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Abstract—This paper introduces Manime, a code-based
animation teaching method for deep learning, and compares it to
traditional chalk-and-board instruction using statistical analysis.
While chalkboard teaching is static, Manime enables instructors
to create repeatable, visually rich, and programmatically
generated lessons; however, its effectiveness relative to traditional
methods has not been systematically evaluated in classroom
settings. We compared Manime-style instruction with chalk-and-
board lectures in an introductory deep learning course and
collected student feedback on comprehension, retention,
engagement, and instructional preference. Using paired t-tests,
one-sample t-tests, and chi-square tests on data from 60 students
who experienced both formats, we found that comprehension
improved by +2.77 points after the Manime animation (large effect
size, d = 1.25), retention confidence was high (mean 8.28/10, very
large effect size, d = 4.99), and engagement significantly favored
Manime (Cramér’s V = 0.43), with students also preferring
animations for difficult topics (Cramér’s V = 0.30). Students
unanimously reported that visuals improved recall, and these
findings align with multimedia learning theory and Dual Coding
Theory, which suggest that combining visual and verbal channels
enhances cognitive processing. Overall, the results indicate that
Manime provides an effective and complementary teaching style
to traditional chalk-and-board instruction for complex deep
learning topics.
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I. INTRODUCTION

RADITIONAL chalkboard-based lecturing often struggles

to communicate the abstract and dynamic nature of deep
learning concepts. Static drawings and verbal explanations
require students to mentally visualize processes such as
gradient flow, weight updates, and multilayer interactions,
which can increase cognitive load and limit active
understanding. In contrast, Manime a teaching approach that
integrates anime-style visuals with mathematical explanations
using the Python Manim library offers dynamic, code-driven
animations that make abstract ideas more concrete and intuitive.
Originally developed for the 3BluelBrown channel, Manim
enables instructors to construct precisely timed visual
sequences of equations, shapes, and transformations,
potentially supportine clearer cancential learning

Although Manim-based animations have become
increasingly popular in online educational content, their
effectiveness compared to traditional chalkboard teaching has
not been rigorously evaluated in real classroom settings. This
gap is particularly relevant in deep learning education, where
students often struggle to build accurate mental models of
algorithmic behavior. The present study therefore examines
whether animation-based instruction using Manime can
produce stronger comprehension, higher engagement, and
better short-term retention than conventional chalkboard
methods when teaching deep learning concepts. To address this,
an experiment and student perception survey were conducted in
a university deep learning course to directly compare the two
instructional approaches.

II. BACKGROUND AND RELATED WORKS

The rapid expansion of artificial intelligence (AI) and
multimedia learning technologies has reshaped how educators
design and deliver instruction in STEM, computer science, and
machine learning (ML) education. A growing body of research
demonstrates that well-designed visualizations, animations, and
interactive systems can significantly enhance learners’
cognitive  processing,  motivation, and  conceptual
understanding. Early work in this domain highlights the power
of personalization and visual scaffolding. Roozafzai and Zaeri
(2024) showed that Al-driven adaptive systems can tailor
content in real time to a learner’s profile, while animations
simultaneously support conceptual clarity.

Similarly, Ji and Zheng (2025) found that visual cues alone
improve focus and retention, but when paired with pedagogical
agents animated or humanlike guides they enhance
engagement, intrinsic motivation, and deeper conceptual
understanding. These findings align with Mayer’s multimedia
learning theory and the dual-channel processing model, which
argue that coordinated visual and verbal input strengthens long-
term memory formation. Other immersive technologies
reinforce these results. Research on virtual reality (VR)
demonstrates that richly constructed 3D environments promote
constructive learning and long-term memory processes, a
finding with direct relevance for immersive pedagogy and
transdisciplinary STEM teaching (Ji & Zheng, 2025).

