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 Abstract—This paper introduces Manime, a code-based 

animation teaching method for deep learning, and compares it to 

traditional chalk-and-board instruction using statistical analysis. 

While chalkboard teaching is static, Manime enables instructors 

to create repeatable, visually rich, and programmatically 

generated lessons; however, its effectiveness relative to traditional 

methods has not been systematically evaluated in classroom 

settings. We compared Manime-style instruction with chalk-and-

board lectures in an introductory deep learning course and 

collected student feedback on comprehension, retention, 

engagement, and instructional preference. Using paired t-tests, 

one-sample t-tests, and chi-square tests on data from 60 students 

who experienced both formats, we found that comprehension 

improved by +2.77 points after the Manime animation (large effect 

size, d = 1.25), retention confidence was high (mean 8.28/10, very 

large effect size, d = 4.99), and engagement significantly favored 

Manime (Cramér’s V = 0.43), with students also preferring 

animations for difficult topics (Cramér’s V = 0.30). Students 

unanimously reported that visuals improved recall, and these 

findings align with multimedia learning theory and Dual Coding 

Theory, which suggest that combining visual and verbal channels 

enhances cognitive processing. Overall, the results indicate that 

Manime provides an effective and complementary teaching style 

to traditional chalk-and-board instruction for complex deep 

learning topics. 
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Teaching; Python Animation; Quality Education; Visual Learning 
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I. INTRODUCTION 

RADITIONAL chalkboard-based lecturing often struggles 

to communicate the abstract and dynamic nature of deep 

learning concepts. Static drawings and verbal explanations 

require students to mentally visualize processes such as 

gradient flow, weight updates, and multilayer interactions, 

which can increase cognitive load and limit active 

understanding. In contrast, Manime a teaching approach that 

integrates anime-style visuals with mathematical explanations 

using the Python Manim library offers dynamic, code-driven 

animations that make abstract ideas more concrete and intuitive. 

Originally developed for the 3Blue1Brown channel, Manim 

enables instructors to construct precisely timed visual 

sequences of equations, shapes, and transformations, 

potentially supporting clearer conceptual learning. 

 
 

Although Manim-based animations have become 

increasingly popular in online educational content, their 

effectiveness compared to traditional chalkboard teaching has 

not been rigorously evaluated in real classroom settings. This 

gap is particularly relevant in deep learning education, where 

students often struggle to build accurate mental models of 

algorithmic behavior. The present study therefore examines 

whether animation-based instruction using Manime can 

produce stronger comprehension, higher engagement, and 

better short-term retention than conventional chalkboard 

methods when teaching deep learning concepts. To address this, 

an experiment and student perception survey were conducted in 

a university deep learning course to directly compare the two 

instructional approaches. 

II. BACKGROUND AND RELATED WORKS 

The rapid expansion of artificial intelligence (AI) and 

multimedia learning technologies has reshaped how educators 

design and deliver instruction in STEM, computer science, and 

machine learning (ML) education. A growing body of research 

demonstrates that well-designed visualizations, animations, and 

interactive systems can significantly enhance learners’ 

cognitive processing, motivation, and conceptual 

understanding. Early work in this domain highlights the power 

of personalization and visual scaffolding. Roozafzai and Zaeri 

(2024) showed that AI-driven adaptive systems can tailor 

content in real time to a learner’s profile, while animations 

simultaneously support conceptual clarity.  

Similarly, Ji and Zheng (2025) found that visual cues alone 

improve focus and retention, but when paired with pedagogical 

agents animated or humanlike guides they enhance 

engagement, intrinsic motivation, and deeper conceptual 

understanding. These findings align with Mayer’s multimedia 

learning theory and the dual-channel processing model, which 

argue that coordinated visual and verbal input strengthens long-

term memory formation. Other immersive technologies 

reinforce these results. Research on virtual reality (VR) 

demonstrates that richly constructed 3D environments promote 

constructive learning and long-term memory processes, a 

finding with direct relevance for immersive pedagogy and 

transdisciplinary STEM teaching (Ji & Zheng, 2025).  

