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Abstract— AI innovations have led to unprecedented demand 

and growth in computing infrastructure domain, creating 

promising avenue of employment for role-ready Engineering 

graduates. In this context, computing infrastructure studies 

garner special focus. Though there are several studies on 

integrating CT skills in K-12 and Engineering Education, thre 

are few to none on integrating CT skills into Computing 

Infrastructure education. This study aims at proposing a unified 

framework for integration of Computational Thinking (CT) skills 

into the course design, delivery and assessment of computing 

infrastructure studies targeting undergraduate Engineering 

students of IT discipline. The proposed approach is implemented 

for a foundational course on IT Infrastructure, with a focus on 

enhancing student cognition and problem-solving capabilities. A 

structured pedagogical approach is employed to map course 

activities to core CT components—Decomposition, Pattern 

Recognition, Abstraction, and Algorithmic Thinking—using 

Bloom’s taxonomy for skill-level alignment. A carefully planned 

Assessment framework to evaluate the attainment of CT skills 

through guided activities is also proposed. Quantitative 

evaluation of the proposed approach was conducted by 

considering the performance of 120 students across eight 

assessment items, with correlation mapping and Cronbach’s 

alpha used to validate the reliability of the skill measurement. 

Results indicated strong correlations among Pattern Recognition, 

Abstraction, and Algorithmic Thinking, with Cronbach’s alpha 

values for Decomposition and Algorithmic Thinking approaching 

the benchmark of 0.7, confirming acceptable consistency. 

Performance distributions showed high class averages, narrow 

interquartile ranges, and minimal outliers, suggesting effective 

learning outcomes. Perception-based evaluation using a Likert-

scale survey revealed uniformly positive student feedback, with 

average ratings between 4.27 and 4.54, indicating a strong sense 

of CT skill acquisition. The findings demonstrate that integrating 

CT skills into course pedagogy can significantly improve 

technical proficiency, cognitive engagement, and student 

confidence in solving computing infrastructure-related problems. 
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IT Infrastructure, Computing Infrastructure, Infrastructure 

Studies. 
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I. INTRODUCTION 

RTIFICIAL Intelligence innovations accelerated an 

unprecedented expansion of computing infrastructure 

around the world. The expansion is estimated to grow by 

160% by 2030 (Sachs, G. (2024)). The AI infrastructure  

 

market is expected to reach a $ 395 billion market by 2030 

(Report by Markets and Markets). The increased adoption of 

AI necessitates a robust education framework for computing 

infrastructure. Computing infrastructure studies have become 

more pertinent with these advancements in AI. As AI-enabled 

systems demand scalable and resilient high- performance 

architectures, the focus on infrastructure design and 

optimization has become critical. While AI automation may 

reduce certain human roles within computer engineering, the 

evolving infrastructure landscape promises to generate new 

employment avenues, making it a vital growth domain for the 

discipline. Thus, it is crucial to effectively integrate computing 

infrastructure studies in the undergraduate Computer Science 

Engineering and allied disciplines.  

Computing Infrastructure study involves analyzing and 

facilitating hardware, software and networking resources for 

Computing operations and services. Acquiring skills relevant 

to designing and analyzing computing infrastructure would 

enable the students of Undergraduate Computer Science 

Engineering and allied disciplines to design scalable and 

efficient systems that meet business and application-specific 

needs. In this paper, a systematic approach for incorporating 

computational thinking pedagogy into courses that deal with 

computing infrastructure studies is implemented and 

empirically validated.  

Computational Thinking (CT), a term introduced by 

Jeanette Wing (Wing, J.M 2006), describes a way humans 

approach solving problems by drawing on concepts 

fundamental to computer science. Wing emphasized that CT is 

an essential skill for everyone as it is integral to analytical 

ability. Computational thinking encompasses the four essential 

thought processes of decomposition, pattern recognition, 

abstraction and algorithmic thinking (Selby and Woollard 

2013). These cognitive processes are the foundation for 

formulating problems and deriving their solutions. 