In distance education, Tugtekin and Dursun (2022) compared
animated and interactive video formats, revealing that
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animations are particularly effective for representing complex
concepts visually, while interactive videos maintain motivation
through embedded quizzes and clickable elements. Their work
reinforces the role of variety and interactivity as central to
multimedia learning design. Within the machine learning and
computer science domain, animation-driven tools have recently
gained prominence.

Helbling and Chau (2023) introduced Manim ML, a
framework leveraging the Manim engine to visually depict
neural network architectures, parameter flows, and layer
interactions effectively bridging abstract ML concepts with
intuitive visual explanations. Extending this trajectory, Zhou et
al. (2024) developed Manimator, a system that integrates large
language models with Manim to automatically generate
animations from natural-language descriptions. This approach
lowers the technical barrier for educators lacking programming
expertise and enables rapid production of high-quality animated
instructional content. Foundational contributions from the
Manim Community Development Team (n.d.) and popular
creators such as 3BluelBrown (2016) demonstrate how
animation can transform complex technical subjects into
intuitive narratives. The neural network series by 3Bluel Brown
exemplifies how thoughtfully designed visual storytelling
supports comprehension, offering evidence for the pedagogical
power of animation-based content creation. Beyond animation,
hands-on and experiential learning approaches further enhance
understanding.

Hitron et al. (2018) introduced an experiential model for
teaching children fundamental ML ideas through interactive,
physical tasks and age-appropriate visual aids. Their findings
show that embodied interaction builds intuitive conceptual
foundations prior to formal coding or mathematical instruction.
Similar strategies are recommended in higher education: Yadav
and DeBello (2019) emphasize project-driven learning, visual
aids, and interactive notebooks for teaching Python and data
science, noting these methods help address diverse learning
preferences in graduate-level classrooms. Recent developments
continue to enrich the space. Berg et al. (2025) presented
Manim-DFA, a Manim-based tool for animating topics in data-
flow analysis and abstract interpretation areas traditionally
difficult to grasp through text alone. Their results show that
automated animations enable clearer understanding of compiler
design fundamentals. Likewise, Riyantoko et al. (2025)
proposed a self-paced Python-and-statistics framework
integrating visual coding tasks and real-world datasets to
support active experimentation, directly linking visual outputs
with algorithmic behavior. Emerging conceptual perspectives
also highlight the philosophical and interdisciplinary value of
multimedia approaches.

Yu (2025) introduced the Wisdom Computing Perspective,
which situates Al instruction within human-centered, reflective,
and visually enriched learning environments. This framework
underscores the growing convergence between multimedia
learning, Al literacy, and cross-disciplinary education. Parallel
research in collaborative learning reinforces these multimedia
findings. Jeyanathan et al. (2025) demonstrated that the Student

Teams Achievement Division (STAD) method enhances
engagement, peer learning, and problem-solving performance
in engineering contexts. Similarly, P et al. (2025) found that
inquiry-based learning within team-based environments
improves conceptual understanding and critical thinking in
automata theory courses. When combined with animation-
based tools such as Manim, these collaborative strategies
promise even greater benefits pairing visual clarity with social
learning processes known to strengthen comprehension and
retention.

III. PROPOSED APPROACH FOR EFFECTIVE TEACHING

A. Manime

We define Manime (Math + Anime) as the practice of
delivering mathematical or technical content through Manim-
created animations. This concept is inspired by Grant
Sanderson’s 3Bluel Brown channel , which popularized Manim
for educational videos. Manim is a Python library: users write
scripts in a Scene class to construct Mobjects (mathematical
objects like Circle(), Text(), or MathTex() for equations) and
animate them. The community edition, ManimCE, is a stable
fork with extensive documentation . For example, Sanderson’s
neural networks series uses Manim (“Neural Networks”,
3BluelBrown ) to visually explain layer connections and matrix
operations. By leveraging code, Manim makes it easy to update
animations, highlight steps with color or motion, and
synchronize narration. In summary, Manime combines rigorous
mathematical content with custom animations to engage
students visually.In our study , we developed animated
instructional videos using Manim Community Edition
(ManimCE), a Python based library that enables programmatic
creation of mathematical animations.For each deep learning
concept, we wrote custom scripts using Scene classes which
contained mathematical objects (Mobjects) like MathTex for
the equations we are displaying, Arrow for simulating the signal
paths, and Dot objects to indicate where our neuron nodes were
within a network. We looked after the animation behaviors with
Manim's .animate property and AnimationGroup feature that
allow for combined effects with combined movement changes
including colors such as red arrows for forward propagation,
blue for backpropagation transitions, or in a more general
context matrix operations plus smooth timing to showcase the
evolution of an object over time and through layers which we
felt was useful in conveying concepts that were subject to
complicated abstract computations.

