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Abstract— Al innovations have led to unprecedented demand
and growth in computing infrastructure domain, creating
promising avenue of employment for role-ready Engineering
graduates. In this context, computing infrastructure studies
garner special focus. Though there are several studies on
integrating CT skills in K-12 and Engineering Education, thre
are few to none on integrating CT skills into Computing
Infrastructure education. This study aims at proposing a unified
framework for integration of Computational Thinking (CT) skills
into the course design, delivery and assessment of computing
infrastructure studies targeting undergraduate Engineering
students of IT discipline. The proposed approach is implemented
for a foundational course on IT Infrastructure, with a focus on
enhancing student cognition and problem-solving capabilities. A
structured pedagogical approach is employed to map course
activities to core CT components—Decomposition, Pattern
Recognition, Abstraction, and Algorithmic Thinking—using
Bloom’s taxonomy for skill-level alignment. A carefully planned
Assessment framework to evaluate the attainment of CT skills
through guided activities is also proposed. Quantitative
evaluation of the proposed approach was conducted by
considering the performance of 120 students across eight
assessment items, with correlation mapping and Cronbach’s
alpha used to validate the reliability of the skill measurement.
Results indicated strong correlations among Pattern Recognition,
Abstraction, and Algorithmic Thinking, with Cronbach’s alpha
values for Decomposition and Algorithmic Thinking approaching
the benchmark of 0.7, confirming acceptable consistency.
Performance distributions showed high class averages, narrow
interquartile ranges, and minimal outliers, suggesting effective
learning outcomes. Perception-based evaluation using a Likert-
scale survey revealed uniformly positive student feedback, with
average ratings between 4.27 and 4.54, indicating a strong sense
of CT skill acquisition. The findings demonstrate that integrating
CT skills into course pedagogy can significantly improve
technical proficiency, cognitive engagement, and student
confidence in solving computing infrastructure-related problems.

Keywords— Computational Thinking, Algorithmic Thinking,
IT Infrastructure, Computing Infrastructure, Infrastructure
Studies.
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I. INTRODUCTION

RTIFICIAL Intelligence innovations accelerated an

unprecedented expansion of computing infrastructure
around the world. The expansion is estimated to grow by
160% by 2030 (Sachs, G. (2024)). The Al infrastructure

market is expected to reach a $ 395 billion market by 2030
(Report by Markets and Markets). The increased adoption of
Al necessitates a robust education framework for computing
infrastructure. Computing infrastructure studies have become
more pertinent with these advancements in Al. As Al-enabled
systems demand scalable and resilient high- performance
architectures, the focus on infrastructure design and
optimization has become critical. While Al automation may
reduce certain human roles within computer engineering, the
evolving infrastructure landscape promises to generate new
employment avenues, making it a vital growth domain for the
discipline. Thus, it is crucial to effectively integrate computing
infrastructure studies in the undergraduate Computer Science
Engineering and allied disciplines.

Computing Infrastructure study involves analyzing and
facilitating hardware, software and networking resources for
Computing operations and services. Acquiring skills relevant
to designing and analyzing computing infrastructure would
enable the students of Undergraduate Computer Science
Engineering and allied disciplines to design scalable and
efficient systems that meet business and application-specific
needs. In this paper, a systematic approach for incorporating
computational thinking pedagogy into courses that deal with
computing infrastructure studies is implemented and
empirically validated.

Computational Thinking (CT), a term introduced by
Jeanette Wing (Wing, J.M 2006), describes a way humans
approach solving problems by drawing on concepts
fundamental to computer science. Wing emphasized that CT is
an essential skill for everyone as it is integral to analytical
ability. Computational thinking encompasses the four essential
thought processes of decomposition, pattern recognition,
abstraction and algorithmic thinking (Selby and Woollard
2013). These cognitive processes are the foundation for
formulating problems and deriving their solutions.
Computational thinking is usually associated with problem
solving and hence widely adopted for programming courses in
the Computer Science Engineering curriculum. Courses that
focus on computing infrastructure, such as System
Administration, Network Administration and DevOps, mostly
focus on rote learning with the set up procedures and
commands for tools usage. Integrating Computational
Thinking skills into the computing infrastructure-related
courses in the curriculum offers significant benefits in moving
learners from rote memorization to a more dynamic problem-
solving approach. The benefits include:
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1. Promotes deeper conceptual understanding, enabling
students to think beyond tools and commands

2. Allows a  problem-solving approach  towards
infrastructure studies by converting tasks into open
ended problems

3. Promotes abstraction, modelling and automation

4. Facilitates automation scripts, orchestration of workflows
and proactive monitoring and response systems,
especially in the context of cloud-native and Al-driven
architectures.

