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Abstract—This paper presents the use of failure-driven learning
(FDL) in a Computer Networks laboratory to improve student
understanding and problem-solving skills. In this method,
students were not only asked to complete the lab tasks but also to
face common errors such as wrong IP addresses, DHCP pool
issues, or routing mistakes. They were guided to observe the
problem, apply diagnostic commands, correct the configuration,
and write short reflections. Data was collected from command
logs, error patterns, reflection notes, and a final open-ended
project. The results showed that students in the FDL group made
fewer simple mistakes, corrected errors in less time, and used more
systematic troubleshooting compared to the control group. Their
reflections also became better, moving from short observations to
detailed reasoning. In the final project, FDL students performed
better and worked with more independence. The study concludes
that structured use of failures in lab experiments can strengthen
student learning and help them develop skills required for real
engineering practice.

Keywords—Failure-driven  learning;  diagnostic  skills;
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I. INTRODUCTION

NGINEERING laboratories are meant to be spaces where

students connect theory with practice. Yet, in most
institutions, lab performance is still judged primarily on
whether the experiment “works.” If the circuit lights up, the
DSP filter converges, or the code compiles without error,
students are rewarded. If it fails, marks are lost. This outcome-
driven model often overshadows the true value of laboratory
learning: the chance to explore, make mistakes, and learn from
them. Errors are frequent in labs, but they are rarely treated as
learning opportunities. More often, students try to patch them
quickly or bypass them altogether just to arrive at the “correct”

output.

In real-world engineering practice, troubleshooting and
problem-solving are everyday activities. An engineer may need
to trace a faulty connection on a circuit board, explain why a
control system shows unstable behavior, or modify a
computational model that fails to converge. In each of these
cases, progress depends on the ability to diagnose errors
systematically—to ask what went wrong, why it happened, and
how it can be fixed. Diagnostic thinking is therefore not an
optional skill but a defining element of professional expertise.
If students are not given structured opportunities to encounter
and analyze mistakes during their education, they risk
graduating with solid theoretical foundations but insufficiently
developed practical reasoning abilities.

Educational research consistently shows that mistakes can be
more than setbacks; they can be powerful learning
opportunities. When learners confront an error, investigate its
cause, and attempt corrections, they often gain deeper
conceptual insight than when tasks proceed smoothly on the
first attempt. Prior work on productive failure and error-based
learning in fields outside engineering has demonstrated lasting
benefits for both knowledge retention and flexible problem-
solving. Yet in engineering education—and particularly in
laboratory courses—such methods have rarely been adopted in
a deliberate and systematic fashion. In most curricula, errors
continue to be treated as something to minimize or penalize
rather than a resource to build upon.

Failure-Driven Learning (FDL) directly challenges this
convention. Instead of discouraging mistakes, FDL positions
them as integral steps in the learning process. Students are
encouraged to recognize, document, and work through failures,
turning what might initially seem like setbacks into valuable
experiences that strengthen both technical competence and
professional mindset. The approach reframes failure as part of
the lab design itself: students are expected to encounter
difficulties, reflect on why things went wrong, and then
iteratively refine their solutions. Through this process, students
not only master engineering concepts but also develop essential
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diagnostic and reflective skills that mirror real-world
engineering practice.

This study sets out to fill the existing gap by exploring how
failure can be deliberately integrated into engineering labs as a
structured pedagogical strategy. Specifically, the research is
guided by three key questions:

1. How does failure-driven learning influence
students’ conceptual mastery in engineering labs?
2. To what extent does FDL improve diagnostic and
troubleshooting skills compared to conventional
instruction?
3.  What is the impact of FDL on student engagement
and reflective learning habits?
By investigating these questions, the paper aims to show that
embracing failure in the classroom—rather than avoiding it—
can cultivate more resilient, reflective, and practice-ready
engineers.