In distance education, Tugtekin and Dursun (2022) compared 

animated and interactive video formats, revealing that 
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animations are particularly effective for representing complex 

concepts visually, while interactive videos maintain motivation 

through embedded quizzes and clickable elements. Their work 

reinforces the role of variety and interactivity as central to 

multimedia learning design. Within the machine learning and 

computer science domain, animation-driven tools have recently 

gained prominence.  

Helbling and Chau (2023) introduced Manim ML, a 

framework leveraging the Manim engine to visually depict 

neural network architectures, parameter flows, and layer 

interactions effectively bridging abstract ML concepts with 

intuitive visual explanations. Extending this trajectory, Zhou et 

al. (2024) developed Manimator, a system that integrates large 

language models with Manim to automatically generate 

animations from natural-language descriptions. This approach 

lowers the technical barrier for educators lacking programming 

expertise and enables rapid production of high-quality animated 

instructional content. Foundational contributions from the 

Manim Community Development Team (n.d.) and popular 

creators such as 3Blue1Brown (2016) demonstrate how 

animation can transform complex technical subjects into 

intuitive narratives. The neural network series by 3Blue1Brown 

exemplifies how thoughtfully designed visual storytelling 

supports comprehension, offering evidence for the pedagogical 

power of animation-based content creation. Beyond animation, 

hands-on and experiential learning approaches further enhance 

understanding.  

Hitron et al. (2018) introduced an experiential model for 

teaching children fundamental ML ideas through interactive, 

physical tasks and age-appropriate visual aids. Their findings 

show that embodied interaction builds intuitive conceptual 

foundations prior to formal coding or mathematical instruction. 

Similar strategies are recommended in higher education: Yadav 

and DeBello (2019) emphasize project-driven learning, visual 

aids, and interactive notebooks for teaching Python and data 

science, noting these methods help address diverse learning 

preferences in graduate-level classrooms. Recent developments 

continue to enrich the space. Berg et al. (2025) presented 

Manim-DFA, a Manim-based tool for animating topics in data-

flow analysis and abstract interpretation areas traditionally 

difficult to grasp through text alone. Their results show that 

automated animations enable clearer understanding of compiler 

design fundamentals. Likewise, Riyantoko et al. (2025) 

proposed a self-paced Python-and-statistics framework 

integrating visual coding tasks and real-world datasets to 

support active experimentation, directly linking visual outputs 

with algorithmic behavior. Emerging conceptual perspectives 

also highlight the philosophical and interdisciplinary value of 

multimedia approaches.  

Yu (2025) introduced the Wisdom Computing Perspective, 

which situates AI instruction within human-centered, reflective, 

and visually enriched learning environments. This framework 

underscores the growing convergence between multimedia 

learning, AI literacy, and cross-disciplinary education. Parallel 

research in collaborative learning reinforces these multimedia 

findings. Jeyanathan et al. (2025) demonstrated that the Student 

Teams Achievement Division (STAD) method enhances 

engagement, peer learning, and problem-solving performance 

in engineering contexts. Similarly, P et al. (2025) found that 

inquiry-based learning within team-based environments 

improves conceptual understanding and critical thinking in 

automata theory courses. When combined with animation-

based tools such as Manim, these collaborative strategies 

promise even greater benefits pairing visual clarity with social 

learning processes known to strengthen comprehension and 

retention. 

