
Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

397

1S. Thiruchadai Pandeeswari, 2G. Vennila

1, 2Department of Information Technology, Thiagarajar College of Engineering, Madurai-15
1 eshwarimsp@tce.edu, 2gvait@tce.edu

Abstract— AI innovations have led to unprecedented demand

and growth in computing infrastructure domain, creating

promising avenue of employment for role-ready Engineering

graduates. In this context, computing infrastructure studies

garner special focus. Though there are several studies on

integrating CT skills in K-12 and Engineering Education, thre

are few to none on integrating CT skills into Computing

Infrastructure education. This study aims at proposing a unified

framework for integration of Computational Thinking (CT) skills

into the course design, delivery and assessment of computing

infrastructure studies targeting undergraduate Engineering

students of IT discipline. The proposed approach is implemented

for a foundational course on IT Infrastructure, with a focus on

enhancing student cognition and problem-solving capabilities. A

structured pedagogical approach is employed to map course

activities to core CT components—Decomposition, Pattern

Recognition, Abstraction, and Algorithmic Thinking—using

Bloom’s taxonomy for skill-level alignment. A carefully planned

Assessment framework to evaluate the attainment of CT skills

through guided activities is also proposed. Quantitative

evaluation of the proposed approach was conducted by

considering the performance of 120 students across eight

assessment items, with correlation mapping and Cronbach’s

alpha used to validate the reliability of the skill measurement.

Results indicated strong correlations among Pattern Recognition,

Abstraction, and Algorithmic Thinking, with Cronbach’s alpha

values for Decomposition and Algorithmic Thinking approaching

the benchmark of 0.7, confirming acceptable consistency.

Performance distributions showed high class averages, narrow

interquartile ranges, and minimal outliers, suggesting effective

learning outcomes. Perception-based evaluation using a Likert-

scale survey revealed uniformly positive student feedback, with

average ratings between 4.27 and 4.54, indicating a strong sense

of CT skill acquisition. The findings demonstrate that integrating

CT skills into course pedagogy can significantly improve

technical proficiency, cognitive engagement, and student

confidence in solving computing infrastructure-related problems.

Keywords— Computational Thinking, Algorithmic Thinking,

IT Infrastructure, Computing Infrastructure, Infrastructure

Studies.

ICTIEE Track: Emerging Technologies and Future Skills

ICTIEE Sub-Track: Preparing Engineers for Digital and

Sustainable world details.)

I. INTRODUCTION

RTIFICIAL Intelligence innovations accelerated an

unprecedented expansion of computing infrastructure

around the world. The expansion is estimated to grow by

160% by 2030 (Sachs, G. (2024)). The AI infrastructure

market is expected to reach a $ 395 billion market by 2030

(Report by Markets and Markets). The increased adoption of

AI necessitates a robust education framework for computing

infrastructure. Computing infrastructure studies have become

more pertinent with these advancements in AI. As AI-enabled

systems demand scalable and resilient high- performance

architectures, the focus on infrastructure design and

optimization has become critical. While AI automation may

reduce certain human roles within computer engineering, the

evolving infrastructure landscape promises to generate new

employment avenues, making it a vital growth domain for the

discipline. Thus, it is crucial to effectively integrate computing

infrastructure studies in the undergraduate Computer Science

Engineering and allied disciplines.

Computing Infrastructure study involves analyzing and

facilitating hardware, software and networking resources for

Computing operations and services. Acquiring skills relevant

to designing and analyzing computing infrastructure would

enable the students of Undergraduate Computer Science

Engineering and allied disciplines to design scalable and

efficient systems that meet business and application-specific

needs. In this paper, a systematic approach for incorporating

computational thinking pedagogy into courses that deal with

computing infrastructure studies is implemented and

empirically validated.

Computational Thinking (CT), a term introduced by

Jeanette Wing (Wing, J.M 2006), describes a way humans

approach solving problems by drawing on concepts

fundamental to computer science. Wing emphasized that CT is

an essential skill for everyone as it is integral to analytical

ability. Computational thinking encompasses the four essential

thought processes of decomposition, pattern recognition,

abstraction and algorithmic thinking (Selby and Woollard

2013). These cognitive processes are the foundation for

formulating problems and deriving their solutions.

Computational thinking is usually associated with problem

solving and hence widely adopted for programming courses in

the Computer Science Engineering curriculum. Courses that

focus on computing infrastructure, such as System

Administration, Network Administration and DevOps, mostly

focus on rote learning with the set up procedures and

commands for tools usage. Integrating Computational

Thinking skills into the computing infrastructure-related

courses in the curriculum offers significant benefits in moving

learners from rote memorization to a more dynamic problem-

solving approach. The benefits include:

From Configuration to Cognition:

A Computational Thinking Approach to

Computing Infrastructure Education

A

S. Thiruchadai Pandeeswari

Assistant Professor, Thiagarajar College of Engineering, Madurai-15

Thiagarajar College of Engineering, Madurai – 15

eshwarimsp@tce.edu

397

mailto:eshwarimsp@tce.edu
mailto:2gvait@tce.edu
mailto:eshwarimsp@tce.edu

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

398

1. Promotes deeper conceptual understanding, enabling

students to think beyond tools and commands

2. Allows a problem-solving approach towards

infrastructure studies by converting tasks into open

ended problems

3. Promotes abstraction, modelling and automation

4. Facilitates automation scripts, orchestration of workflows

and proactive monitoring and response systems,

especially in the context of cloud-native and AI-driven

architectures.