II. LITERATURE REVIEW

Engineering laboratories often expose students to uncertainty,
errors, and unexpected results. These moments, instead of being
seen only as setbacks, can become opportunities for deeper
learning. Recent studies highlight the value of failure-driven
approaches, where students first attempt complex tasks, often
fail, and then use feedback to rebuild their understanding. Sinha
and Kapur (2021) explain that when failure is followed by
structured guidance, students not only improve conceptual
grasp but also develop skills in diagnosing the source of their
mistakes.

Not all failure, however, is useful. Nachtigall, Serova, and
Rummel (2020) show that if errors occur without timely
support, students may become frustrated and disengage. This
suggests that the role of instructors and lab design is crucial. In
physics education research, Phillips, Sundstrom, Wu, and
Holmes (2021) found that many students ignore conflicts
between models and data unless guided to reflect. In other
words, failure alone does not drive learning; it must be made
meaningful through prompts and comparison with expert
reasoning.

Large-scale engineering lab studies also point in this direction.
Koretsky, Nefcy, Nolen, and Champagne (2023) argue that
when students are asked to move back and forth between
predictions and experiments, the mismatches that arise act as
triggers for learning. Such designs help them strengthen
conceptual links and practice scientific reasoning. Similar ideas
appear in recent work on electric circuits. Bauman, Hansen,
Goodhew, and Robertson (2024) observed that students often
hold partial but promising ideas. Carefully designed lab tasks
that lead to predictable breakdowns can help refine these ideas
rather than dismiss them as wrong.

Diagnostic and troubleshooting skills are another important
outcome of failure-based learning. Diong, Chin, Das, and Tekes
(2021) describe lab exercises where faults were intentionally
embedded. Students trained in these settings learned to
approach troubleshooting systematically, moving beyond trial-
and-error methods. More recent work by Mehraban, Yin,
Rashidian, Orlowski, and Gao (2024) highlights that debugging

should be taught explicitly in engineering labs, with tools like
checklists and structured strategies.

Beyond electronics, chemical and materials labs have also
adopted failure-driven approaches. Narayanan et al. (2023)
report that when students compared their failed experiments
with expert protocols and redesigned their approach, they
demonstrated better control of variables and deeper conceptual
reasoning. Virtual and hybrid labs add a further dimension.
Coleman, Saltan, and Ryan (2023) show that pre-lab
simulations allow students to face failure in a safe environment,
which prepares them for more meaningful reflection in the
physical lab. Coutinho, Mascarenhas, and da Silva (2023)
propose frameworks for online labs where failure cases are
deliberately embedded to trigger reflection.

Assessment practices also influence how students perceive
failure. Gargac (2024) demonstrates that mastery-based
assessment, where students can revise and resubmit after
diagnosing their mistakes, reduces superficial trial-and-error
behaviour. Atwood, Bergmann, Fox, and Li (2024) similarly
argue that when instructors openly frame failure as part of
learning, students become more willing to persist and engage in
higher-order reasoning.

Work from psychology and organizational learning offers a
broader lesson. Klamar, Westerman, and Shaikh (2024) stress
that errors should be treated as data. Instructors can create a lab
climate where mistakes are expected and openly discussed.
Short cycles of prediction, testing, failure, and reflection help
students build resilience and diagnostic ability. Together, these
studies suggest that failure-driven learning, when supported by
feedback and assessment design, can transform engineering
labs into environments that promote conceptual depth and
strong diagnostic habits.

ITII. FAILURE-DRIVEN LEARNING(FDL) FRAMEWORK

The Failure-Driven Learning (FDL) Framework positions
mistakes not as interruptions but as central elements of the
learning process. Its foundation rests on the belief that genuine
understanding develops when learners are challenged, reflect
on what went wrong, and actively work toward resolving those
difficulties. As illustrated in Figure 1, the framework consists
of five interconnected stages that operate as a cycle of
continuous growth rather than a one-time sequence.The process
begins with Intentional Challenges. Here, students are given
tasks that are deliberately designed with hidden complexities or
non-routine elements. These activities are not meant to trap
learners but to stretch them just beyond their comfort zone,
making the likelihood of encountering errors much higher. In
doing so, the challenge itself becomes the entry point for deeper
thinking and engagement.