B. Architecture of Manime

The architectural design of Manim is grounded in an object-
oriented hierarchy that emphasizes modularity, code reuse, and
extensibility. The class diagram illustrates the structural
relationships among the three core components: Mobjects,
Cameras, and Animations. These categories are structured
around abstract base classes that define shared interfaces and
attributes, which are then extended by specialized subclasses
for specific behaviors and visual elements.

1) Mobjects Hierarchy
In Manim, the Mobject class serves as the core building block
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for every drawable element, offering the fundamental structure
needed for visual components. It manages attributes such as
points, which define geometric locations, and bounding box,
which specifies the object’s spatial limits. This class also
provides utility methods like add() for combining multiple
objects and arrange() for organizing them within a scene.
Extending this foundation, the VMobject (Vectorized
Mobject) class enables vector-based rendering and introduces
customizable  styling  features, including fill color,
stroke color, and stroke width, ensuring visual consistency
across all vector-rendered shapes. From VMobject, a variety of
specialized classes emerge. For example, the Text class
supports the creation of text elements with adjustable content
and font size, while SVGMobject allows importing scalable
vector graphics from file paths, making it ideal for adding
intricate illustrations. Another notable subclass, Geometry,
provides a template for creating geometric primitives. Derived
from Geometry, the Dot class incorporates a radius attribute,
and the Line class is defined by start and end coordinate points.
This class hierarchy allows all objects to share a unified styling
framework while preserving the unique behavior of each type.

2) Cameras Hierarchy

In Manim, the Camera class acts as the central engine for
rendering, setting the stage for how every element appears on
screen. It defines key parameters like frame width and
frame height and includes functionality for determining the
placement and scale of visual components. While it works well
on its own, the class is intentionally built to be extended for
more specialized rendering tasks.

Two widely used subclasses build on this foundation. The
ThreeDCamera is equipped for creating depth-rich scenes,
offering features such as focal distance adjustments to control
how three-dimensional objects are perceived. The
MovingCamera, on the other hand, enables fluid scene
navigation panning across a layout, zooming in for emphasis,
or even adjusting automatically with its auto_zoom capability.
By structuring these capabilities as extensions of the base
Camera, Manim ensures that advanced scene dynamics and
perspective changes can be introduced without rewriting the
essential rendering logic.

3) Animations Hierarchy

In Manim, all motion effects stem from the Animation base
class, which establishes a unified structure for applying changes
to Mobjects over time. This class defines core properties such
as run_time, which controls how long the effect lasts, and the
interpolate() method, which determines how an object
transitions from one state to another.

From this foundation, Manim offers a range of built-in
animation types. Transform morphs one object into another,
reshaping its points and style. Fadeln gradually increases an
object’s opacity until it is fully visible. Write simulates the
process of drawing an object step by step, often used for text or
outlines. AnimationGroup allows several animations to be
played simultaneously, enabling synchronized visual effects.

One of Manim’s most streamlined features is the .animate
syntax. Attaching .animate to a Mobject instantly creates the
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corresponding Animation object, allowing concise commands
such as square.animate.shift(RIGHT). This approach keeps
code readable and compact while preserving the flexibility and
modular design of the underlying animation framework.

