ASSESSMENT)

100% 72 91 50

This demonstrates that students not only achieved higher scores

but also showed more consistency after the introduction of

simulations and formative assessments. The interventions seem

to have encouraged continuous engagement rather than last-

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

448

minute preparation, resulting in deeper understanding and

sustained performance.

B. Assignment Performance

Assignments were another area where performance trends were

examined.

Assignment 1 In 2023–24, 53 students scored in the higher

range (31–40) and 7 fell into the lower range (20–30). In 2024–

25, only 2 students remained in the lower range, while 58 scored

in the top bracket. This shows steady improvement and fewer

struggling learners. Assignment 1 performance is given in

Figure 4.

Assignment 2 In 2023–24, all 60 students scored in the higher

range. However, in 2024–25, a small dip occurred, with 4

students slipping into the 20–30 range. Despite this, the

majority (56 students) still performed strongly in the top range.

Assignment 2 performance is given in Figure 5.

This indicates that while overall assignment performance was

consistently high, the second assignment in 2024–25 might

have posed greater difficulty or coincided with increased

student workload. Nonetheless, the overall trajectory remains

positive.

C. Student Feedback and Engagement

Students consistently reported that simulation projects helped

“bring algorithms to life,” while quizzes encouraged steady

revision and tutorials provided confidence in traditionally

TABLE II

STUDENT FEEDBACK

It is inferred from the table 2

85% of students mentioned that the simulator helped them

understand how concepts like Round Robin scheduling work,

making things clearer.

Feedback Category
% of Students

Mentioning
Sample Student Comment

Simulator enhanced
understanding

85%
“I could see how Round Robin
scheduling actually works.”

Quizzes motivated

consistent study
75%

“The quizzes made me revise

after every module.”

Tutorials improved

problem-solving
88%

“Memory management was

difficult before tutorials.”

Fig.2. Comparative Analysis of CAT1

Fig.3. Comparative Analysis of CAT 2

Fig.4. Comparative Analysis of Assignment 1

Fig.5. Comparative Analysis of Assignment 2

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

449

75% of students felt that quizzes encouraged them to study

regularly, as they prompted them to review the material after

each module.

88% of students found that the tutorials improved their

problem-solving skills, especially in challenging topics like

memory management.

These results underscore the effectiveness of combining

simulation-based learning, problem-solving tutorials, and

formative assessments in teaching a conceptually heavy subject

like Operating Systems. The approach not only enhances

comprehension but also promotes equity, engagement, and

long-term learning.

Although the performance increase is clear, the current analysis

is descriptive in nature. A more detailed statistical comparison

such as using a paired t-test, effect-size calculation, or

regression modeling would provide stronger evidence of the

intervention’s impact. The sample size is limited to a single

program and academic year, which may affect generalizability.

Despite these limitations, the consistent upward shift across

quizzes, assignments, and exams indicates that the instructional

approach had a meaningful positive influence. Future studies

involving multiple cohorts could validate the findings more

rigorously.

CONCLUSION AND FUTURE WORK

This study emphasizes the effectiveness of continuous

assessment as a tool to enhance student learning outcomes. The

comparative analysis of CAT results across two academic years

shows a noticeable improvement in performance, particularly

with a larger number of students moving into higher score

brackets in 2024–25. This positive shift indicates that structured

assessments, timely feedback, and guided interventions

contribute to strengthening conceptual understanding and

improving academic confidence.

The results also demonstrate that assessments should not be

viewed as mere grading exercises but as opportunities for

learning and reflection. The proposed research methodology,

which focuses on problem identification, targeted interventions,

and reflective evaluation, offers a systematic framework for

bridging performance gaps. By combining continuous

evaluation with active learning strategies, educators can ensure

that students are not only assessed fairly but also supported in

their academic progression.

The insights from this study open avenues for further research

and application. Future studies could examine the long-term

impact of this blended pedagogy by tracking students across

advanced courses such as Distributed Systems or Cloud

Computing. Another area for exploration is how simulator-

based learning influences higher-order problem-solving skills,

especially in topics like synchronization and deadlock handling.

Scaling the model to interdisciplinary courses or integrating

analytics tools to personalize feedback are also promising

directions for expanding this work.