Computational thinking is usually associated with problem 

solving and hence widely adopted for programming courses in 

the Computer Science Engineering curriculum. Courses that 

focus on computing infrastructure, such as System 

Administration, Network Administration and DevOps, mostly 

focus on rote learning with the set up procedures and 

commands for tools usage. Integrating Computational 

Thinking skills into the computing infrastructure-related 

courses in the curriculum offers significant benefits in moving 

learners from rote memorization to a more dynamic problem-

solving approach. The benefits include: 

From Configuration to Cognition:  

A Computational Thinking Approach to 

Computing Infrastructure Education  

A 

S. Thiruchadai Pandeeswari 

Assistant Professor, Thiagarajar College of Engineering, Madurai-15 

Thiagarajar College of Engineering, Madurai – 15 

eshwarimsp@tce.edu 

397 

 

mailto:eshwarimsp@tce.edu
mailto:2gvait@tce.edu
mailto:eshwarimsp@tce.edu


Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707 
 

398 

 

1. Promotes deeper conceptual understanding, enabling 

students to think beyond tools and commands 

2. Allows a problem-solving approach towards 

infrastructure studies by converting tasks into open 

ended problems 

3. Promotes abstraction, modelling and automation 

4. Facilitates automation scripts, orchestration of workflows 

and proactive monitoring and response systems, 

especially in the context of cloud-native and AI-driven 

architectures.  

5. Emerging fields like CI/CD pipelining, AI-aided 

operations demand CT-driven reasoning 

However, facilitating the integration of computational 

thinking pedagogy into computing infrastructure education has 

significant challenges due to the inherent nature of courses 

dealing with computing infrastructure studies. The major 

challenges are as follows: 

 

1. Systematic approaches to infusing CT concepts such as 

decomposition, pattern recognition, abstraction, and 

algorithmic thinking into CI courses is very limited.  

2. Embedding CT into already content-rich CI courses 

requires careful planning, else it may overwhelm the 

learners 

3. Integrating CT into CI courses requires professional 

development to understand how to integrate abstraction, 

algorithms, and systems thinking into CI topics. 

4. Lack of  rubrics or tools to assess how well CT has been 

applied in CI tasks like building a virtualized 

environment or configuring a cloud network. 

Considering the benefits and challenges in integrating 

CT-based pedagogy into CI courses, this paper explores the 

solution approaches to overcome the aforementioned 

challenges. This paper presents an empirical study on the 

inclusion of CT skills into a computing infrastructure course. 

To explore the underlying dynamics of integrating 

computational thinking pedagogy into computing 

infrastructure courses, this paper is structured around the 

following research questions. 

 

1. How can computational thinking skills be systematically 

embedded into a computing infrastructure course to 

enhance students’ problem-solving abilities beyond 

procedural task execution? 

2. What assessment frameworks can effectively measure 

students’ application of computational thinking skills, 

such as decomposition, abstraction, and algorithmic 

problem-solving?  

Even though CT has been widely integrated into the 

programming and K-12 STEM programs, very little has been 

done to apply it to computing infrastructure courses. The 

current CT models lack the cognitive mechanisms that would 

be applied in activities like architectural design, storage 

layout, Information Lifecycle Management (ILM) processes, 

and enterprise network analysis. This work consequently 

introduces a new CT-based pedagogic model, sensitive to 

computing infrastructure teaching and learning and based 

upon a statistically verified evaluation model. It is the initial 

reported case where CT skills have been systematically 

mapped to IT infrastructure activities and evaluated in terms 

of reliability by means of statistical validation of results with 

student performance data. The main significance of the 

presented research is in the systematic incorporation of the 

main elements of CT, namely Decomposition, Pattern 

Recognition, Abstraction, and Algorithmic Thinking, into the 

instructional design framework, delivery model, and 

evaluation of a 4-year IT Infrastructure program. This teaching 

hypothesis has undergone empirical approval on a group of 

120 students, and can provide data about enhanced cognitive 

and problem-solving skills unique to infrastructure training. 

II. RELATED WORKS 

This section organizes prior work relevant to integrating 

CT pedagogy into undergraduate computing-infrastructure 

courses, categorized into four themes: data-driven approaches, 

teacher-focused studies, multi-method perspectives, and 

pedagogical innovations with real-world alignment. 