4) Design Significance

}1. Python Code
</> (.py)

Fig.1. Manim Workflow for Classroom Teaching

Manim’s design follows a strongly inheritance-based,
extensible architecture, enabling developers to build new visual
elements or behaviors simply by subclassing existing
components. This approach minimizes repetitive code—for
example, every vector-based object inherits styling features
directly from VMobject and makes it straightforward to
integrate custom elements into projects. By keeping
responsibilities clearly divided among Mobjects, Cameras, and
Animations, each subsystem can develop and improve
independently, yet still operate seamlessly thanks to shared
foundational interfaces. This structure is a key factor behind
Manim’s effectiveness in producing polished, educationally
rich visual narratives, particularly in mathematics and computer
science, where modular building blocks are combined into
intricate, animated scenes with very little redundancy. This
(Fig.1) shows how Manim- Based animations are generated
from python scripts and then rendered into video files for
classroom use. The code-driven nature allows flexible updates,
layering and the real- time animation control.

C. llustration of Manim Visual Explanations
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(a) Explaining complex calculations visually
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Fig. 2. Manim Visual Explanation Example video[8]

The fundamental unit of the network, the neuron, is first
introduced with a brilliantly simple analogy: "a thing that holds
a number" (Fig. 2b). This grounds the concept in basic
arithmetic. This initial simplification is later refined to a more
accurate, yet still intuitive, definition of a neuron as a “function”
that receives inputs from the previous layer and computes an
output (Fig. 2¢). In the animation, this progression is illustrated
through color and motion: incoming connections highlight in
yellow as inputs arrive, the neuron brightens briefly to signify
computation, and the resulting output is animated as it flows
into the next layer. These cues make the transition from
“number holder” to functional unit perceptually clear.

To explain the concept of “learning,” the video introduces the
idea of a cost function as a tangible measure of the network’s

error on a training example. The animation shows the
activations of the output layer for an incorrect guess, contrasts
them with the ideal activations, and computes the sum of
squared differences. A bracket overlay highlights each term in
sequence, and the incorrect output neuron is outlined with a
pulsing yellow emphasis to visually mark where the model
failed. This makes the cost calculation easy to follow and
conceptually grounded. Additional frames, such as the matrix—
vector multiplication segment in Fig. 2(a), use animated
movement of rows and columns to demonstrate how weights
and inputs interact, transforming abstract algebra into a
procedural visual story.

The video communicates deep learning concepts through
progressive disclosure, beginning with intuitive analogies and
gradually introducing mathematical formalism. This design
choice makes otherwise abstract neural network mechanisms
transparent and accessible, allowing learners to build
understanding incrementally through both narrative and
animation.

D. Survey Design

Understanding

Q1: Manim ~ Q2:Chalkboard
understanding 1-10 understanding 1-10
( ]

/”’

N

Retention

Q5: Retention score 1 Q6: Visuals helpful
10 Yes/No

\
\

/

N /

“ /
Test: Paired t- Tesf
test

ne-sample t-test /
Binomial

Preference
Q4: Engagement Q7: Preferred
method method

Test: Chi-

Q8: Recommend
Manim

/

Fig. 3. Survey Questions Structure

To evaluate the effectiveness of Manim compared to
traditional chalkboard-based instruction, we designed a
structured survey (Fig. 3) focusing on three key dimensions:
understanding, retention, and preference. The survey was
distributed to participants after they were exposed to both
Manim-generated animations and conventional chalkboard
explanations of the same mathematical concepts.

The study assessed the clarity of instruction using a 1-10
Likert scale for conceptual comprehension and a traditional
chalk and board approach. Long-term retention was measured
using both quantitative and qualitative indicators, including
self-assessed ability to retain the learned material and the
impact of visual aids on memory reinforcement.

Students also expressed their preferred method for future
instruction, particularly for abstract or mathematically complex
topics. They also expressed their preference for using Manim
animations for future teaching endeavors. A chi-square
goodness-of-fit test was used to evaluate whether there were
statistically significant differences in the students’ preferences.
The broader goal of the study was to examine how different
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instructional methods influence students’ understanding and
ability to retain the material.