5. Emerging fields like CI/CD pipelining,
operations demand CT-driven reasoning

Al-aided

However, facilitating the integration of computational
thinking pedagogy into computing infrastructure education has
significant challenges due to the inherent nature of courses
dealing with computing infrastructure studies. The major
challenges are as follows:

1. Systematic approaches to infusing CT concepts such as
decomposition, pattern recognition, abstraction, and
algorithmic thinking into CI courses is very limited.

2. Embedding CT into already content-rich CI courses
requires careful planning, else it may overwhelm the
learners

3. Integrating CT into CI courses requires professional
development to understand how to integrate abstraction,
algorithms, and systems thinking into CI topics.

4. Lack of rubrics or tools to assess how well CT has been
applied in CI tasks like building a virtualized
environment or configuring a cloud network.

Considering the benefits and challenges in integrating
CT-based pedagogy into CI courses, this paper explores the
solution approaches to overcome the aforementioned
challenges. This paper presents an empirical study on the
inclusion of CT skills into a computing infrastructure course.
To explore the wunderlying dynamics of integrating
computational  thinking  pedagogy into  computing
infrastructure courses, this paper is structured around the
following research questions.

1. How can computational thinking skills be systematically
embedded into a computing infrastructure course to
enhance students’ problem-solving abilities beyond
procedural task execution?

2. What assessment frameworks can effectively measure
students’ application of computational thinking skills,
such as decomposition, abstraction, and algorithmic
problem-solving?

Even though CT has been widely integrated into the
programming and K-12 STEM programs, very little has been
done to apply it to computing infrastructure courses. The
current CT models lack the cognitive mechanisms that would
be applied in activities like architectural design, storage
layout, Information Lifecycle Management (ILM) processes,
and enterprise network analysis. This work consequently

introduces a new CT-based pedagogic model, sensitive to
computing infrastructure teaching and learning and based
upon a statistically verified evaluation model. It is the initial
reported case where CT skills have been systematically
mapped to IT infrastructure activities and evaluated in terms
of reliability by means of statistical validation of results with
student performance data. The main significance of the
presented research is in the systematic incorporation of the
main elements of CT, namely Decomposition, Pattern
Recognition, Abstraction, and Algorithmic Thinking, into the
instructional design framework, delivery model, and
evaluation of a 4-year IT Infrastructure program. This teaching
hypothesis has undergone empirical approval on a group of
120 students, and can provide data about enhanced cognitive
and problem-solving skills unique to infrastructure training.

II. RELATED WORKS

This section organizes prior work relevant to integrating
CT pedagogy into undergraduate computing-infrastructure
courses, categorized into four themes: data-driven approaches,
teacher-focused studies, multi-method perspectives, and
pedagogical innovations with real-world alignment.

A. Data-driven Method

A data-driven perspective of large-scale case study on
learner-centered feedback analytics in higher education,
revealed how nuanced feedback patterns can inform
instructional design, improve learner engagement, and tailor
content delivery (Aldino et al. 2022). Wang et al. (2021)
conducted a scoping review on the interplay between CT and
creativity, identifying shared cognitive foundations such as
abstraction, iterative refinement, and divergent thinking, while
highlighting opportunities for cross-skill development in
computing curricula. Similarly, Lin et al. (2023) investigated
learner-centred analytics of feedback content, offering
actionable insights into improving educational interventions
through data analysis, adaptive scaffolding, and personalized
learning pathways.

Recent work has expanded this data-driven perspective
by integrating advanced analytics, visualization, and adaptive
systems into computing education. Johnston et al. (2024)
conducted a systematic review of learning analytics in
computing education, identifying emerging frameworks for
feedback personalization and skill tracking. Lee and Kim
(2024) designed a self-determination theory-informed learning
analytics dashboard, demonstrating increased student
motivation and participation in asynchronous learning
environments. Huang et al. (2025) examined the usability and
visual design of learning analytics dashboards in health
professions education, emphasizing their applicability in skill-
based computing courses.

Kaliisa et al. (2024) explored how students engage with
analytics feedback in higher education, proposing design
principles to foster self-regulated learning. Johnston et al.
(2024) applied interpretable machine learning models to
predict student engagement in computing modules, offering
transparent and actionable predictions. Sadallah (2025)
introduced an adaptive understanding framework for learner-
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centered dashboards, enhancing personalization and learning
support. Adeyemi and AlOtaibi (2025) developed a real-time
feedback decision support system using Light Gradient
Boosting Machine (LightGBM) and SHapley Additive
exPlanations (SHAP) explainable Al, ensuring both adaptivity
and interpretability in feedback delivery. Zhou et al. (2025)
proposed a tag-based automated feedback generation approach
using ChatGPT, validated through teacher evaluations for its
educational relevance and accuracy.