A. Data-driven Method 

A data-driven perspective of large-scale case study on 

learner-centered feedback analytics in higher education, 

revealed how nuanced feedback patterns can inform 

instructional design, improve learner engagement, and tailor 

content delivery (Aldino et al. 2022). Wang et al. (2021) 

conducted a scoping review on the interplay between CT and 

creativity, identifying shared cognitive foundations such as 

abstraction, iterative refinement, and divergent thinking, while 

highlighting opportunities for cross-skill development in 

computing curricula. Similarly, Lin et al. (2023) investigated 

learner-centred analytics of feedback content, offering 

actionable insights into improving educational interventions 

through data analysis, adaptive scaffolding, and personalized 

learning pathways. 

Recent work has expanded this data-driven perspective 

by integrating advanced analytics, visualization, and adaptive 

systems into computing education. Johnston et al. (2024) 

conducted a systematic review of learning analytics in 

computing education, identifying emerging frameworks for 

feedback personalization and skill tracking. Lee and Kim 

(2024) designed a self-determination theory-informed learning 

analytics dashboard, demonstrating increased student 

motivation and participation in asynchronous learning 

environments. Huang et al. (2025) examined the usability and 

visual design of learning analytics dashboards in health 

professions education, emphasizing their applicability in skill-

based computing courses. 

Kaliisa et al. (2024) explored how students engage with 

analytics feedback in higher education, proposing design 

principles to foster self-regulated learning. Johnston et al. 

(2024) applied interpretable machine learning models to 

predict student engagement in computing modules, offering 

transparent and actionable predictions. Sadallah (2025) 

introduced an adaptive understanding framework for learner-
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centered dashboards, enhancing personalization and learning 

support. Adeyemi and AlOtaibi (2025) developed a real-time 

feedback decision support system using Light Gradient 

Boosting Machine (LightGBM) and SHapley Additive 

exPlanations (SHAP) explainable AI, ensuring both adaptivity 

and interpretability in feedback delivery. Zhou et al. (2025) 

proposed a tag-based automated feedback generation approach 

using ChatGPT, validated through teacher evaluations for its 

educational relevance and accuracy. 

B. Focusing on Teachers 

Holstein and Cohen (2025) examined how Scratch 

educators perceive integrating CT into other school subjects 

within a constructionist framework. Teachers noted that CT 

not only cultivates computational skill-building but also 

enhances creativity, collaboration, and subject relevance, 

especially in mathematics and science contexts. Hirt et al. 

(2025) evaluated a professional development (PD) program 

aimed at strengthening teachers’ self-regulated learning 

competencies. Their findings showed measurable gains in 

instructional planning, reflective practice, and adaptive 

decision-making. Liu et al. (2024) offered a systematic review 

of K–12 teachers' PD for CT instruction, spotlighting 

challenges like limited curriculum time, diverse expertise 

levels, and resource constraints, while identifying best 

practices such as mentoring and collaborative curriculum 

design. Rodrigues et al. (2024) conducted a systematic review 

on integrating CT into initial teacher training for primary 

schools. They concluded that effective CT education requires 

long-term, comprehensive training that blends both theoretical 

foundations and practical, reflective components. Greifenstein 

et al. (2023) explored how primary school teachers in training 

design programming tasks. They found that tools like 

LitterBox, which provides real-time feedback on code quality, 

helped pre-service teachers move from thematic brainstorming 

to objective-driven task creation, reducing misconceptions and 

improving task quality  

C. Multi-Method in CT Education 

From a multi-method perspective, Varela et al. (2023) 

assessed CT skills in engineering and computer science 

students using a mixed-methods design. This allowed for a 

comprehensive evaluation of both conceptual understanding 

and practical application, illuminating how students display 

CT differently in project-based versus theoretical contexts. Ali 

and Smith (2023) examined cross-case CT implementations in 

K–12 subjects, revealing interdisciplinary benefits like 

enhanced problem-solving fluency and challenges such as 

aligning assessments and ensuring curricular coherence. Shah 

et al. (2024) conducted a systematic review of CT professional 

development initiatives, finding that blended learning models 

were particularly effective for long-term teacher retention. Wu 

and Li (2024) proposed a holistic framework positioning CT 

as a data-centric literacy, arguing that this framing supports 

equity by developing critical engagement with data-driven 

decision-making. Yeni et al. (2024) conducted a systematic 

review of 108 peer-reviewed studies on interdisciplinary CT 

integration in K–12. Their analysis mapped subject areas, 

instructional strategies (like block-based tools), and research 

designs, revealing that most implementations focus on science 

and math, often at a low substitution level rather than 

transformative integration.  