5. Emerging fields like CI/CD pipelining, AI-aided

operations demand CT-driven reasoning

However, facilitating the integration of computational

thinking pedagogy into computing infrastructure education has

significant challenges due to the inherent nature of courses

dealing with computing infrastructure studies. The major

challenges are as follows:

1. Systematic approaches to infusing CT concepts such as

decomposition, pattern recognition, abstraction, and

algorithmic thinking into CI courses is very limited.

2. Embedding CT into already content-rich CI courses

requires careful planning, else it may overwhelm the

learners

3. Integrating CT into CI courses requires professional

development to understand how to integrate abstraction,

algorithms, and systems thinking into CI topics.

4. Lack of rubrics or tools to assess how well CT has been

applied in CI tasks like building a virtualized

environment or configuring a cloud network.

Considering the benefits and challenges in integrating

CT-based pedagogy into CI courses, this paper explores the

solution approaches to overcome the aforementioned

challenges. This paper presents an empirical study on the

inclusion of CT skills into a computing infrastructure course.

To explore the underlying dynamics of integrating

computational thinking pedagogy into computing

infrastructure courses, this paper is structured around the

following research questions.

1. How can computational thinking skills be systematically

embedded into a computing infrastructure course to

enhance students’ problem-solving abilities beyond

procedural task execution?

2. What assessment frameworks can effectively measure

students’ application of computational thinking skills,

such as decomposition, abstraction, and algorithmic

problem-solving?

Even though CT has been widely integrated into the

programming and K-12 STEM programs, very little has been

done to apply it to computing infrastructure courses. The

current CT models lack the cognitive mechanisms that would

be applied in activities like architectural design, storage

layout, Information Lifecycle Management (ILM) processes,

and enterprise network analysis. This work consequently

introduces a new CT-based pedagogic model, sensitive to

computing infrastructure teaching and learning and based

upon a statistically verified evaluation model. It is the initial

reported case where CT skills have been systematically

mapped to IT infrastructure activities and evaluated in terms

of reliability by means of statistical validation of results with

student performance data. The main significance of the

presented research is in the systematic incorporation of the

main elements of CT, namely Decomposition, Pattern

Recognition, Abstraction, and Algorithmic Thinking, into the

instructional design framework, delivery model, and

evaluation of a 4-year IT Infrastructure program. This teaching

hypothesis has undergone empirical approval on a group of

120 students, and can provide data about enhanced cognitive

and problem-solving skills unique to infrastructure training.

II. RELATED WORKS

This section organizes prior work relevant to integrating

CT pedagogy into undergraduate computing-infrastructure

courses, categorized into four themes: data-driven approaches,

teacher-focused studies, multi-method perspectives, and

pedagogical innovations with real-world alignment.

A. Data-driven Method

A data-driven perspective of large-scale case study on

learner-centered feedback analytics in higher education,

revealed how nuanced feedback patterns can inform

instructional design, improve learner engagement, and tailor

content delivery (Aldino et al. 2022). Wang et al. (2021)

conducted a scoping review on the interplay between CT and

creativity, identifying shared cognitive foundations such as

abstraction, iterative refinement, and divergent thinking, while

highlighting opportunities for cross-skill development in

computing curricula. Similarly, Lin et al. (2023) investigated

learner-centred analytics of feedback content, offering

actionable insights into improving educational interventions

through data analysis, adaptive scaffolding, and personalized

learning pathways.

Recent work has expanded this data-driven perspective

by integrating advanced analytics, visualization, and adaptive

systems into computing education. Johnston et al. (2024)

conducted a systematic review of learning analytics in

computing education, identifying emerging frameworks for

feedback personalization and skill tracking. Lee and Kim

(2024) designed a self-determination theory-informed learning

analytics dashboard, demonstrating increased student

motivation and participation in asynchronous learning

environments. Huang et al. (2025) examined the usability and

visual design of learning analytics dashboards in health

professions education, emphasizing their applicability in skill-

based computing courses.

Kaliisa et al. (2024) explored how students engage with

analytics feedback in higher education, proposing design

principles to foster self-regulated learning. Johnston et al.