III. PROPOSED APPROACH FOR EFFECTIVE TEACHING  

A. Manime 

We define Manime (Math + Anime) as the practice of 

delivering mathematical or technical content through Manim-

created animations. This concept is inspired by Grant 

Sanderson’s 3Blue1Brown channel , which popularized Manim 

for educational videos. Manim is a Python library: users write 

scripts in a Scene class to construct Mobjects (mathematical 

objects like Circle(), Text(), or MathTex() for equations) and 

animate them. The community edition, ManimCE, is a stable 

fork with extensive documentation . For example, Sanderson’s 

neural networks series uses Manim (“Neural Networks”, 

3Blue1Brown ) to visually explain layer connections and matrix 

operations. By leveraging code, Manim makes it easy to update 

animations, highlight steps with color or motion, and 

synchronize narration. In summary, Manime combines rigorous 

mathematical content with custom animations to engage 

students visually.In our study , we developed animated 

instructional videos using Manim Community Edition 

(ManimCE), a Python  based library that enables programmatic 

creation of mathematical animations.For each deep learning  

concept, we wrote custom scripts using Scene classes which 

contained mathematical objects (Mobjects) like MathTex for 

the equations we are displaying, Arrow for simulating the signal 

paths, and Dot objects to indicate where our neuron nodes were 

within a network. We looked after the animation behaviors with 

Manim's .animate property and AnimationGroup feature that 

allow for combined effects with combined movement changes 

including colors such as red arrows for forward propagation, 

blue for backpropagation transitions, or in a more general 

context matrix operations plus smooth timing to showcase the 

evolution of an object over time and through layers which we 

felt was useful in conveying concepts that were subject to 

complicated abstract computations. 

B. Architecture of Manime 

The architectural design of Manim is grounded in an object-

oriented hierarchy that emphasizes modularity, code reuse, and 

extensibility. The class diagram illustrates the structural 

relationships among the three core components: Mobjects, 

Cameras, and Animations. These categories are structured 

around abstract base classes that define shared interfaces and 

attributes, which are then extended by specialized subclasses 

for specific behaviors and visual elements. 

1) Mobjects Hierarchy 

In Manim, the Mobject class serves as the core building block 
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for every drawable element, offering the fundamental structure 

needed for visual components. It manages attributes such as 

points, which define geometric locations, and bounding_box, 

which specifies the object’s spatial limits. This class also 

provides utility methods like add() for combining multiple 

objects and arrange() for organizing them within a scene. 

Extending this foundation, the VMobject (Vectorized 

Mobject) class enables vector-based rendering and introduces 

customizable styling features, including fill_color, 

stroke_color, and stroke_width, ensuring visual consistency 

across all vector-rendered shapes. From VMobject, a variety of 

specialized classes emerge. For example, the Text class 

supports the creation of text elements with adjustable content 

and font size, while SVGMobject allows importing scalable 

vector graphics from file paths, making it ideal for adding 

intricate illustrations. Another notable subclass, Geometry, 

provides a template for creating geometric primitives. Derived 

from Geometry, the Dot class incorporates a radius attribute, 

and the Line class is defined by start and end coordinate points. 

This class hierarchy allows all objects to share a unified styling 

framework while preserving the unique behavior of each type. 

2) Cameras Hierarchy 

In Manim, the Camera class acts as the central engine for 

rendering, setting the stage for how every element appears on 

screen. It defines key parameters like frame_width and 

frame_height and includes functionality for determining the 

placement and scale of visual components. While it works well 

on its own, the class is intentionally built to be extended for 

more specialized rendering tasks. 

Two widely used subclasses build on this foundation. The 

ThreeDCamera is equipped for creating depth-rich scenes, 

offering features such as focal distance adjustments to control 

how three-dimensional objects are perceived. The 

MovingCamera, on the other hand, enables fluid scene 

navigation panning across a layout, zooming in for emphasis, 

or even adjusting automatically with its auto_zoom capability. 

By structuring these capabilities as extensions of the base 

Camera, Manim ensures that advanced scene dynamics and 

perspective changes can be introduced without rewriting the 

essential rendering logic. 

3) Animations Hierarchy 

In Manim, all motion effects stem from the Animation base 

class, which establishes a unified structure for applying changes 

to Mobjects over time. This class defines core properties such 

as run_time, which controls how long the effect lasts, and the 

interpolate() method, which determines how an object 

transitions from one state to another. 

From this foundation, Manim offers a range of built-in 

animation types. Transform morphs one object into another, 

reshaping its points and style. FadeIn gradually increases an 

object’s opacity until it is fully visible. Write simulates the 

process of drawing an object step by step, often used for text or 

outlines. AnimationGroup allows several animations to be 

played simultaneously, enabling synchronized visual effects. 

One of Manim’s most streamlined features is the .animate 

syntax. Attaching .animate to a Mobject instantly creates the 

corresponding Animation object, allowing concise commands 

such as square.animate.shift(RIGHT). This approach keeps 

code readable and compact while preserving the flexibility and 

modular design of the underlying animation framework. 