Falloon (2024) deployed a structured, problem-based 

curriculum for early years (approx. age 6), using floor robots 

to assess CT development (e.g., algorithm writing, pattern 

recognition). He demonstrated that young students can achieve 

both foundational and higher-order CT skills through guided 

inquiry pedagogy.  

Subramaniam et al. (2025) applied a STEM Ways of 

Thinking framework in an undergraduate physics course, 

analyzing student-generated engineering design-based 

problems. This qualitative, design-based study used transcript 

and report analysis to explore how students incorporate CT 

(via Python coding), metacognition, and iterative problem 

framing. Adorni et al. (2024) presented the FADE-CTP 

framework, a mixed-methods design framework for analyzing 

educational CT problems (CTPs). The approach involves 

systematically profiling tasks’ characteristics and the CT 

competencies they activate, aiding both assessment design and 

teacher training. Table I illustrates how diverse research 

designs from structured curricula to qualitative task analyses 

and systematic reviews provide nuanced insights into CT 

integration across educational contexts. 

D. Software Engineering Education: Pedagogical 

Innovations and Real-World Alignment 

Haugen and Stålhane (2022) identified persistent 

challenges in DevOps instruction namely tool complexity, 

cultural shifts in team collaboration, and difficulties assessing 

distributed workflows. Building on this, Haugen (2022) 

proposed project-based and collaborative learning models that 

significantly enhanced both students’ technical skills and 

teamwork abilities, while aligning classroom practice with 

realistic industry workflows to increase employability and 

foster lifelong learning habits. Complementing DevOps-

focused studies, Gransbury et al. (2023) designed a project-

based software engineering curriculum for secondary students, 

incorporating block-based programming environments, APIs, 

and socially relevant themes. Their nine-week module yielded 

strong student engagement, especially in autonomy, creativity, 

and collaborative problem-solving.  Afshar et al. (2022) 

presented an integrated software engineering curriculum 

through Project-Based Learning [PBL] at the undergraduate 

level. The program emphasized real-world engineering 

challenges and fostered both technical proficiency and soft 

skills.   
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  Garces and Oliveira’s (2024) four-year experience report  

on PBL in software engineering courses revealed recurring 

themes in design, collaboration, and iterative refinement, 

offering educators actionable insights on methods that worked 

well versus those needing revision.  In the realm of DevOps 

tool education, Iyer et al. (2024) introduced a web-based IDE 

tailored for DevOps learning in higher education. It enabled 

cloud-based, accessible environments with tutorials and 

automated setup, catering to both students and practitioners.  

Moreover, Garcia et al.’s (2024) systematic literature review 

of DevOps teaching techniques highlighted that active, 

student-centred methods—especially PBL, collaborative 

learning, and flipped classrooms—were predominant and 

effective, although validation of student performance and 

curriculum currency remains challenging.  From another 

angle, Borja-Fernández et al. (2023) proposed an automatic 

assessment framework for team coding assignments in 

DevOps contexts. By leveraging version control metrics, they 

achieved fair distribution of individual performance and 

transparent feedback—enhancing trust and motivation in 

team-based software projects.  Moving beyond collaboration, 

Bonetti et al. (2025) conducted a systematic mapping study on 

Example-Based Learning (EBL) in software engineering 

education. Their findings show that EBL not only boosts 

student motivation and conceptual understanding but also 

supports applying theoretical concepts through concrete 

examples—though instructor effort and resource constraints 

remain barriers.   

 

Even though CT has been widely integrated into the 

programming and K-12 STEM programs, very little has been 

done to apply it to computing infrastructure courses. The 

current CT models lack the cognitive mechanisms that would 

be applied in learning activities like architectural design, 

storage layout, Information Lifecycle Management (ILM) 

processes, and enterprise network analysis. This paper 

introduces a new CT-based pedagogic model, sensitive to 

computing infrastructure teaching and learning.   