REFERENCES

Chen, Q. (2022). Exploration of Method to Improve the

Teaching Effect of Course “Operating System.” 2022

IEEE 2nd International Conference on Educational

Technology (ICET), 71–75.

https://doi.org/10.1109/icet55642.2022.9944467

Ebling, M. R. (2024). Resources for Teaching Operating

Systems: A Survey of Instructors and a Literature

Review. ACM Transactions on Computing

Education,24(4),1–28.

https://doi.org/10.1145/3688853

Gaziz, G., Bidaibekov, E., Grinshkun, V., & Koneva, S. (2025).

Virtual models’ effectiveness in teaching operating

systems to future computer science teachers. E-

Learning and Digital Media.

https://doi.org/10.1177/20427530251343206

Hakiki, M., Surjono, H. D., Wagiran, Fadli, R., Budiman, R. D.

A., Ramadhani, W., … Hidayah, Y. (2023). Enhancing

Practicality of Web-Based Mobile Learning in

Operating System Course: A Developmental Study.

International Journal of Interactive Mobile

Technologies (iJIM), 17(19), pp. 4–19.

https://doi.org/10.3991/ijim.v17i19.42389

Parkavi, R., Karthikeyan, P., Sujitha, S., & Abdullah, A. S.

(2025). Enhancing Educational Assessment:

Predicting and Visualizing Student Performance using

EDA and Machine Learning Techniques. Journal of

Engineering Education Transformations, 37, 240–

245. Retrieved from

https://journaleet.in/index.php/jeet/article/view/2336

Parkavi, R., & Karthikeyan, P. (2025). Enhancing Student

Performance Prediction in Higher Education: A Data

Driven Approach. Journal of Engineering Education

Transformations, 37, 271–279. Retrieved from

https://journaleet.in/index.php/jeet/article/view/2343

Parkavi, R., Karthikeyan, P., & Abdullah, A. S. (2022).

Collaborative Learning : A Case Study on Information

Security and Auditing Management Course. 2022

International Conference for Advancement in

Technology (ICONAT), 1–7.

https://doi.org/10.1109/iconat53423.2022.9726091

Parkavi, R., Karthikeyan, P., & Sheik Abdullah, A. (2024).

Enhancing personalized learning with explainable AI:

A chaotic particle swarm optimization based decision

support system. Applied Soft Computing, 156, 111451.

https://doi.org/10.1016/j.asoc.2024.111451

 R., P., P., K., & A., S. A. (2024). Predicting academic

performance of learners with the three domains of

learning data using neuro-fuzzy model and machine

learning algorithms. Journal of Engineering Research,

12(3), 397–411.

https://doi.org/10.1016/j.jer.2023.09.006

Wadmare, J., Kolte, D., Bhatia, K., Desai, P., & Wadmare, G.

(2024). Virtual Simulations Tool for Operating

Systems: Advancing E-Learning in Computing

Education. Journal of Information Technology

Education: Innovations in Practice, 23, 018.

https://doi.org/10.28945/5404

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

450

Wang, L., Zhen, Z., Wo, T., Jiang, B., Sun, H., & Long, X.

(2020). A Scalable Operating System Experiment

Platform Supporting Learning Behavior Analysis.

IEEE Transactions on Education, 63(3), 232–239.

https://doi.org/10.1109/te.2020.2975556

Zemanek, P., & Muzikar, Z. (2023). Methodology and

Infrastructure for Teaching Operating Systems

Courses for Large Number of University Students.

2023 18th Iberian Conference on Information Systems

and Technologies (CISTI), 1–4.

https://doi.org/10.23919/cisti58278.2023.10212062

Zhang, F., & Zhang, X. (2021). Achievement Degree

Evaluation Method of Operating System Course

Targets Under the Background of Engineering

Education Accreditation. 2021 IEEE 3rd International

Conference on Computer Science and Educational

Informatization (CSEI), 5–9.

https://doi.org/10.1109/csei51395.2021.9477752

Zhou, R., Liu, Y., Sun, L., & Zhu, S. (2025). Enhancing

Operating System Education With a Generative AI‐

Supported Boppps Model: An Empirical Study.

Computer Applications in Engineering Education,

33(6). Portico. https://doi.org/10.1002/cae.70114