(2024) applied interpretable machine learning models to

predict student engagement in computing modules, offering

transparent and actionable predictions. Sadallah (2025)

introduced an adaptive understanding framework for learner-

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

399

centered dashboards, enhancing personalization and learning

support. Adeyemi and AlOtaibi (2025) developed a real-time

feedback decision support system using Light Gradient

Boosting Machine (LightGBM) and SHapley Additive

exPlanations (SHAP) explainable AI, ensuring both adaptivity

and interpretability in feedback delivery. Zhou et al. (2025)

proposed a tag-based automated feedback generation approach

using ChatGPT, validated through teacher evaluations for its

educational relevance and accuracy.

B. Focusing on Teachers

Holstein and Cohen (2025) examined how Scratch

educators perceive integrating CT into other school subjects

within a constructionist framework. Teachers noted that CT

not only cultivates computational skill-building but also

enhances creativity, collaboration, and subject relevance,

especially in mathematics and science contexts. Hirt et al.

(2025) evaluated a professional development (PD) program

aimed at strengthening teachers’ self-regulated learning

competencies. Their findings showed measurable gains in

instructional planning, reflective practice, and adaptive

decision-making. Liu et al. (2024) offered a systematic review

of K–12 teachers' PD for CT instruction, spotlighting

challenges like limited curriculum time, diverse expertise

levels, and resource constraints, while identifying best

practices such as mentoring and collaborative curriculum

design. Rodrigues et al. (2024) conducted a systematic review

on integrating CT into initial teacher training for primary

schools. They concluded that effective CT education requires

long-term, comprehensive training that blends both theoretical

foundations and practical, reflective components. Greifenstein

et al. (2023) explored how primary school teachers in training

design programming tasks. They found that tools like

LitterBox, which provides real-time feedback on code quality,

helped pre-service teachers move from thematic brainstorming

to objective-driven task creation, reducing misconceptions and

improving task quality

C. Multi-Method in CT Education

From a multi-method perspective, Varela et al. (2023)

assessed CT skills in engineering and computer science

students using a mixed-methods design. This allowed for a

comprehensive evaluation of both conceptual understanding

and practical application, illuminating how students display

CT differently in project-based versus theoretical contexts. Ali

and Smith (2023) examined cross-case CT implementations in

K–12 subjects, revealing interdisciplinary benefits like

enhanced problem-solving fluency and challenges such as

aligning assessments and ensuring curricular coherence. Shah

et al. (2024) conducted a systematic review of CT professional

development initiatives, finding that blended learning models

were particularly effective for long-term teacher retention. Wu

and Li (2024) proposed a holistic framework positioning CT

as a data-centric literacy, arguing that this framing supports

equity by developing critical engagement with data-driven

decision-making. Yeni et al. (2024) conducted a systematic

review of 108 peer-reviewed studies on interdisciplinary CT

integration in K–12. Their analysis mapped subject areas,

instructional strategies (like block-based tools), and research

designs, revealing that most implementations focus on science

and math, often at a low substitution level rather than

transformative integration.

Falloon (2024) deployed a structured, problem-based

curriculum for early years (approx. age 6), using floor robots

to assess CT development (e.g., algorithm writing, pattern

recognition). He demonstrated that young students can achieve

both foundational and higher-order CT skills through guided

inquiry pedagogy.

Subramaniam et al. (2025) applied a STEM Ways of

Thinking framework in an undergraduate physics course,

analyzing student-generated engineering design-based

problems. This qualitative, design-based study used transcript

and report analysis to explore how students incorporate CT

(via Python coding), metacognition, and iterative problem

framing. Adorni et al. (2024) presented the FADE-CTP

framework, a mixed-methods design framework for analyzing

educational CT problems (CTPs). The approach involves

systematically profiling tasks’ characteristics and the CT

competencies they activate, aiding both assessment design and

teacher training. Table I illustrates how diverse research

designs from structured curricula to qualitative task analyses

and systematic reviews provide nuanced insights into CT

integration across educational contexts.

D. Software Engineering Education: Pedagogical

Innovations and Real-World Alignment

Haugen and Stålhane (2022) identified persistent

challenges in DevOps instruction namely tool complexity,

cultural shifts in team collaboration, and difficulties assessing

distributed workflows. Building on this, Haugen (2022)

proposed project-based and collaborative learning models that

significantly enhanced both students’ technical skills and

teamwork abilities, while aligning classroom practice with

realistic industry workflows to increase employability and

foster lifelong learning habits. Complementing DevOps-

focused studies, Gransbury et al. (2023) designed a project-

based software engineering curriculum for secondary students,

incorporating block-based programming environments, APIs,

and socially relevant themes. Their nine-week module yielded

strong student engagement, especially in autonomy, creativity,

and collaborative problem-solving. Afshar et al. (2022)

presented an integrated software engineering curriculum

through Project-Based Learning [PBL] at the undergraduate

level. The program emphasized real-world engineering

challenges and fostered both technical proficiency and soft

skills.