III. METHODOLOGY 

A. Key Contributions 

In this work, CT skills are systematically mapped to the 

Teaching-learning activities for computing infrastructure 

education and statistically validated. This work focuses on 

proposing an unified course design, delivery and assessment 

framework for integrating CT skills into computing 

infrastructure education. The key contributions are as follows: 

 

o Framework for mapping Computing Infrastructure course 

contents and CT Skills 

o Assessment Framework for evaluating CT Skills in 

computing infrastructure courses. 

o Empirical validation of the proposed framework statistical 

evaluation and student perception based qualitative 

analysis. 

The main significance of the presented research is in the 

systematic incorporation of the main elements of CT, namely 

Decomposition, Pattern Recognition, Abstraction, and 

Algorithmic Thinking, into the instructional design 

framework, delivery model, and assessment of courses 

imparting computing infrastructure education. 

B. Three-Layered Computing Infrastructure Education Stack 

To include computing infrastructure studies in the 

undergraduate Engineering discipline of Information 

Technology, a three-course structure is chosen as shown in 

figure 1. The foundation for computing infrastructure is placed 

at the II semester, when programming is also introduced to the 

students. The foundation course is followed by the System 

Administration course, a course that deals with Server 

administration commands and tools in the III semester and the 

Cloud computing course, a course that deals with modern, 

scalable cloud computing systems in the V semester. 

 

 

 
 
Fig. 2.  Key Areas of Computing Infrastructure Studies 

 

 

 

 

 
Fig. 1.  Three-layered computing Infrastructure Education 

TABLE I 
SYSTEMATIC REVIEWS WITH CT INTEGRATION 

Study Methodology Focus 

Varela et al. [19] 
Mixed 

methods 

CT in project vs theoretical 

contexts 

Yeni et al. [29] 
Systematic 
review 

Interdisciplinary CT studies in 
K–12 

Falloon [30] 

Structured 

curriculum 
study 

CT development in early years 

Subramaniam et al. 

Qualitative 

STEM design 
tasks 

CT in physics with Python 

Adorni et al. [32] Framework 

development 

Analytical profiling of CT tasks 
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Fig. 3.  Key areas of IT Infrastructure Management 

The IT Infrastructure Management course introduces 

students to enterprise-grade data storage technologies, 

networked storage models, and real-world storage networking 

systems. The course aims to equip them to manage and 

maintain critical data and ensure business continuity through 

hands-on exposure to storage solutions. The System 

Administration course strengthens students' foundation in 

administering Linux and Windows servers, including 

configuring and monitoring key server roles, and extends 

their skills with practical shell scripting. This enables 

students to acquire skills relevant to effective automation and 

management of IT resources.  

The third course on Cloud Computing expands students’ 

knowledge to distributed and service computing, focusing on 

cloud architecture, service models, deployment strategies, and 

resource scheduling. It prepares them to design, deploy, and 

manage scalable cloud-based solutions that meet dynamic 

enterprise demands. Figure  2 shows the key areas of 

computing Infrastructure Studies in undergraduate 

Engineering discipline 

 

This three-course structure provides a layered 

competency-building approach, starting from hardware & 

storage foundations, moving to operational management, and 

culminating in distributed/cloud systems. Together, these 

courses foster key computational thinking skills such as 

decomposition, algorithmic thinking, pattern recognition, and 

abstraction, allowing students to systematically analyze, 

design, and implement complex IT infrastructures. This 
integrated curriculum ensures graduates are well-prepared 

with both theoretical foundations and practical expertise to 

address modern challenges in computing infrastructure, 

enterprise data management, and cloud technology. It is aimed 

to impart all the three courses through CT skills-based 

pedagogy. As a pilot study, CT skills-based content design, 

delivery and assessment were experimented with in the course 

on IT Infrastructure Management. 

C. RQ1: Embedding CT into Computing Infrastructure 

Course Design 

The course on IT Infrastructure Management aims to lay a 

strong foundation on the computing infrastructural elements 

required for deploying enterprise-grade applications. The 

course is designed for students of the undergraduate B.Tech IT 

discipline.  The key areas covered by this course are illustrated 

in figure 3 below. 