B. Focusing on Teachers

Holstein and Cohen (2025) examined how Scratch
educators perceive integrating CT into other school subjects
within a constructionist framework. Teachers noted that CT
not only cultivates computational skill-building but also
enhances creativity, collaboration, and subject relevance,
especially in mathematics and science contexts. Hirt et al.
(2025) evaluated a professional development (PD) program
aimed at strengthening teachers’ self-regulated learning
competencies. Their findings showed measurable gains in
instructional planning, reflective practice, and adaptive
decision-making. Liu et al. (2024) offered a systematic review
of K-12 teachers' PD for CT instruction, spotlighting
challenges like limited curriculum time, diverse expertise
levels, and resource constraints, while identifying best
practices such as mentoring and collaborative curriculum
design. Rodrigues et al. (2024) conducted a systematic review
on integrating CT into initial teacher training for primary
schools. They concluded that effective CT education requires
long-term, comprehensive training that blends both theoretical
foundations and practical, reflective components. Greifenstein
et al. (2023) explored how primary school teachers in training
design programming tasks. They found that tools like
LitterBox, which provides real-time feedback on code quality,
helped pre-service teachers move from thematic brainstorming
to objective-driven task creation, reducing misconceptions and
improving task quality

C. Multi-Method in CT Education

From a multi-method perspective, Varela et al. (2023)
assessed CT skills in engineering and computer science
students using a mixed-methods design. This allowed for a
comprehensive evaluation of both conceptual understanding
and practical application, illuminating how students display
CT differently in project-based versus theoretical contexts. Ali
and Smith (2023) examined cross-case CT implementations in
K—-12 subjects, revealing interdisciplinary benefits like
enhanced problem-solving fluency and challenges such as
aligning assessments and ensuring curricular coherence. Shah
et al. (2024) conducted a systematic review of CT professional
development initiatives, finding that blended learning models
were particularly effective for long-term teacher retention. Wu
and Li (2024) proposed a holistic framework positioning CT
as a data-centric literacy, arguing that this framing supports

equity by developing critical engagement with data-driven
decision-making. Yeni et al. (2024) conducted a systematic
review of 108 peer-reviewed studies on interdisciplinary CT
integration in K—12. Their analysis mapped subject areas,
instructional strategies (like block-based tools), and research
designs, revealing that most implementations focus on science
and math, often at a low substitution level rather than
transformative integration.

Falloon (2024) deployed a structured, problem-based
curriculum for early years (approx. age 6), using floor robots
to assess CT development (e.g., algorithm writing, pattern
recognition). He demonstrated that young students can achieve
both foundational and higher-order CT skills through guided
inquiry pedagogy.

Subramaniam et al. (2025) applied a STEM Ways of
Thinking framework in an undergraduate physics course,
analyzing  student-generated engineering design-based
problems. This qualitative, design-based study used transcript
and report analysis to explore how students incorporate CT
(via Python coding), metacognition, and iterative problem
framing. Adorni et al. (2024) presented the FADE-CTP
framework, a mixed-methods design framework for analyzing
educational CT problems (CTPs). The approach involves
systematically profiling tasks’ characteristics and the CT
competencies they activate, aiding both assessment design and
teacher training. Table I illustrates how diverse research
designs from structured curricula to qualitative task analyses
and systematic reviews provide nuanced insights into CT
integration across educational contexts.

D. Software Engineering Education: Pedagogical
Innovations and Real-World Alignment

Haugen and Stélhane (2022) identified persistent
challenges in DevOps instruction namely tool complexity,
cultural shifts in team collaboration, and difficulties assessing
distributed workflows. Building on this, Haugen (2022)
proposed project-based and collaborative learning models that
significantly enhanced both students’ technical skills and
teamwork abilities, while aligning classroom practice with
realistic industry workflows to increase employability and
foster lifelong learning habits. Complementing DevOps-
focused studies, Gransbury et al. (2023) designed a project-
based software engineering curriculum for secondary students,
incorporating block-based programming environments, APIs,
and socially relevant themes. Their nine-week module yielded
strong student engagement, especially in autonomy, creativity,
and collaborative problem-solving. Afshar et al. (2022)
presented an integrated software engineering curriculum
through Project-Based Learning [PBL] at the undergraduate
level. The program emphasized real-world engineering
challenges and fostered both technical proficiency and soft
skills.
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Garces and Oliveira’s (2024) four-year experience report
on PBL in software engineering courses revealed recurring
themes in design, collaboration, and iterative refinement,
offering educators actionable insights on methods that worked
well versus those needing revision. In the realm of DevOps
tool education, Iyer et al. (2024) introduced a web-based IDE
tailored for DevOps learning in higher education. It enabled
cloud-based, accessible environments with tutorials and
automated setup, catering to both students and practitioners.
Moreover, Garcia et al.’s (2024) systematic literature review
of DevOps teaching techniques highlighted that active,
student-centred methods—especially PBL, collaborative
learning, and flipped classrooms—were predominant and
effective, although validation of student performance and
curriculum currency remains challenging. From another
angle, Borja-Fernandez et al. (2023) proposed an automatic
assessment framework for team coding assignments in
DevOps contexts. By leveraging version control metrics, they
achieved fair distribution of individual performance and
transparent feedback—enhancing trust and motivation in
team-based software projects. Moving beyond collaboration,
Bonetti et al. (2025) conducted a systematic mapping study on
Example-Based Learning (EBL) in software engineering
education. Their findings show that EBL not only boosts
student motivation and conceptual understanding but also