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

400

 Garces and Oliveira’s (2024) four-year experience report

on PBL in software engineering courses revealed recurring

themes in design, collaboration, and iterative refinement,

offering educators actionable insights on methods that worked

well versus those needing revision. In the realm of DevOps

tool education, Iyer et al. (2024) introduced a web-based IDE

tailored for DevOps learning in higher education. It enabled

cloud-based, accessible environments with tutorials and

automated setup, catering to both students and practitioners.

Moreover, Garcia et al.’s (2024) systematic literature review

of DevOps teaching techniques highlighted that active,

student-centred methods—especially PBL, collaborative

learning, and flipped classrooms—were predominant and

effective, although validation of student performance and

curriculum currency remains challenging. From another

angle, Borja-Fernández et al. (2023) proposed an automatic

assessment framework for team coding assignments in

DevOps contexts. By leveraging version control metrics, they

achieved fair distribution of individual performance and

transparent feedback—enhancing trust and motivation in

team-based software projects. Moving beyond collaboration,

Bonetti et al. (2025) conducted a systematic mapping study on

Example-Based Learning (EBL) in software engineering

education. Their findings show that EBL not only boosts

student motivation and conceptual understanding but also

supports applying theoretical concepts through concrete

examples—though instructor effort and resource constraints

remain barriers.

Even though CT has been widely integrated into the

programming and K-12 STEM programs, very little has been

done to apply it to computing infrastructure courses. The

current CT models lack the cognitive mechanisms that would

be applied in learning activities like architectural design,

storage layout, Information Lifecycle Management (ILM)

processes, and enterprise network analysis. This paper

introduces a new CT-based pedagogic model, sensitive to

computing infrastructure teaching and learning.

III. METHODOLOGY

A. Key Contributions

In this work, CT skills are systematically mapped to the

Teaching-learning activities for computing infrastructure

education and statistically validated. This work focuses on

proposing an unified course design, delivery and assessment

framework for integrating CT skills into computing

infrastructure education. The key contributions are as follows:

o Framework for mapping Computing Infrastructure course

contents and CT Skills

o Assessment Framework for evaluating CT Skills in

computing infrastructure courses.

o Empirical validation of the proposed framework statistical

evaluation and student perception based qualitative

analysis.

The main significance of the presented research is in the

systematic incorporation of the main elements of CT, namely

Decomposition, Pattern Recognition, Abstraction, and

Algorithmic Thinking, into the instructional design

framework, delivery model, and assessment of courses

imparting computing infrastructure education.

B. Three-Layered Computing Infrastructure Education Stack

To include computing infrastructure studies in the

undergraduate Engineering discipline of Information

Technology, a three-course structure is chosen as shown in

figure 1. The foundation for computing infrastructure is placed

at the II semester, when programming is also introduced to the

students. The foundation course is followed by the System

Administration course, a course that deals with Server

administration commands and tools in the III semester and the

Cloud computing course, a course that deals with modern,

scalable cloud computing systems in the V semester.

Fig. 2. Key Areas of Computing Infrastructure Studies

Fig. 1. Three-layered computing Infrastructure Education

TABLE I
SYSTEMATIC REVIEWS WITH CT INTEGRATION

Study Methodology Focus

Varela et al. [19]
Mixed

methods

CT in project vs theoretical

contexts

Yeni et al. [29]
Systematic
review

Interdisciplinary CT studies in
K–12

Falloon [30]

Structured

curriculum
study

CT development in early years

Subramaniam et al.

Qualitative

STEM design
tasks

CT in physics with Python

Adorni et al. [32] Framework

development

Analytical profiling of CT tasks

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

401

Fig. 3. Key areas of IT Infrastructure Management

The IT Infrastructure Management course introduces

students to enterprise-grade data storage technologies,

networked storage models, and real-world storage networking

systems. The course aims to equip them to manage and

maintain critical data and ensure business continuity through

hands-on exposure to storage solutions. The System

Administration course strengthens students' foundation in

administering Linux and Windows servers, including

configuring and monitoring key server roles, and extends

their skills with practical shell scripting. This enables

students to acquire skills relevant to effective automation and

management of IT resources.

The third course on Cloud Computing expands students’

knowledge to distributed and service computing, focusing on

cloud architecture, service models, deployment strategies, and

resource scheduling. It prepares them to design, deploy, and

manage scalable cloud-based solutions that meet dynamic

enterprise demands. Figure 2 shows the key areas of

computing Infrastructure Studies in undergraduate

Engineering discipline

This three-course structure provides a layered

competency-building approach, starting from hardware &

storage foundations, moving to operational management, and

culminating in distributed/cloud systems. Together, these

courses foster key computational thinking skills such as

decomposition, algorithmic thinking, pattern recognition, and

abstraction, allowing students to systematically analyze,

design, and implement complex IT infrastructures. This
integrated curriculum ensures graduates are well-prepared

with both theoretical foundations and practical expertise to

address modern challenges in computing infrastructure,

enterprise data management, and cloud technology. It is aimed

to impart all the three courses through CT skills-based

pedagogy. As a pilot study, CT skills-based content design,

delivery and assessment were experimented with in the course

on IT Infrastructure Management.