 The objective is to impart CT skills by aligning them with 

the course contents systematically. The following four CT 

skills are predominantly considered for mapping with the 

course contents. 

o Decomposition: ability to break down complex 

storage devices and technologies into smaller sub-

components and understand them better.  

o Pattern Recognition: ability to identify similarities or 

common characteristics within infrastructural 

requirements and challenges for supporting 

applications. This helps them to evolve better 

infrastructure solutions. 

o Abstraction: the ability to filter low-level details and 

prepare a high-level perspective of the concepts. 

o Algorithmic Thinking : ability to develop step-by-

step solution to a infrastructural problem by applying 

appropriate formula / logic / order of operations. 

The mapping has been carried out by matching the inherent 

nature of the topic and the CT skills. Also, the cognitive level 

at which the students need to learn the concepts is also 

considered. Theoretical concepts such as parts of HDD, SSD, 

network components, IA metrics are dealt at ‘Understand’ 

level (K2) of Blooms taxonomy. The CT skill predominantly 

focussed for concepts at K2 level is ‘Decomposition’. 

Similarly, practical concepts such as Backup and Disaster 

recovery planning, planning infrastructure for enterprise 

applications are dealt at ‘Apply’ (K3) level of Bloom’s 

taxonomy. Such topics are predominantly delivered in 

alignment with the CT skills – abstraction and algorithmic 

thinking, which will facilitate the learners to chart out 

effective plans. The mapping of the course contents to the CT 

skills is illustrated in figure 4. 

 

 
Fig. 4.  Mapping of the course contents to the CT skills 
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D. . RQ2:  Assessment frameworks for measuring attainment 

of CT skills by students 

To effectively assess the attainment of computational skills 

by students, a set of eight key activities that inherently 

promotes the CT skills was identified. All these activities were 

given as hands-on activities to students in a guided format. 

Students will be asked to follow the guidelines given, perform 

the learning activity and expected to produce a well-defined 

deliverable.  As highlighted in the above section, the activities 

mapped to the “Decomposition” skill are evaluated at K2 

level. The activities mapped to ‘abstraction’ and ‘algorithmic 

thinking’ are evaluated at K3 level of Blooms taxonomy.  

The description of the activities, details of the guidelines 

given to the students to carry out the activities and the 

deliverable expected from the students are listed in the Table 

II above. The students were asked to carry out the activities in 

lab as soon as the relevant theory concepts are discussed in the 

class. This allowed them to apply the CT skills learnt in 

solving the problems given. 

IV. RESULTS AND DISCUSSIONS 

A. Quantitative Evaluation 

The effectiveness of integrating CT skills into the  Content 

design and delivery of the infrastructure management course is 

measured through quantitative evaluation and perception-

based evaluation. For quantitative performance evaluation, the 

performance of students in the set of eight activities is 

considered. The assessment items were attempted by 120 

students.  

 
The skill mapping of the assessment items are as follows: 

1. Decomposition → A1, A2 (Max marks: 8 each, 

Bloom’s K2 level) 

2. Pattern Recognition → A3 (Max marks: 16, Bloom’s 

K3 level) 

3. Abstraction → A4, A5, A6 (Max marks: 4, 4, 16, 

Bloom’s K3 level) 

4. Algorithmic Thinking → A7, A8 (Max marks: 8, 16, 

Bloom’s K3 level) 

 

 
 

Fig. 5.  Correlation Map of eight activities 

TABLE II  

ASSESSMENT FRAMEWORK TO EVALUATE CT SKILLS 

Activity CT Skill 

addressed 

Description Guidelines Deliverable    

A1.a Decomposition Breaking down components of Hard 
disk drive and understanding each of 

the component’s function.   

A demonstration video that 
contains explanation of physical 

sub-components of a HDD 

A handwritten report summarizing 
the working of HDD 

   

A1.b Decomposition Breaking down the network settings on 
a personal computer and learning the 

network properties such as protocols, 

IP address, MAC address etc., 

A document containing necessary 
steps/commands to check network 

settings 

A document containing 
screenshots of the steps carried 

out and the current network 

setting of their computer.  