TABLEI
SYSTEMATIC REVIEWS WITH CT INTEGRATION

Study Methodology Focus

Varela et al. [19] Mixed CT in project vs theoretical
methods contexts

Yeni et al. [29] Sys'tematic Interdisciplinary CT studies in
review K-12
Structured

Falloon [30] curriculum CT development in early years
study
Qualitative

Subramaniam et al. STEM design  CT in physics with Python
tasks

Adorni et al. [32] Framework Analytical profiling of CT tasks
development

supports applying theoretical concepts through concrete
examples—though instructor effort and resource constraints
remain barriers.

Even though CT has been widely integrated into the
programming and K-12 STEM programs, very little has been
done to apply it to computing infrastructure courses. The
current CT models lack the cognitive mechanisms that would
be applied in learning activities like architectural design,
storage layout, Information Lifecycle Management (ILM)
processes, and enterprise network analysis. This paper
introduces a new CT-based pedagogic model, sensitive to
computing infrastructure teaching and learning.

III. METHODOLOGY

A. Key Contributions

In this work, CT skills are systematically mapped to the
Teaching-learning activities for computing infrastructure

Cloud Computing

Cloud architecture and
service models

IT Operations

Server administration and
automation skills

IT Infrastructure

Storage and network
infrastructure management

Fig. 1. Three-layered computing Infrastructure Education
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Fig. 2. Key Areas of Computing Infrastructure Studies

education and statistically validated. This work focuses on
proposing an unified course design, delivery and assessment
framework for integrating CT skills into computing
infrastructure education. The key contributions are as follows:

o Framework for mapping Computing Infrastructure course
contents and CT Skills

o Assessment Framework for evaluating CT Skills in
computing infrastructure courses.

o  Empirical validation of the proposed framework statistical
evaluation and student perception based qualitative
analysis.

The main significance of the presented research is in the
systematic incorporation of the main elements of CT, namely
Decomposition, Pattern Recognition, Abstraction, and
Algorithmic  Thinking, into the instructional design
framework, delivery model, and assessment of courses
imparting computing infrastructure education.

B. Three-Layered Computing Infrastructure Education Stack

To include computing infrastructure studies in the
undergraduate  Engineering discipline of Information
Technology, a three-course structure is chosen as shown in
figure 1. The foundation for computing infrastructure is placed
at the II semester, when programming is also introduced to the
students. The foundation course is followed by the System
Administration course, a course that deals with Server
administration commands and tools in the III semester and the
Cloud computing course, a course that deals with modern,
scalable cloud computing systems in the V semester.
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The IT Infrastructure Management course introduces
students to enterprise-grade data storage technologies,
networked storage models, and real-world storage networking
systems. The course aims to equip them to manage and
maintain critical data and ensure business continuity through
hands-on exposure to storage solutions. The System
Administration course strengthens students' foundation in
administering Linux and Windows servers, including
configuring and monitoring key server roles, and extends
their skills with practical shell scripting. This enables
students to acquire skills relevant to effective automation and
management of IT resources.

The third course on Cloud Computing expands students’
knowledge to distributed and service computing, focusing on
cloud architecture, service models, deployment strategies, and
resource scheduling. It prepares them to design, deploy, and
manage scalable cloud-based solutions that meet dynamic
enterprise demands. Figure 2 shows the key areas of
computing  Infrastructure  Studies in  undergraduate
Engineering discipline

This three-course structure provides a layered
competency-building approach, starting from hardware &
storage foundations, moving to operational management, and
culminating in distributed/cloud systems. Together, these
courses foster key computational thinking skills such as
decomposition, algorithmic thinking, pattern recognition, and
abstraction, allowing students to systematically analyze,
design, and implement complex IT infrastructures. This
integrated curriculum ensures graduates are well-prepared
with both theoretical foundations and practical expertise to
address modern challenges in computing infrastructure,
enterprise data management, and cloud technology. It is aimed
to impart all the three courses through CT skills-based
pedagogy. As a pilot study, CT skills-based content design,
delivery and assessment were experimented with in the course
on IT Infrastructure Management.

C. RQI: Embedding CT into Computing Infrastructure
Course Design

The course on IT Infrastructure Management aims to lay a
strong foundation on the computing infrastructural elements
required for deploying enterprise-grade applications. The
course is designed for students of the undergraduate B.Tech IT
discipline. The key areas covered by this course are illustrated
in figure 3 below.