IV. RESULTS

All 60 students experienced both instructional methods in the
same sequence a chalk-and-board lecture followed by a
Manime-based animated explanation. A 20-minute spacing
interval was included between the two sessions to minimize
carryover effects, and students were not permitted to review
materials during this interval. No pre-test was administered due
to time constraints, but comprehension was measured through
self-reported ratings before and after the Manime session. This
within-subject design ensured that differences in responses
were attributable to the instructional method rather than

differences between student groups.
TABLEI
HYPOTHESIS TESTS AND THEIR RESULTS

Test Type p-value Conclusion Key Statistics
Paired t-test 0.000 Reject Ho: Manime  Cohen’s d = 1.2506
significantly (large effect); Mean
improved Difference = 2.7667;
comprehension 95% CI=1[2.1952,
3.3381]
One-sample t-  0.000 Reject Ho: Retention Cohen’s d =4.9884
test rating significantly  (very large effect); Mean
higher than 3 =8.2833;95% CI =
[8.0097, 8.5569]
Chi-square 0.0013 Reject Ho: Manime  Cramér’s V = 0.4286
goodness-of-fit was significantly (moderate—strong
more engaging association)
Chi-square 0.0201 Reject Ho: Students  Cramér’s V=10.3

goodness-of-fit preferred Manime

for difficult topics

(moderate association)

Table I summarizes the hypothesis tests and their results,
with all analyses performed at a significance level of a = 0.05.
A paired t-test was used to compare students’ comprehension
following the Manim animation with their earlier chalk-and-
board ratings. The test yielded a p-value of 0.000, indicating a
significant improvement in understanding. The effect size was
large (Cohen’s d = 1.2506), with a mean difference of 2.7667
and a 95% confidence interval of [2.1952, 3.3381].

Retention confidence was assessed using a one-sample t-test
against a neutral value of 3. The p-value of 0.000 showed that
retention ratings were significantly higher than neutral. The
effect size was extremely large (Cohen’s d = 4.9884), with a
sample mean of 8.2833 and a 95% confidence interval of
[8.0097, 8.5569], indicating high consistency across
participants.

Engagement was evaluated using a chi-square goodness-of-
fit test, which returned a p-value of 0.0013. This result indicates
that students were not equally engaged by all methods and that
Manim-based instruction was significantly more engaging. The
effect size (Cramér’s V = 0.4286) showed a moderate-to-strong
association. A second chi-square test assessed students’
preferred method for learning difficult topics and produced a p-
value of 0.0201, with a moderate effect size (Cramér’s V =0.3),

demonstrating a significant preference for Manim when dealing
with challenging or abstract content.

Retention Ratings After Manim-Based Teaching (1-10)

8

(a) Self-assessed retention ratings after
Manime-based teaching

Preferred Teaching Method for Difficult Topics

Both Equally

Manime and visual teaching

(b) Preferred teaching method when learning Teaching
difficult topic
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(c) Self-rated understanding before and after Manime-based teaching.

Fig. 4. Survey results

The study conducted on 60 students found that Manim-based
visual teaching was more effective than traditional chalk-and-
board instruction in terms of instructional preference,
comprehension improvement, and retention confidence. The
results showed that 65% of students preferred (Fig.4b) Manim
and visual teaching for complex or abstract topics, while 35%
chose both equally. No student favored traditional chalk-and-
board as a stand-alone method, indicating a strong shift towards
animated instruction.

Qualitative responses showed that animations helped
students connect more effectively with the content, and all
respondents recommended Manim-style videos for future
lectures. Comprehension levels improved dramatically after the
animation, with 50% of students rating their understanding as
9, 21.4% as 10, and no student rated it below 7. The chalk-and-
board session yielded a more scattered distribution, mostly
between 4 and 7, confirming the statistically significant
improvement (Fig 4c¢).