C. RQ1: Embedding CT into Computing Infrastructure

Course Design

The course on IT Infrastructure Management aims to lay a

strong foundation on the computing infrastructural elements

required for deploying enterprise-grade applications. The

course is designed for students of the undergraduate B.Tech IT

discipline. The key areas covered by this course are illustrated

in figure 3 below.

 The objective is to impart CT skills by aligning them with

the course contents systematically. The following four CT

skills are predominantly considered for mapping with the

course contents.

o Decomposition: ability to break down complex

storage devices and technologies into smaller sub-

components and understand them better.

o Pattern Recognition: ability to identify similarities or

common characteristics within infrastructural

requirements and challenges for supporting

applications. This helps them to evolve better

infrastructure solutions.

o Abstraction: the ability to filter low-level details and

prepare a high-level perspective of the concepts.

o Algorithmic Thinking : ability to develop step-by-

step solution to a infrastructural problem by applying

appropriate formula / logic / order of operations.

The mapping has been carried out by matching the inherent

nature of the topic and the CT skills. Also, the cognitive level

at which the students need to learn the concepts is also

considered. Theoretical concepts such as parts of HDD, SSD,

network components, IA metrics are dealt at ‘Understand’

level (K2) of Blooms taxonomy. The CT skill predominantly

focussed for concepts at K2 level is ‘Decomposition’.

Similarly, practical concepts such as Backup and Disaster

recovery planning, planning infrastructure for enterprise

applications are dealt at ‘Apply’ (K3) level of Bloom’s

taxonomy. Such topics are predominantly delivered in

alignment with the CT skills – abstraction and algorithmic

thinking, which will facilitate the learners to chart out

effective plans. The mapping of the course contents to the CT

skills is illustrated in figure 4.

Fig. 4. Mapping of the course contents to the CT skills

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

402

D. . RQ2: Assessment frameworks for measuring attainment

of CT skills by students

To effectively assess the attainment of computational skills

by students, a set of eight key activities that inherently

promotes the CT skills was identified. All these activities were

given as hands-on activities to students in a guided format.

Students will be asked to follow the guidelines given, perform

the learning activity and expected to produce a well-defined

deliverable. As highlighted in the above section, the activities

mapped to the “Decomposition” skill are evaluated at K2

level. The activities mapped to ‘abstraction’ and ‘algorithmic

thinking’ are evaluated at K3 level of Blooms taxonomy.

The description of the activities, details of the guidelines

given to the students to carry out the activities and the

deliverable expected from the students are listed in the Table

II above. The students were asked to carry out the activities in

lab as soon as the relevant theory concepts are discussed in the

class. This allowed them to apply the CT skills learnt in

solving the problems given.

IV. RESULTS AND DISCUSSIONS

A. Quantitative Evaluation

The effectiveness of integrating CT skills into the Content

design and delivery of the infrastructure management course is

measured through quantitative evaluation and perception-

based evaluation. For quantitative performance evaluation, the

performance of students in the set of eight activities is

considered. The assessment items were attempted by 120

students.

The skill mapping of the assessment items are as follows:

1. Decomposition → A1, A2 (Max marks: 8 each,

Bloom’s K2 level)

2. Pattern Recognition → A3 (Max marks: 16, Bloom’s

K3 level)

3. Abstraction → A4, A5, A6 (Max marks: 4, 4, 16,

Bloom’s K3 level)

4. Algorithmic Thinking → A7, A8 (Max marks: 8, 16,

Bloom’s K3 level)

Fig. 5. Correlation Map of eight activities

TABLE II

ASSESSMENT FRAMEWORK TO EVALUATE CT SKILLS

Activity CT Skill

addressed

Description Guidelines Deliverable

A1.a Decomposition Breaking down components of Hard
disk drive and understanding each of

the component’s function.

A demonstration video that
contains explanation of physical

sub-components of a HDD

A handwritten report summarizing
the working of HDD

A1.b Decomposition Breaking down the network settings on
a personal computer and learning the

network properties such as protocols,

IP address, MAC address etc.,

A document containing necessary
steps/commands to check network

settings

A document containing
screenshots of the steps carried

out and the current network

setting of their computer.

A2 Decomposition Identify the necessary infrastructural

elements required for deployment of a

enterprise application with specific
demands

Scenario-based problem

statements set

Identification of core

infrastructural elements such as

network, storage, backup etc
based on the requirements of the

problem statement chosen.