The objective is to impart CT skills by aligning them with
the course contents systematically. The following four CT
skills are predominantly considered for mapping with the
course contents.

o Decomposition: ability to break down complex
storage devices and technologies into smaller sub-
components and understand them better.

o Pattern Recognition: ability to identify similarities or
common characteristics ~ within  infrastructural
requirements and challenges for supporting
applications. This helps them to evolve better
infrastructure solutions.
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o Abstraction: the ability to filter low-level details and
prepare a high-level perspective of the concepts.
o Algorithmic Thinking : ability to develop step-by-
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Fig. 4. Mapping of the course contents to the CT skills

step solution to a infrastructural problem by applying
appropriate formula / logic / order of operations.

The mapping has been carried out by matching the inherent
nature of the topic and the CT skills. Also, the cognitive level
at which the students need to learn the concepts is also
considered. Theoretical concepts such as parts of HDD, SSD,
network components, IA metrics are dealt at ‘Understand’
level (K2) of Blooms taxonomy. The CT skill predominantly
focussed for concepts at K2 level is ‘Decomposition’.
Similarly, practical concepts such as Backup and Disaster
recovery planning, planning infrastructure for enterprise
applications are dealt at ‘Apply’ (K3) level of Bloom’s
taxonomy. Such topics are predominantly delivered in
alignment with the CT skills — abstraction and algorithmic
thinking, which will facilitate the learners to chart out
effective plans. The mapping of the course contents to the CT
skills is illustrated in figure 4.
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TABLE II
ASSESSMENT FRAMEWORK TO EVALUATE CT SKILLS
Activity CT Skill Description Guidelines Deliverable
addressed
Al.a Decomposition Breaking down components of Hard A demonstration video that A handwritten report summarizing
disk drive and understanding each of contains explanation of physical the working of HDD
the component’s function. sub-components of a HDD
Alb Decomposition Breaking down the network settings on A document containing necessary A document containing
a personal computer and learning the steps/commands to check network  screenshots of the steps carried
network properties such as protocols, settings out and the current network
IP address, MAC address etc., setting of their computer.
A2 Decomposition Identify the necessary infrastructural Scenario-based problem Identification of core
elements required for deployment of a  statements set infrastructural elements such as
enterprise application with specific network, storage, backup etc
demands based on the requirements of the
problem statement chosen.
A3 Pattern Recognition  Enterprise Networking Case Study Reference websites (Cisco, Report based on a chosen white
Juniper Case Studies) paper, explaining the networking
problem and the solution proposed
at enterprise level
A4 Abstraction Mindmap on Datacenter — Virtual tour of Google, Microsoft A mindmap that reflects all the
Components, need, characteristics Datacenters essential concepts about
Datacenter
AS Abstraction Learn the components of SSD and the Use Al to learn Frame 20 curious questions and
differences with HDD. answers about SSD and how it is
different from HDD.
A6 Abstraction Derive a high-level architecture of Scenario-based problem Report containing high-level
infrastructure required for deployment  statements architecture diagram for the
of an enterprise application chosen enterprise application with
specific requirements
A7 Algorithmic Solving problems given in a worksheet ~ Sample worked out problems Solution to the problems by
Thinking applying appropriate logic/
formula/ sequence of steps.
A8 Algorithmic Perform Information Lifecycle Flow of ILM and Backup Backup plan for a chosen problem
Thinking Management activities for a chosen considerations statement.
application and derive a back up plan
students.

D. .RQ2: Assessment frameworks for measuring attainment
of CT skills by students

To effectively assess the attainment of computational skills
by students, a set of eight key activities that inherently
promotes the CT skills was identified. All these activities were
given as hands-on activities to students in a guided format.
Students will be asked to follow the guidelines given, perform
the learning activity and expected to produce a well-defined
deliverable. As highlighted in the above section, the activities
mapped to the “Decomposition” skill are evaluated at K2
level. The activities mapped to ‘abstraction’ and ‘algorithmic
thinking’ are evaluated at K3 level of Blooms taxonomy.

The description of the activities, details of the guidelines
given to the students to carry out the activities and the
deliverable expected from the students are listed in the Table
II above. The students were asked to carry out the activities in
lab as soon as the relevant theory concepts are discussed in the
class. This allowed them to apply the CT skills learnt in
solving the problems given.