4) Design Significance 

        
Fig.1. Manim Workflow for Classroom Teaching 

 

Manim’s design follows a strongly inheritance-based, 

extensible architecture, enabling developers to build new visual 

elements or behaviors simply by subclassing existing 

components. This approach minimizes repetitive code—for 

example, every vector-based object inherits styling features 

directly from VMobject and makes it straightforward to 

integrate custom elements into projects. By keeping 

responsibilities clearly divided among Mobjects, Cameras, and 

Animations, each subsystem can develop and improve 

independently, yet still operate seamlessly thanks to shared 

foundational interfaces. This structure is a key factor behind 

Manim’s effectiveness in producing polished, educationally 

rich visual narratives, particularly in mathematics and computer 

science, where modular building blocks are combined into 

intricate, animated scenes with very little redundancy. This 

(Fig.1) shows how Manim- Based animations are generated 

from python scripts and then rendered into video files for 

classroom use. The code-driven nature allows flexible updates, 

layering and the real- time animation control. 

 

C. Illustration of Manim Visual Explanations 

 

(a) Explaining complex calculations visually 
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(b) Comparing a neuron to number holder 

 

(c) Explaining neuron as function 

 

(d) Explaining the cost function role and intuition 

Fig. 2. Manim Visual Explanation Example video[8] 
 

The fundamental unit of the network, the neuron, is first 

introduced with a brilliantly simple analogy: "a thing that holds 

a number" (Fig. 2b). This grounds the concept in basic 

arithmetic. This initial simplification is later refined to a more 

accurate, yet still intuitive, definition of a neuron as a “function” 

that receives inputs from the previous layer and computes an 

output (Fig. 2c). In the animation, this progression is illustrated 

through color and motion: incoming connections highlight in 

yellow as inputs arrive, the neuron brightens briefly to signify 

computation, and the resulting output is animated as it flows 

into the next layer. These cues make the transition from 

“number holder” to functional unit perceptually clear. 

 

To explain the concept of “learning,” the video introduces the 

idea of a cost function as a tangible measure of the network’s 

error on a training example. The animation shows the 

activations of the output layer for an incorrect guess, contrasts 

them with the ideal activations, and computes the sum of 

squared differences. A bracket overlay highlights each term in 

sequence, and the incorrect output neuron is outlined with a 

pulsing yellow emphasis to visually mark where the model 

failed. This makes the cost calculation easy to follow and 

conceptually grounded. Additional frames, such as the matrix–

vector multiplication segment in Fig. 2(a), use animated 

movement of rows and columns to demonstrate how weights 

and inputs interact, transforming abstract algebra into a 

procedural visual story. 

 

The video communicates deep learning concepts through 

progressive disclosure, beginning with intuitive analogies and 

gradually introducing mathematical formalism. This design 

choice makes otherwise abstract neural network mechanisms 

transparent and accessible, allowing learners to build 

understanding incrementally through both narrative and 

animation. 

D. Survey Design   

 
Fig. 3. Survey Questions Structure 
 

To evaluate the effectiveness of Manim compared to 

traditional chalkboard-based instruction, we designed a 

structured survey (Fig. 3) focusing on three key dimensions: 

understanding, retention, and preference. The survey was 

distributed to participants after they were exposed to both 

Manim-generated animations and conventional chalkboard 

explanations of the same mathematical concepts. 

 

The study assessed the clarity of instruction using a 1-10 

Likert scale for conceptual comprehension and a traditional 

chalk and board approach. Long-term retention was measured 

using both quantitative and qualitative indicators, including 

self-assessed ability to retain the learned material and the 

impact of visual aids on memory reinforcement. 

 

Students also expressed their preferred method for future 

instruction, particularly for abstract or mathematically complex 

topics. They also expressed their preference for using Manim 

animations for future teaching endeavors. A chi-square 

goodness-of-fit test was used to evaluate whether there were 

statistically significant differences in the students’ preferences. 

The broader goal of the study was to examine how different 
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instructional methods influence students’ understanding and 

ability to retain the material. 