Retention confidence was also high following the Manim-
based session (Fig 4a) , with 46.7% of students rating their
ability to retain the topic as 8, 31.7% as 9, and 10% as 10. A
one-sample t-test against a neutral retention benchmark score
of 3 showed a highly significant result, suggesting that visual
explanations had a substantial impact on students' confidence in
remembering the material. A binary question asking whether
animations aided recall received unanimous "Yes" responses
from all 60 students, further supporting the visual method's
effectiveness.

The results of this study strongly indicate that Manime-style
visual and animated videos are a more effective pedagogical
tool than traditional chalk and board lectures for teaching
complex topics in deep learning. The most compelling finding
is the statistically significant improvement in student
understanding. The distribution of responses shifted
dramatically from a scattered, moderate level of understanding
with the traditional method to a highly concentrated, high level
of understanding after the video. This suggests that the visual,
step-by-step nature of the animation helped clarify abstract
concepts that were previously difficult to grasp. The unanimous
agreement that the visuals helped students connect with the
topic reinforces this point; the animations are not merely

decorative but serve as a crucial bridge to comprehension.

Furthermore, the data on engagement and preference is
unequivocal. A significant majority of students found the
Manime video more engaging and would prefer it for learning
difficult subjects in the future. This is a critical factor, as higher
engagement often correlates with better learning outcomes and
improved motivation. While nearly a third of students found
both methods equally engaging, the strong preference for
Manime-style teaching, especially when anticipating difficult
material, suggests that students perceive it as a more powerful
learning aid.

Finally, the high likelihood of content retention reported by
students is another key benefit. The combination of auditory
narration and dynamic visuals appears to create a more
memorable learning experience. The one-sample t-test confirms
that this is not a neutral finding but a strong positive sentiment,
suggesting the impact of the video extends beyond immediate
understanding to longer-term recall. In addition to students'
preference, Manim allows for significant technical advantages
when teaching complicated deep learning material. For
example, it can showcase the process of matrix multiplication
by showing, in an animated and dynamic manner, the rows and
columns moving as they multiply. Or, for forward propagation,
weights and inputs can be color-coded and animated as they
move through each neural layer, representing the dot product
being computed with an animated object. In addition, in
Manim, you can visualize activation functions by dynamically
visualizing the input-output relationship immediately. Through
this form of animated content, students can follow these
abstract operations intuitively and have the ideas they are
observing reinforced - such as weights, biases, and gradient
flows in backpropagation. These animations also reduce
cognitive load and help students move from pure theoretical
understanding to practical understanding.

V. DISCUSSION

The results of this study show that Manime-style programmatic
animations offer clear advantages over traditional chalk-and-
talk instruction for teaching deep learning concepts. Students
demonstrated substantially higher comprehension after viewing
the animated materials, suggesting that dynamic visualizations
reduce cognitive load and make abstract processes such as
gradient flow, forward propagation, and weight updates far
more intuitive. Engagement and motivation were also
noticeably higher, indicating that visually rich, step-by-step
explanations help sustain attention and interest, which is critical
for mastering mathematically dense topics. Retention
confidence improved as well, supported by unanimous
feedback that animations made the material easier to recall,
reinforcing the idea that animation serves as a cognitive
scaffold rather than a superficial enhancement.

Therefore, visual lessons like Manime increase comprehension,
engagement, and long-term memory for students. Students
strongly preferred Manime for complex topics and supported its
continued use. In practice, Manime lessons can be reused by
adjusting the input parameters or modifying small blocks of the
animation script rather than recreating entire visual sequences
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from scratch. For instance, an instructor can adapt the same
forward-propagation animation to demonstrate different
activation functions by altering only a few lines of code
controlling the output curve and color transitions. Network
architecture diagrams can also be customized easily by
modifying layer sizes, labels, or data-flow animations without
redesigning the entire scene. However, this flexibility comes
with constraints: developing new animations still requires
familiarity with Python and Manim’s scene-construction
model, and more complex sequences may take considerable
time to render. These practical considerations are important for
instructors planning to integrate Manime into regular teaching
workflows.