IV. RESULTS AND DISCUSSIONS

A. Quantitative Evaluation

The effectiveness of integrating CT skills into the Content
design and delivery of the infrastructure management course is
measured through quantitative evaluation and perception-
based evaluation. For quantitative performance evaluation, the
performance of students in the set of eight activities is
considered. The assessment items were attempted by 120
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Fig. 5. Correlation Map of eight activities

The skill mapping of the assessment items are as follows:

1. Decomposition — Al, A2 (Max marks: 8 each,

Bloom’s K2 level)

2. Pattern Recognition — A3 (Max marks: 16, Bloom’s

K3 level)

3. Abstraction — A4,

Bloom’s K3 level)

4. Algorithmic Thinking — A7, A8 (Max marks: 8, 16,

Bloom’s K3 level)
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A5, A6 (Max marks: 4, 4, 16,
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The correlation map of all eight activities is charted to
understand how the activities are interrelated to one another
and the causality among them. The correlation map
illustrated in figure 5 shows strong correlation among the
items A3, A6, A7, A8, which assess Pattern Recognition,
Abstraction, and Algorithmic Thinking. The strong
correlation indicates the important fact that the students
were able to identify patterns, abstract the details and
propose a solution by applying algorithmic thinking.

Further, to ensure the correlation among the related
components and the internal consistency of the assessment
data, Cronbach’s alpha value was calculated for (Al, A2),
(A4, A5, A6) and (A7, A8). The comparison of the cronbach’s
alpha of the related items and the benchmark value of 0.7 is
shown in figure 6 below. The results show that the activities
used to measure the CT skills, Decomposition and algorithmic
thinking have acceptable consistency with values approaching
the benchmark value 7. However, the assessment items used
for measuring the CT skill, ‘abstraction’ show poor internal
consistency. Both the correlation map and the measured
Cronbach’s alpha values ensure the correctness and validity of
the assessment items chosen for performance evaluation.
Further, the overall distribution of the marks scored by
students illustrated in figure 7 shows a left-skewed bell curve,
which strongly suggests a positive outcome with most students
scoring high. The same trend is confirmed by the box-plot
visualization shown in figure 8.

30

Number of Students
" o N
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Fig. 7. Overall Distribution of Marks

The assessment items Al, A2 show small interquartile range

] +
+
© +
.

Decomposition Pattern Recognition Abstraction

Computational Thinking Skil

Algorithmic Thinking

Fig. 9. CT Skillwise distribution of student scores

indicating good performance by most of the students at K2
level. A3 shows slightly wider distribution than (A1, A2) and
around 10% of students scoring significantly lower. The
(A4,A5,A6) set meant to measure Abstraction shows
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consistent performance by students. Similar good and
consistent performance observed in (A7,A8) measuring
algorithmic thinking. Presence of few outliers indicate 7-10%
of students struggling to adapt. For better clarity, CT skillwise
distribution of marks is shown in figure 9. The average marks
scored in each assessment item is shown in figure 10.

The results demonstrate that, except few outliers, majority of
the students were able to acquire CT skills and hence achieve
expected level of cognition. The high overall class averages
and the tight interquartile range indicate the significant effect
of the CT skills-based pedagogy followed in the IT
Infrastructure management course.
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Fig. 8. Distribution of student scores across eight assignments (Al1—AS8)
mapped to computational thinking skills
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Fig. 6. Comparison of internal consistency of assessment activities
measured through Cronbach’s alpha

Further, the strong correlation among Pattern Recognition,
Abstraction, and Algorithmic Thinking aligns with Wing’s
view (Wing, JM 2006) of Computational Thinking as a
network of cognitive mechanisms that support both problem
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formulation and solution generation. The skill mapping is in
line with the tripartite CT model of Selby and Woollard
conceptual, algorithmic, and developmental layers. The
development between Decomposition (K2) and Abstraction
and Algorithmic Thinking (K3) supports the revised taxonomy
by Bloom, which means one is involved in higher-order
cognitive activities.

About 7-10 percent showed problems with tasks that are
abstraction-intensive (A4-A6) which implies that they had
problems in shifting towards conceptual modeling of learning,
rather than the previous course of procedural learning. Other
students had difficulty in comprehending enterprise level
situations especially when asked to create high level
infrastructure architectures. Some of the students needed
further assistance in form of scaffolding when performing
practical exercises because they were not familiar with storage
and networking systems. These issues highlight the need to
have instructional differentiation and specific support systems.

B. Perception-based evaluation

The effectiveness of the CT skills based pedagogy for
computing infrastructure courses is further measured through
perception-based evaluation. To carry out the perception-
based evaluation, a short survey questionnaire depicted in the
Table III is used.

TABLE III
PERCEPTION-BASED EVALUATION SURVEY QUESTIONNAIRE
Q.No Questions CT Skill
1 The course activities and assignments helped Decomposition
me to break down IT Infrastructure into
storage and network components and
understand them better
2 The activities given effectively helped me to Decomposition
break down complex infrastructure structures
3 The course content helped me to learn the Pattern
recurring patterns, requirements in IT Recognition
Infrastructure
4 The activities helped me break a problem into  Algorithmic
sub-problems and identify solutions by Thinking

applying appropriate logic

5 The activities helped me to consolidate low-
level details of the Network, storage and
propose a high-level architecture for
applications

6 Please provide specific examples of how you -
have applied any of the skills learnt from the
course to solve a problem, either inside or
outside of this course.