IV. RESULTS  

All 60 students experienced both instructional methods in the 

same sequence a chalk-and-board lecture followed by a 

Manime-based animated explanation. A 20-minute spacing 

interval was included between the two sessions to minimize 

carryover effects, and students were not permitted to review 

materials during this interval. No pre-test was administered due 

to time constraints, but comprehension was measured through 

self-reported ratings before and after the Manime session. This 

within-subject design ensured that differences in responses 

were attributable to the instructional method rather than 

differences between student groups. 
TABLE I 

HYPOTHESIS TESTS AND THEIR RESULTS 

 

Table I summarizes the hypothesis tests and their results, 

with all analyses performed at a significance level of α = 0.05. 

A paired t-test was used to compare students’ comprehension 

following the Manim animation with their earlier chalk-and-

board ratings. The test yielded a p-value of 0.000, indicating a 

significant improvement in understanding. The effect size was 

large (Cohen’s d = 1.2506), with a mean difference of 2.7667 

and a 95% confidence interval of [2.1952, 3.3381]. 

 

Retention confidence was assessed using a one-sample t-test 

against a neutral value of 3. The p-value of 0.000 showed that 

retention ratings were significantly higher than neutral. The 

effect size was extremely large (Cohen’s d = 4.9884), with a 

sample mean of 8.2833 and a 95% confidence interval of 

[8.0097, 8.5569], indicating high consistency across 

participants. 

 

Engagement was evaluated using a chi-square goodness-of-

fit test, which returned a p-value of 0.0013. This result indicates 

that students were not equally engaged by all methods and that 

Manim-based instruction was significantly more engaging. The 

effect size (Cramér’s V = 0.4286) showed a moderate-to-strong 

association. A second chi-square test assessed students’ 

preferred method for learning difficult topics and produced a p-

value of 0.0201, with a moderate effect size (Cramér’s V = 0.3), 

demonstrating a significant preference for Manim when dealing 

with challenging or abstract content. 

 
(a) Self-assessed retention ratings after 

Manime-based teaching 

            (b) Preferred teaching method when learning Teaching 

difficult topic 

 

Test Type p-value Conclusion Key Statistics 

Paired t-test 0.000 Reject H₀: Manime 

significantly 
improved 

comprehension 

Cohen’s d = 1.2506 

(large effect); Mean 
Difference = 2.7667; 

95% CI = [2.1952, 

3.3381] 

One-sample t-

test 

0.000 Reject H₀: Retention 

rating significantly 
higher than 3 

Cohen’s d = 4.9884 

(very large effect); Mean 
= 8.2833; 95% CI = 

[8.0097, 8.5569] 

Chi-square 

goodness-of-fit 

0.0013 Reject H₀: Manime 

was significantly 
more engaging 

Cramér’s V = 0.4286 

(moderate–strong 
association) 

Chi-square 
goodness-of-fit 

0.0201 Reject H₀: Students 
preferred Manime 

for difficult topics 

Cramér’s V = 0.3 
(moderate association) 
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(c) Self-rated understanding before and after Manime-based teaching. 

Fig. 4. Survey results 

The study conducted on 60 students found that Manim-based 

visual teaching was more effective than traditional chalk-and-

board instruction in terms of instructional preference, 

comprehension improvement, and retention confidence. The 

results showed that 65% of students preferred (Fig.4b) Manim 

and visual teaching for complex or abstract topics, while 35% 

chose both equally. No student favored traditional chalk-and-

board as a stand-alone method, indicating a strong shift towards 

animated instruction. 

Qualitative responses showed that animations helped 

students connect more effectively with the content, and all 

respondents recommended Manim-style videos for future 

lectures. Comprehension levels improved dramatically after the 

animation, with 50% of students rating their understanding as 

9, 21.4% as 10, and no student rated it below 7. The chalk-and-

board session yielded a more scattered distribution, mostly 

between 4 and 7, confirming the statistically significant 

improvement (Fig 4c). 