A3 Pattern Recognition Enterprise Networking Case Study Reference websites (Cisco,
Juniper Case Studies)

Report based on a chosen white
paper, explaining the networking

problem and the solution proposed

at enterprise level

A4 Abstraction Mindmap on Datacenter –

Components, need, characteristics

Virtual tour of Google, Microsoft

Datacenters

A mindmap that reflects all the

essential concepts about

Datacenter

A5 Abstraction Learn the components of SSD and the

differences with HDD.

Use AI to learn Frame 20 curious questions and

answers about SSD and how it is

different from HDD.

A6 Abstraction Derive a high-level architecture of

infrastructure required for deployment

of an enterprise application

Scenario-based problem

statements

Report containing high-level

architecture diagram for the

chosen enterprise application with
specific requirements

A7 Algorithmic

Thinking

Solving problems given in a worksheet Sample worked out problems Solution to the problems by

applying appropriate logic/
formula/ sequence of steps.

A8 Algorithmic

Thinking

Perform Information Lifecycle

Management activities for a chosen
application and derive a back up plan

Flow of ILM and Backup

considerations

Backup plan for a chosen problem

statement.

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

403

Fig. 6. Comparison of internal consistency of assessment activities
measured through Cronbach’s alpha

Fig. 9. CT Skillwise distribution of student scores

The correlation map of all eight activities is charted to

understand how the activities are interrelated to one another

and the causality among them. The correlation map

illustrated in figure 5 shows strong correlation among the

items A3, A6, A7, A8, which assess Pattern Recognition,

Abstraction, and Algorithmic Thinking. The strong

correlation indicates the important fact that the students

were able to identify patterns, abstract the details and

propose a solution by applying algorithmic thinking.

Further, to ensure the correlation among the related

components and the internal consistency of the assessment

data, Cronbach’s alpha value was calculated for (A1, A2),

(A4, A5, A6) and (A7, A8). The comparison of the cronbach’s

alpha of the related items and the benchmark value of 0.7 is

shown in figure 6 below. The results show that the activities

used to measure the CT skills, Decomposition and algorithmic

thinking have acceptable consistency with values approaching

the benchmark value 7. However, the assessment items used

for measuring the CT skill, ‘abstraction’ show poor internal

consistency. Both the correlation map and the measured

Cronbach’s alpha values ensure the correctness and validity of

the assessment items chosen for performance evaluation.

Further, the overall distribution of the marks scored by

students illustrated in figure 7 shows a left-skewed bell curve,

which strongly suggests a positive outcome with most students

scoring high. The same trend is confirmed by the box-plot

visualization shown in figure 8.

The assessment items A1, A2 show small interquartile range

indicating good performance by most of the students at K2

level. A3 shows slightly wider distribution than (A1, A2) and

around 10% of students scoring significantly lower. The

(A4,A5,A6) set meant to measure Abstraction shows

consistent performance by students. Similar good and

consistent performance observed in (A7,A8) measuring

algorithmic thinking. Presence of few outliers indicate 7-10%

of students struggling to adapt. For better clarity, CT skillwise

distribution of marks is shown in figure 9. The average marks

scored in each assessment item is shown in figure 10.

The results demonstrate that, except few outliers, majority of

the students were able to acquire CT skills and hence achieve

expected level of cognition. The high overall class averages

and the tight interquartile range indicate the significant effect

of the CT skills-based pedagogy followed in the IT

Infrastructure management course.

Further, the strong correlation among Pattern Recognition,

Abstraction, and Algorithmic Thinking aligns with Wing’s

view (Wing, J.M 2006) of Computational Thinking as a

network of cognitive mechanisms that support both problem

Fig. 7. Overall Distribution of Marks

Fig. 8. Distribution of student scores across eight assignments (A1–A8)

mapped to computational thinking skills

Fig. 10. Assignment-wise Average Score

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

404

formulation and solution generation. The skill mapping is in

line with the tripartite CT model of Selby and Woollard

conceptual, algorithmic, and developmental layers. The

development between Decomposition (K2) and Abstraction

and Algorithmic Thinking (K3) supports the revised taxonomy

by Bloom, which means one is involved in higher-order

cognitive activities.

About 7-10 percent showed problems with tasks that are

abstraction-intensive (A4-A6) which implies that they had

problems in shifting towards conceptual modeling of learning,

rather than the previous course of procedural learning. Other

students had difficulty in comprehending enterprise level

situations especially when asked to create high level

infrastructure architectures. Some of the students needed

further assistance in form of scaffolding when performing

practical exercises because they were not familiar with storage

and networking systems. These issues highlight the need to

have instructional differentiation and specific support systems.

B. Perception-based evaluation

The effectiveness of the CT skills based pedagogy for

computing infrastructure courses is further measured through

perception-based evaluation. To carry out the perception-

based evaluation, a short survey questionnaire depicted in the

Table III is used.