Abstraction

The average Likert scale scores (1-Strongly disagree, 5-
Strongly agree) presented in figure 11 indicates the strong
sense of attainment of CT skills among the students. The range

kS
e e st
o @ e
peco™ e
Computational Thinking Ski

Fig. 11. Average Likert scale scores (1 = Strongly Disagree, 5 = Strongly
Agree) from perception-based survey

of the average score (4.27-4.54) indicates uniformly positive
perception on the acquisition of CT skills. Further, some of the
impactful Examples of the application of skills learnt from the
course given by students are illustrated in figure 12.

| used my networking
knowledge from the cours
to set up a Wi-Fi router at
home and connect all
devices

| applied the networking
concepts from the course
to set correct IP settings
and successfully connect
two computers during a lab
period

| could actually
understand a lot
about hardware
components and
used this to build my
own PC by checking
the specifications

| learnt about how
database is working and
applied it for my intern
project

| was able to understand
a task given in my
internship program
regarding networking

| applied my IT infrastructure
Management skills by setting
up a basic file sharing netv-
work between computers =
easy project collaboration

Fig .12. Students’ self-reported example applications of skills learnt from
the IT Infrastructure Management course

Even though the study is based one specific course in an
institution, the CT-based framework is inherently transferable.
The identical principles of mapping can be used in the case of
courses that impart computing infrastructure education. Eg.,
System Administration , Cloud Computing, Network
Management, Datacenter Administration etc., where the
concepts of Decomposition, Abstraction, and Algorithmic
Reasoning become basic building blocks of configuration,
automation and architectural decision making.

CONCLUSION

The integration of CT skills into the IT Infrastructure

Management course has proven to be both effective and
pedagogically sound, as evidenced by the strong alignment
between quantitative and perception-based evaluations. The
mapping of activities to CT components enabled targeted skill
development, while statistical validation ensured the reliability
of the assessment framework. High performance averages,
tight score distributions, and positive student perceptions
collectively indicate that the approach not only fostered deep
conceptual understanding but also enhanced students’ ability
to apply CT in practical scenarios.
The correlation between Pattern Recognition, Abstraction, and
Algorithmic Thinking underscores the interdependence of
these skills in problem-solving contexts. While most students
adapted well, the small percentage of outliers highlights the
need for adaptive instructional strategies to support varied
learning paces. Future work will explore the scalability of this
pedagogical framework across other computing infrastructure
courses and investigate the longitudinal impact of CT
integration on graduates’ professional performance. Further,
with multi-institutional studies the generalizability of the
proposed framework can be validated.

REFERENCES

Sachs, G. (2024). Al is poised to drive 160% increase in data
center power demand. Goldman Sachs, 14.

Wing, J. M. (2006). Computational thinking. Communications
of the ACM, 49(3), 33-35.

404

JEET



Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

Selby, C., & Woollard, J. (2013). Computational thinking: the
developing definition.

J. Aldino, et al., “Learner-centered feedback analytics in
higher education: A large-scale case study,”
Computers & Education, vol. 182, p. 104467, 2022.

Y. Wang, et al., “Computational thinking and creativity: A
scoping review,” Computers & Education, vol. 172,
p. 104271, 2021.

C. Lin, et al., “Learner-centred analytics of feedback content:
Insights for improving educational interventions,”
British Journal of Educational Technology, vol. 54,
no. 3, pp. 1012-1030, 2023.

R. Johnston, et al., “Learning analytics in computing
education: A systematic review of emerging trends
and frameworks,” Journal of Systems and Software,
vol. 209, p. 111919, 2024.

M. Lee and J. Kim, “Designing a self-determination theory-
informed learning analytics dashboard to enhance
student engagement in asynchronous online courses,”
Journal of Computing in Higher Education, 2024.

K. W. Huang, et al., “Learning analytics dashboards in health
professions education: Usability, satisfaction, and
visual design considerations,” Advances in Health
Sciences Education, 2025.

R. Kaliisa, et al., “Students’ engagement with analytics
feedback in higher education: Implications for design
and practice,” International Journal of Educational
Technology in Higher Education, vol. 22, no. 1, pp.
1-24,2024.

R. Johnston, et al., “Predicting student engagement in
computing modules using interpretable machine
learning,” arXiv preprint, arXiv:2412.11826, 2024.

R. Sadallah, “Adaptive understanding framework: Towards
learner-centered learning analytics dashboards,”
arXiv preprint, arXiv:2505.12064, 2025.

A. Adeyemi and S. AlOtaibi, “Adaptive decision support for
real-time student feedback using LightGBM and
SHAP explainable AL,” arXiv preprint,
arXiv:2508.07107, 2025.

J. Zhou, et al., “Tag-based automated feedback generation for
students using ChatGPT: A teacher evaluation
study,” arXiv preprint, arXiv:2501.06819, 2025.