Retention confidence was also high following the Manim-

based session (Fig 4a) , with 46.7% of students rating their 

ability to retain the topic as 8, 31.7% as 9, and 10% as 10. A 

one-sample t-test against a neutral retention benchmark score 

of 3 showed a highly significant result, suggesting that visual 

explanations had a substantial impact on students' confidence in 

remembering the material. A binary question asking whether 

animations aided recall received unanimous "Yes" responses 

from all 60 students, further supporting the visual method's 

effectiveness. 

The results of this study strongly indicate that Manime-style 

visual and animated videos are a more effective pedagogical 

tool than traditional chalk and board lectures for teaching 

complex topics in deep learning. The most compelling finding 

is the statistically significant improvement in student 

understanding. The distribution of responses shifted 

dramatically from a scattered, moderate level of understanding 

with the traditional method to a highly concentrated, high level 

of understanding after the video. This suggests that the visual, 

step-by-step nature of the animation helped clarify abstract 

concepts that were previously difficult to grasp. The unanimous 

agreement that the visuals helped students connect with the 

topic reinforces this point; the animations are not merely 

decorative but serve as a crucial bridge to comprehension. 

Furthermore, the data on engagement and preference is 

unequivocal. A significant majority of students found the 

Manime video more engaging and would prefer it for learning 

difficult subjects in the future. This is a critical factor, as higher 

engagement often correlates with better learning outcomes and 

improved motivation. While nearly a third of students found 

both methods equally engaging, the strong preference for 

Manime-style teaching, especially when anticipating difficult 

material, suggests that students perceive it as a more powerful 

learning aid. 

Finally, the high likelihood of content retention reported by 

students is another key benefit. The combination of auditory 

narration and dynamic visuals appears to create a more 

memorable learning experience. The one-sample t-test confirms 

that this is not a neutral finding but a strong positive sentiment, 

suggesting the impact of the video extends beyond immediate 

understanding to longer-term recall. In addition to students' 

preference, Manim allows for significant technical advantages 

when teaching complicated deep learning material. For 

example, it can showcase the process of matrix multiplication 

by showing, in an animated and dynamic manner, the rows and 

columns moving as they multiply. Or, for forward propagation, 

weights and inputs can be color-coded and animated as they 

move through each neural layer, representing the dot product 

being computed with an animated object. In addition, in 

Manim, you can visualize activation functions by dynamically 

visualizing the input-output relationship immediately. Through 

this form of animated content, students can follow these 

abstract operations intuitively and have the ideas they are 

observing reinforced - such as weights, biases, and gradient 

flows in backpropagation. These animations also reduce 

cognitive load and help students move from pure theoretical 

understanding to practical understanding. 

V. DISCUSSION 

The results of this study show that Manime-style programmatic 

animations offer clear advantages over traditional chalk-and-

talk instruction for teaching deep learning concepts. Students 

demonstrated substantially higher comprehension after viewing 

the animated materials, suggesting that dynamic visualizations 

reduce cognitive load and make abstract processes such as 

gradient flow, forward propagation, and weight updates far 

more intuitive. Engagement and motivation were also 

noticeably higher, indicating that visually rich, step-by-step 

explanations help sustain attention and interest, which is critical 

for mastering mathematically dense topics. Retention 

confidence improved as well, supported by unanimous 

feedback that animations made the material easier to recall, 

reinforcing the idea that animation serves as a cognitive 

scaffold rather than a superficial enhancement. 

 

Therefore, visual lessons like Manime increase comprehension, 

engagement, and long-term memory for students. Students 

strongly preferred Manime for complex topics and supported its 

continued use. In practice, Manime lessons can be reused by 

adjusting the input parameters or modifying small blocks of the 

animation script rather than recreating entire visual sequences 
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from scratch. For instance, an instructor can adapt the same 

forward-propagation animation to demonstrate different 

activation functions by altering only a few lines of code 

controlling the output curve and color transitions. Network 

architecture diagrams can also be customized easily by 

modifying layer sizes, labels, or data-flow animations without 

redesigning the entire scene. However, this flexibility comes 

with constraints: developing new animations still requires 

familiarity with Python and Manim’s scene-construction 

model, and more complex sequences may take considerable 

time to render. These practical considerations are important for 

instructors planning to integrate Manime into regular teaching 

workflows. 