   

A2 Decomposition Identify the necessary infrastructural 

elements required for deployment of a 

enterprise application with specific 
demands  

Scenario-based problem 

statements set 

 

Identification of core 

infrastructural elements such as 

network, storage, backup etc 
based on the requirements of the 

problem statement chosen.  

   

A3 Pattern Recognition Enterprise Networking Case Study Reference websites (Cisco, 
Juniper Case Studies) 

Report based on a chosen white 
paper, explaining the networking 

problem and the solution proposed 

at enterprise level 

   

A4 Abstraction Mindmap on Datacenter – 

Components, need, characteristics 

Virtual tour of Google, Microsoft 

Datacenters 

A mindmap that reflects all the 

essential concepts about 

Datacenter 

   

A5 Abstraction Learn the components of SSD and the 

differences with HDD.  

Use AI to learn Frame 20 curious questions and 

answers about SSD and how it is 

different from HDD. 

   

A6 Abstraction Derive a high-level architecture of 

infrastructure required for deployment 

of an enterprise application 

Scenario-based problem 

statements 

Report containing high-level 

architecture diagram for the 

chosen enterprise application with 
specific requirements 

   

A7 Algorithmic 

Thinking 

Solving problems given in a worksheet Sample worked out problems Solution to the problems by 

applying appropriate logic/ 
formula/ sequence of steps.  

   

A8 Algorithmic 

Thinking 

Perform Information Lifecycle 

Management activities for a chosen 
application and derive a back up plan 

Flow of ILM and Backup 

considerations 

Backup plan for a chosen problem 

statement. 
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Fig. 6. Comparison of internal consistency of assessment activities 
measured through Cronbach’s alpha 

 

 
 

 

 
 

 

 
 

 

 
 

 
Fig. 9. CT Skillwise distribution of student scores 

 
 

 

 
 

 

 

 

 

 
 

 

The correlation map of all eight activities is charted to 

understand how the activities are interrelated to one another 

and the causality among them. The correlation map 

illustrated in figure 5 shows strong correlation among the 

items A3, A6, A7, A8,  which assess Pattern Recognition, 

Abstraction, and Algorithmic Thinking. The strong 

correlation indicates the important fact that the students 

were able to identify patterns, abstract the details and 

propose a solution by applying algorithmic thinking. 

 

Further, to ensure the correlation among the related 

components and the internal consistency of the assessment 

data, Cronbach’s alpha value was calculated for (A1, A2), 

(A4, A5, A6) and (A7, A8). The comparison of the cronbach’s 

alpha of the related items and the benchmark value of 0.7 is 

shown in figure 6 below. The results show that the activities 

used to measure the CT skills, Decomposition and algorithmic 

thinking have acceptable consistency with values approaching 

the benchmark value 7. However, the assessment items used 

for measuring the CT skill, ‘abstraction’ show poor internal 

consistency. Both the correlation map and the measured 

Cronbach’s alpha values ensure the correctness and validity of 

the assessment items chosen for performance evaluation. 

Further, the overall distribution of the marks scored by 

students illustrated in figure 7 shows a left-skewed bell curve, 

which strongly suggests a positive outcome with most students 

scoring high. The same trend is confirmed by the box-plot 

visualization shown in figure 8.  

 
The assessment items A1, A2 show small interquartile range 

indicating good performance by most of the students at K2 

level. A3 shows slightly wider distribution than (A1, A2) and 

around 10% of students scoring significantly lower. The 

(A4,A5,A6) set meant to measure Abstraction shows 

consistent performance by students. Similar good and 

consistent performance observed in (A7,A8) measuring 

algorithmic thinking. Presence of few outliers indicate 7-10% 

of students struggling to adapt. For better clarity, CT skillwise 

distribution of marks is shown in figure 9. The average marks 

scored in each assessment item is shown in figure 10. 

The results demonstrate that, except few outliers, majority of 

the students were able to acquire CT skills and hence achieve 

expected level of cognition. The high overall class averages 

and the tight interquartile range indicate the significant effect 

of the CT skills-based pedagogy followed in the IT 

Infrastructure management course.  