S. Holstein and A. Cohen, “Scratch teachers' perceptions of
teaching computational thinking with school subjects
in a constructionist approach,” Thinking Skills and
Creativity, vol. 56, p. 101772, 2025, doi:
10.1016/j.tsc.2025.101772.

C. N. Hirt, T. D. Eberli, J. T. Jud, A. Rosenthal, and Y.
Karlen, “One step ahead: Effects of a professional
development program on teachers’ professional
competencies in self-regulated learning,” Teaching
and Teacher Education, vol. 159, p. 104977, 2025,
doi: 10.1016/j.tate.2025.104977.

Y. Liu, M. A. Llorens, Y. Kong, C. Teoh, and D. J. Barnes, “A
systematic review of K-12 teachers’ professional
development for teaching computational thinking,”
Disciplinary and Interdisciplinary Science Education
Research, vol. 6, no. 1, p. 27, Jun. 2024, doi:
10.1186/s43031-024-00172-x.

R. Neves Rodrigues, C. Costa, and F. M. L. Martins,
“Integration of computational thinking in initial
teacher training for primary schools: a systematic
review,” Frontiers in Education, vol. 9, 2024, doi:
10.3389/feduc.2024.1330065.

L. Greifenstein, U. Heuer, and G. Fraser, “Exploring
programming task creation of primary school
teachers in training,” arXiv preprint,
arXiv:2306.13886, 2023.

P. Varela, M. F. Prieto, and A. R. Ariza, “Assessing
computational thinking skills in engineering
education: A mixed-methods approach,” Computers
& Education, vol. 191, pp. 104-135, 2023.

F. Ali and J. Smith, “Cross-case analysis of computational
thinking integration in K—12 curricula,” Journal of
Educational Computing Research, vol. 61, no. 1, pp.
72-94,2023.

P. Shah, R. Thomas, and S. Chan, “A systematic review of
computational thinking professional development
initiatives,” Education and Information
Technologies, vol. 29, no. 2, pp. 1125-1150, 2024.

Y. Wu and H. Li, “Computational thinking as a data-centric
literacy: Framework and implications,” Journal of
Computer Assisted Learning, vol. 40, no. 3, pp. 755—
772, 2024.

E. Yeni, K. W. Lai, and S. M. Tan, “Interdisciplinary
integration of computational thinking in K-12
education: A systematic review,” Education and
Information Technologies, vol. 29, no. 7, pp. 8357—
8381,2024.

G. Falloon, “Building young children’s computational
thinking capability through problem-based learning,”
Computers & Education, vol. 203, 104898, 2024.

K. Subramaniam, D. Hammer, and L. X. Wang, “STEM ways
of thinking: A design-based research study on
engineering design-based problem solving in
physics,” arXiv preprint arXiv:2503.05957, 2025.

S. Adorni, G. M. Rosa, and R. M. Bottino, “FADE-CTP: A
framework for the analysis of computational thinking
problems in education,” arXiv preprint
arXiv:2403.19475, 2024.

M. Haugen and T. Stélhane, “Challenges in DevOps
instruction: Academic and industry perspectives,”
Proc. ACM/IEEE Software Engineering Education
and Training, 2022.

M. Haugen, T. Stalhane, and M. F. Johansen, “Overcoming
DevOps instructional challenges through project-
based learning,” IEEE Trans. Educ., vol. 66, no. 4,
pp. 543-554,2023.

Gransbury, 1., Brock, J., Root, E., Catete, V., Barnes, T.,
Grover, S., & Ledeczi, A. (2023). Project-based
software engineering curriculum for secondary
students. Proc. WiPSCE ’23.

Afshar, Y., Moshirpour, M., Marasco, E., Kawash, J., Behjat,
L., & Moussavi, M. (2022). An integrated SE
curriculum through PBL. ASEE Annual Conf. &
Exposition.

Garcés, L., & Oliveira, B. (2024). Teaching SE with PBL: A
four-year experience report. SBES Proceedings.

405

JEET



Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

Iyer, G. N., Goh, A., Chee, M. H. E., Choong, W., & Koh, S.
W. (2024). A web-based IDE for DevOps learning in
HE. TALE 2024.

Garcia, P. S. C,, Ferreira, J., Gongalves, M., Carneiro, T.,
Figueiredo, E., & Pereira, [. M. (2024). Current
DevOps teaching techniques: A systematic review.
SBES Proceedings.

Borja-Fernandez, G., et al. (2023). Automatic feedback and
assessment of team-coding assignments in DevOps
context. Int. J. Educ. Technol. Higher Educ., 20, 95—
11.

Bonetti, T. P., Silva, W., & Colanzi, T. E. (2025). Example-
based learning in software engineering education: A
systematic mapping. arXiv preprint,
arXiv:2503.18080.

406

JEET