 

This work benefits the educational community by providing 

empirical evidence that programmable, code-driven animations 

can significantly strengthen conceptual understanding in 

advanced computing courses. Manime’s reusability, precision, 

and ability to visualize complex operations offer instructors a 

modern and effective complement to traditional teaching 

methods. The major learning is clear: visual, dynamic 

instruction not only clarifies difficult concepts but also 

enhances engagement and long-term recall, making it a 

promising pedagogical tool for education. 

 

These findings also align with multimedia learning theory, 

which suggests that people learn better from words and pictures 

than from words alone. This alignment can be further explained 

through Dual Coding Theory, which proposes that information 

is processed through complementary visual and verbal 

channels. In the Manime animations, narrated explanations are 

paired with synchronized visual cues such as highlighted 

connections, animated weight flows, and step-wise 

transformations. These features distribute processing across the 

visual and auditory channels, reducing the mental effort 

required to understand complex operations. The animations 

also support cognitive load theory by externalizing processes 

that learners would otherwise have to imagine mentally. For 

instance, matrix multiplication is shown through sliding rows 

and columns, while gradient flow is depicted through 

directional color changes. By reducing intrinsic and extraneous 

cognitive load associated with interpreting abstract equations, 

these animations help students devote more cognitive resources 

to building conceptual understanding. 

LIMITATIONS 

One limitation of this study is its reliance on self-reported 

ratings, which may introduce bias. Because animations can 

appear more novel, visually appealing, or entertaining than 

traditional chalk-and-board instruction, there is a possibility 

that the observed increases in engagement or interest may 

reflect a novelty effect rather than a sustained pedagogical 

advantage. Manime-based animations were new to them, which 

may also have influenced their responses. Although all 

participants had similar prior exposure to traditional instruction, 

their limited experience with animated teaching tools may have 

created an imbalance in familiarity between the two methods. 

Future studies should include objective performance measures 

and repeated exposure to animated instruction to reduce 

novelty-based bias. 

 

Another limitation of this study is the homogeneity of the 

participant group. The sample consisted entirely of 60 

undergraduate engineering students enrolled in a single deep 

learning course at one institution. As a result, the findings may 

not generalize to students from different academic 

backgrounds, age groups, or levels of prior experience. The 

subject matter itself neural networks and deep learning is highly 

mathematical and visually intensive, which may naturally 

benefit more from animated explanations than other topics. 

Therefore, the effectiveness of Manime may vary when applied 

to courses involving less visual structure, such as ethics, theory 

of computation, or non-technical subjects. Future research 

should include more diverse participant demographics and 

evaluate Manime across multiple course types, institutions, and 

proficiency levels to assess broader applicability. 

 

Although students reported high confidence in their ability to 

retain the concepts immediately after the Manime-based 

explanation, this study did not examine long-term retention. 

The survey captured only short-term, self-reported retention 

rather than objective, delayed performance. As a result, it 

remains unclear whether the learning gains associated with 

Manime persist over time or diminish once the novelty and 

immediacy of the animation fade. Future research should 

incorporate delayed post-tests administered days or weeks after 

instruction to evaluate the durability of retention. Prior learning 

science studies emphasize that spaced assessments and 

longitudinal testing provide a more accurate measure of lasting 

conceptual understanding, and integrating such methods would 

offer a more reliable evaluation of Manime’s long-term 

instructional impact. 

CONCLUSION 

The current study demonstrates statistically significant 

evidence that a code-driven, animation-based teaching 

approach, Manime, is more effective than traditional chalk and 

board instruction for teaching concepts pertaining to deep 

learning. Instructors can create lessons that can be reused and 

customized by taking advantage of the programmable 

capabilities of the Manime library. Therefore, visual lessons 

like Manime increase comprehension, engagement, and long-

term memory for students. Students strongly preferred Manime 

for complex topics and liked its continued use. This study 

demonstrates the potential benefit of utilizing programmable 

visual tools in 21st-century technical education because it 

addresses the disconnect between abstract theory and intuitive 

understanding. 
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