TABLE III

PERCEPTION-BASED EVALUATION SURVEY QUESTIONNAIRE

Q.No Questions CT Skill

1 The course activities and assignments helped
me to break down IT Infrastructure into

storage and network components and

understand them better

Decomposition

2 The activities given effectively helped me to

break down complex infrastructure structures

Decomposition

3 The course content helped me to learn the
recurring patterns, requirements in IT

Infrastructure

Pattern
Recognition

4 The activities helped me break a problem into

sub-problems and identify solutions by

applying appropriate logic

Algorithmic

Thinking

5 The activities helped me to consolidate low-

level details of the Network, storage and

propose a high-level architecture for
applications

Abstraction

6 Please provide specific examples of how you

have applied any of the skills learnt from the
course to solve a problem, either inside or

outside of this course.

-

The average Likert scale scores (1-Strongly disagree, 5-

Strongly agree) presented in figure 11 indicates the strong

sense of attainment of CT skills among the students. The range

of the average score (4.27-4.54) indicates uniformly positive

perception on the acquisition of CT skills. Further, some of the

impactful Examples of the application of skills learnt from the

course given by students are illustrated in figure 12.

Even though the study is based one specific course in an

institution, the CT-based framework is inherently transferable.

The identical principles of mapping can be used in the case of

courses that impart computing infrastructure education. Eg.,

System Administration , Cloud Computing, Network

Management, Datacenter Administration etc., where the

concepts of Decomposition, Abstraction, and Algorithmic

Reasoning become basic building blocks of configuration,

automation and architectural decision making.

CONCLUSION

The integration of CT skills into the IT Infrastructure

Management course has proven to be both effective and

pedagogically sound, as evidenced by the strong alignment

between quantitative and perception-based evaluations. The

mapping of activities to CT components enabled targeted skill

development, while statistical validation ensured the reliability

of the assessment framework. High performance averages,

tight score distributions, and positive student perceptions

collectively indicate that the approach not only fostered deep

conceptual understanding but also enhanced students’ ability

to apply CT in practical scenarios.

The correlation between Pattern Recognition, Abstraction, and

Algorithmic Thinking underscores the interdependence of

these skills in problem-solving contexts. While most students

adapted well, the small percentage of outliers highlights the

need for adaptive instructional strategies to support varied

learning paces. Future work will explore the scalability of this

pedagogical framework across other computing infrastructure

courses and investigate the longitudinal impact of CT

integration on graduates’ professional performance. Further,

with multi-institutional studies the generalizability of the

proposed framework can be validated.

REFERENCES

Sachs, G. (2024). AI is poised to drive 160% increase in data

center power demand. Goldman Sachs, 14.

Wing, J. M. (2006). Computational thinking. Communications

of the ACM, 49(3), 33-35.

Fig .12. Students’ self-reported example applications of skills learnt from

the IT Infrastructure Management course

Fig. 3. Average Likert scale scores (1 = Strongly Disagree, 5 = Strongly

Agree) from perception-based survey

Fig. 11. Average Likert scale scores (1 = Strongly Disagree, 5 = Strongly

Agree) from perception-based survey

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

405

Selby, C., & Woollard, J. (2013). Computational thinking: the

developing definition.

J. Aldino, et al., “Learner-centered feedback analytics in

higher education: A large-scale case study,”

Computers & Education, vol. 182, p. 104467, 2022.

Y. Wang, et al., “Computational thinking and creativity: A

scoping review,” Computers & Education, vol. 172,

p. 104271, 2021.

C. Lin, et al., “Learner-centred analytics of feedback content:

Insights for improving educational interventions,”

British Journal of Educational Technology, vol. 54,

no. 3, pp. 1012–1030, 2023.

R. Johnston, et al., “Learning analytics in computing

education: A systematic review of emerging trends

and frameworks,” Journal of Systems and Software,

vol. 209, p. 111919, 2024.

M. Lee and J. Kim, “Designing a self-determination theory-

informed learning analytics dashboard to enhance

student engagement in asynchronous online courses,”

Journal of Computing in Higher Education, 2024.

K. W. Huang, et al., “Learning analytics dashboards in health

professions education: Usability, satisfaction, and

visual design considerations,” Advances in Health

Sciences Education, 2025.

R. Kaliisa, et al., “Students’ engagement with analytics

feedback in higher education: Implications for design

and practice,” International Journal of Educational

Technology in Higher Education, vol. 22, no. 1, pp.

1–24, 2024.

R. Johnston, et al., “Predicting student engagement in

computing modules using interpretable machine

learning,” arXiv preprint, arXiv:2412.11826, 2024.

R. Sadallah, “Adaptive understanding framework: Towards

learner-centered learning analytics dashboards,”

arXiv preprint, arXiv:2505.12064, 2025.

A. Adeyemi and S. AlOtaibi, “Adaptive decision support for

real-time student feedback using LightGBM and

SHAP explainable AI,” arXiv preprint,

arXiv:2508.07107, 2025.