This work benefits the educational community by providing
empirical evidence that programmable, code-driven animations
can significantly strengthen conceptual understanding in
advanced computing courses. Manime’s reusability, precision,
and ability to visualize complex operations offer instructors a
modern and effective complement to traditional teaching
methods. The major learning is clear: visual, dynamic
instruction not only clarifies difficult concepts but also
enhances engagement and long-term recall, making it a
promising pedagogical tool for education.

These findings also align with multimedia learning theory,
which suggests that people learn better from words and pictures
than from words alone. This alignment can be further explained
through Dual Coding Theory, which proposes that information
is processed through complementary visual and verbal
channels. In the Manime animations, narrated explanations are
paired with synchronized visual cues such as highlighted
connections, animated weight flows, and step-wise
transformations. These features distribute processing across the
visual and auditory channels, reducing the mental effort
required to understand complex operations. The animations
also support cognitive load theory by externalizing processes
that learners would otherwise have to imagine mentally. For
instance, matrix multiplication is shown through sliding rows
and columns, while gradient flow is depicted through
directional color changes. By reducing intrinsic and extraneous
cognitive load associated with interpreting abstract equations,
these animations help students devote more cognitive resources
to building conceptual understanding.

LIMITATIONS

One limitation of this study is its reliance on self-reported
ratings, which may introduce bias. Because animations can
appear more novel, visually appealing, or entertaining than
traditional chalk-and-board instruction, there is a possibility
that the observed increases in engagement or interest may
reflect a novelty effect rather than a sustained pedagogical
advantage. Manime-based animations were new to them, which
may also have influenced their responses. Although all
participants had similar prior exposure to traditional instruction,
their limited experience with animated teaching tools may have
created an imbalance in familiarity between the two methods.
Future studies should include objective performance measures

and repeated exposure to animated instruction to reduce
novelty-based bias.

Another limitation of this study is the homogeneity of the
participant group. The sample consisted entirely of 60
undergraduate engineering students enrolled in a single deep
learning course at one institution. As a result, the findings may
not generalize to students from different academic
backgrounds, age groups, or levels of prior experience. The
subject matter itself neural networks and deep learning is highly
mathematical and visually intensive, which may naturally
benefit more from animated explanations than other topics.
Therefore, the effectiveness of Manime may vary when applied
to courses involving less visual structure, such as ethics, theory
of computation, or non-technical subjects. Future research
should include more diverse participant demographics and
evaluate Manime across multiple course types, institutions, and
proficiency levels to assess broader applicability.

Although students reported high confidence in their ability to
retain the concepts immediately after the Manime-based
explanation, this study did not examine long-term retention.
The survey captured only short-term, self-reported retention
rather than objective, delayed performance. As a result, it
remains unclear whether the learning gains associated with
Manime persist over time or diminish once the novelty and
immediacy of the animation fade. Future research should
incorporate delayed post-tests administered days or weeks after
instruction to evaluate the durability of retention. Prior learning
science studies emphasize that spaced assessments and
longitudinal testing provide a more accurate measure of lasting
conceptual understanding, and integrating such methods would
offer a more reliable evaluation of Manime’s long-term
instructional impact.

CONCLUSION

The current study demonstrates statistically significant
evidence that a code-driven, animation-based teaching
approach, Manime, is more effective than traditional chalk and
board instruction for teaching concepts pertaining to deep
learning. Instructors can create lessons that can be reused and
customized by taking advantage of the programmable
capabilities of the Manime library. Therefore, visual lessons
like Manime increase comprehension, engagement, and long-
term memory for students. Students strongly preferred Manime
for complex topics and liked its continued use. This study
demonstrates the potential benefit of utilizing programmable
visual tools in 2Ist-century technical education because it
addresses the disconnect between abstract theory and intuitive
understanding.
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