 

 
 

 

Further, the strong correlation among Pattern Recognition, 

Abstraction, and Algorithmic Thinking aligns with Wing’s 

view (Wing, J.M 2006) of Computational Thinking as a 

network of cognitive mechanisms that support both problem 

 
Fig. 7. Overall Distribution of Marks 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 

 
Fig. 8. Distribution of student scores across eight assignments (A1–A8) 

mapped to computational thinking skills 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 
Fig. 10. Assignment-wise Average Score 
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formulation and solution generation. The skill mapping is in 

line with the tripartite CT model of Selby and Woollard 

conceptual, algorithmic, and developmental layers. The 

development between Decomposition (K2) and Abstraction 

and Algorithmic Thinking (K3) supports the revised taxonomy 

by Bloom, which means one is involved in higher-order 

cognitive activities. 

About 7-10 percent showed problems with tasks that are 

abstraction-intensive (A4-A6) which implies that they had 

problems in shifting towards conceptual modeling of learning, 

rather than the previous course of procedural learning. Other 

students had difficulty in comprehending enterprise level 

situations especially when asked to create high level 

infrastructure architectures. Some of the students needed 

further assistance in form of scaffolding when performing 

practical exercises because they were not familiar with storage 

and networking systems. These issues highlight the need to 

have instructional differentiation and specific support systems. 

B. Perception-based evaluation 

The effectiveness of the CT skills based pedagogy for 

computing infrastructure courses is further measured through 

perception-based evaluation. To carry out the perception-

based evaluation, a short survey questionnaire depicted in the 

Table III is used.  

 

 
TABLE III 

PERCEPTION-BASED EVALUATION SURVEY QUESTIONNAIRE 

Q.No Questions CT Skill 

1 The course activities and assignments helped 
me to break down IT Infrastructure into 

storage and network components and 

understand them better 

Decomposition 

2 The activities given effectively helped me to 

break down complex infrastructure structures  

Decomposition 

3 The course content helped me to learn the 
recurring patterns, requirements in IT 

Infrastructure  

Pattern 
Recognition 

   
4 The activities helped me break a problem into 

sub-problems and identify solutions by 

applying appropriate logic 

Algorithmic 

Thinking 

5 The activities helped me to consolidate low-

level details of the Network, storage and 

propose a high-level architecture for 
applications 

Abstraction 

6 Please provide specific examples of how you 

have applied any of the skills learnt from the 
course to solve a problem, either inside or 

outside of this course.   

- 

 

The average Likert scale scores (1-Strongly disagree, 5- 

Strongly agree) presented in figure 11 indicates the strong 

sense of attainment of CT skills among the students. The range 

of the average score (4.27-4.54) indicates uniformly positive 

perception on the acquisition of CT skills. Further, some of the 

impactful Examples of the application of skills learnt from the 

course given by students are illustrated in figure 12.  

 
Even though the study is based one specific course in an 

institution, the CT-based framework is inherently transferable. 

The identical principles of mapping can be used in the case of 

courses that impart computing infrastructure education. Eg., 

System Administration , Cloud Computing, Network 

Management, Datacenter Administration etc., where the 

concepts of Decomposition, Abstraction, and Algorithmic 

Reasoning become basic building blocks of configuration, 

automation and architectural decision making.  

CONCLUSION 

The integration of CT skills into the IT Infrastructure 

Management course has proven to be both effective and 

pedagogically sound, as evidenced by the strong alignment 

between quantitative and perception-based evaluations. The 

mapping of activities to CT components enabled targeted skill 

development, while statistical validation ensured the reliability 

of the assessment framework. High performance averages, 

tight score distributions, and positive student perceptions 

collectively indicate that the approach not only fostered deep 

conceptual understanding but also enhanced students’ ability 

to apply CT in practical scenarios.  

The correlation between Pattern Recognition, Abstraction, and 

Algorithmic Thinking underscores the interdependence of 

these skills in problem-solving contexts. While most students 

adapted well, the small percentage of outliers highlights the 

need for adaptive instructional strategies to support varied 

learning paces. Future work will explore the scalability of this 

pedagogical framework across other computing infrastructure 

courses and investigate the longitudinal impact of CT 

integration on graduates’ professional performance. Further, 

with multi-institutional studies the generalizability of the 

proposed framework can be validated.  
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