J. Zhou, et al., “Tag-based automated feedback generation for

students using ChatGPT: A teacher evaluation

study,” arXiv preprint, arXiv:2501.06819, 2025.

S. Holstein and A. Cohen, “Scratch teachers' perceptions of

teaching computational thinking with school subjects

in a constructionist approach,” Thinking Skills and

Creativity, vol. 56, p. 101772, 2025, doi:

10.1016/j.tsc.2025.101772.

C. N. Hirt, T. D. Eberli, J. T. Jud, A. Rosenthal, and Y.

Karlen, “One step ahead: Effects of a professional

development program on teachers’ professional

competencies in self-regulated learning,” Teaching

and Teacher Education, vol. 159, p. 104977, 2025,

doi: 10.1016/j.tate.2025.104977.

Y. Liu, M. A. Llorens, Y. Kong, C. Teoh, and D. J. Barnes, “A

systematic review of K-12 teachers’ professional

development for teaching computational thinking,”

Disciplinary and Interdisciplinary Science Education

Research, vol. 6, no. 1, p. 27, Jun. 2024, doi:

10.1186/s43031-024-00172-x.

R. Neves Rodrigues, C. Costa, and F. M. L. Martins,

“Integration of computational thinking in initial

teacher training for primary schools: a systematic

review,” Frontiers in Education, vol. 9, 2024, doi:

10.3389/feduc.2024.1330065.

L. Greifenstein, U. Heuer, and G. Fraser, “Exploring

programming task creation of primary school

teachers in training,” arXiv preprint,

arXiv:2306.13886, 2023.

P. Varela, M. F. Prieto, and A. R. Ariza, “Assessing

computational thinking skills in engineering

education: A mixed-methods approach,” Computers

& Education, vol. 191, pp. 104–135, 2023.

F. Ali and J. Smith, “Cross-case analysis of computational

thinking integration in K–12 curricula,” Journal of

Educational Computing Research, vol. 61, no. 1, pp.

72–94, 2023.

P. Shah, R. Thomas, and S. Chan, “A systematic review of

computational thinking professional development

initiatives,” Education and Information

Technologies, vol. 29, no. 2, pp. 1125–1150, 2024.

Y. Wu and H. Li, “Computational thinking as a data-centric

literacy: Framework and implications,” Journal of

Computer Assisted Learning, vol. 40, no. 3, pp. 755–

772, 2024.

E. Yeni, K. W. Lai, and S. M. Tan, “Interdisciplinary

integration of computational thinking in K-12

education: A systematic review,” Education and

Information Technologies, vol. 29, no. 7, pp. 8357–

8381, 2024.

G. Falloon, “Building young children’s computational

thinking capability through problem-based learning,”

Computers & Education, vol. 203, 104898, 2024.

K. Subramaniam, D. Hammer, and L. X. Wang, “STEM ways

of thinking: A design-based research study on

engineering design-based problem solving in

physics,” arXiv preprint arXiv:2503.05957, 2025.

S. Adorni, G. M. Rosa, and R. M. Bottino, “FADE-CTP: A

framework for the analysis of computational thinking

problems in education,” arXiv preprint

arXiv:2403.19475, 2024.

M. Haugen and T. Stålhane, “Challenges in DevOps

instruction: Academic and industry perspectives,”

Proc. ACM/IEEE Software Engineering Education

and Training, 2022.

M. Haugen, T. Stålhane, and M. F. Johansen, “Overcoming

DevOps instructional challenges through project-

based learning,” IEEE Trans. Educ., vol. 66, no. 4,

pp. 543–554, 2023.

Gransbury, I., Brock, J., Root, E., Catete, V., Barnes, T.,

Grover, S., & Ledeczi, Á. (2023). Project-based

software engineering curriculum for secondary

students. Proc. WiPSCE ’23.

Afshar, Y., Moshirpour, M., Marasco, E., Kawash, J., Behjat,

L., & Moussavi, M. (2022). An integrated SE

curriculum through PBL. ASEE Annual Conf. &

Exposition.

Garcés, L., & Oliveira, B. (2024). Teaching SE with PBL: A

four-year experience report. SBES Proceedings.

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

406

Iyer, G. N., Goh, A., Chee, M. H. E., Choong, W., & Koh, S.

W. (2024). A web-based IDE for DevOps learning in

HE. TALE 2024.

Garcia, P. S. C., Ferreira, J., Gonçalves, M., Carneiro, T.,

Figueiredo, E., & Pereira, I. M. (2024). Current

DevOps teaching techniques: A systematic review.

SBES Proceedings.

Borja-Fernández, G., et al. (2023). Automatic feedback and

assessment of team-coding assignments in DevOps

context. Int. J. Educ. Technol. Higher Educ., 20, 95–

11.

Bonetti, T. P., Silva, W., & Colanzi, T. E. (2025). Example-

based learning in software engineering education: A

systematic mapping. arXiv preprint,

arXiv:2503.18080.