The second stage of the framework is Failure Capture, where
the focus moves from avoiding mistakes to identifying and
recording them. Students are asked to note down their
unsuccessful attempts, whether it is an unexpected result,
incomplete output, or any behavior that is not as expected.
Instead of skipping these steps or being penalized immediately,
students are encouraged to pause and record what went wrong.
This habit of documenting errors creates accountability,
honesty in reporting, and reinforces the idea that failures are not
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the end but useful signals for learning.

c

Intentional
Challenges

Diagnostic
Rubric

Failure
Capture

Iterative Guided
Debugging RSy Reflection

Fig. 1. Five Stages of Failure-Driven Learning (FDL) Framework

After this, the framework proceeds to Guided Reflection. At
this stage, students are expected to think carefully about why
the error happened. They review their earlier assumptions,
consider different possibilities, and discuss them with peers or
respond to prompts given by the teacher. Reflection here is not
just a list of mistakes, but an attempt to understand the
reasoning behind them and to think of alternative strategies.
This process helps students improve both their analytical
thinking and self-awareness, by shifting focus from only the
result to the thought process involved.

The next step is Iterative Debugging, where students apply
the ideas, they have refined through reflection. Instead of
discarding their earlier work completely, they build on what
they already tried and correct it step by step. Each change is
tested systematically, so that students can directly observe
which corrections are moving closer to the solution. The
emphasis is on patience, logical thinking, and small purposeful
improvements, rather than random trial-and-error. This
approach gives continuous feedback and gradually leads
students toward the right solution.

The final stage is the Diagnostic Rubric, which widens the
scope of assessment. Here, evaluation is not limited to whether
the experiment worked or not. Students are also assessed on
how they approached the problem, how well they diagnosed the
error, and how clearly they explained their reasoning and
solution steps. In this way, the rubric values the complete
process—attempt, error, reasoning, correction, and final
solution. It gives importance to problem-solving skills,
troubleshooting, and communication of learning.

Together, these five stages form a continuous cycle. Students
face challenges, encounter and record failures, reflect on
causes, carry out debugging, and receive structured feedback
that values both effort and outcome. With repeated practice, this
cycle develops confidence, independence, and resilience in
students. Over time, they begin to see mistakes as opportunities
for learning and not as obstacles. Thus, the Failure-Driven

Learning (FDL) framework not only improves technical skills
but also builds a mindset of persistence, systematic reasoning,
and curiosity, which are essential for engineers in professional
life.

IV. METHODOLOGY

The present study was carried out in the Computer Networks
Laboratory with sixth semester undergraduate students. A total
of 66 students participated in the course. They were divided into
two groups: one control group (32 students) and one
experimental group (32 students). The control group followed
the normal manual-based approach, where students executed
the given procedure step by step until the expected output was
obtained. On the other hand, the experimental group was
exposed to the Failure-Driven Learning (FDL) approach.

Both groups worked on the same set of experiments which
included LAN configuration, router setup, ARP and DHCP
observation, VLAN design, switch port security, static and
dynamic routing, NAT, wireless setup, and finally an open-
ended campus network project. For the experimental group,
deliberate errors were introduced in each lab task, such as
wrong [P addresses, incomplete routing entries, DHCP pool
exhaustion, VLAN mismatches, and NAT misconfigurations.
These errors were realistic and correctable within the same
session.

Students were assigned to the FDL and control groups based on
the institution’s regular lab-batch schedule. These batches are
generally balanced in academic performance, as they are
formed during timetable planning. To confirm this, we
compared the baseline CGPA of both groups and found them to
be academically similar before the intervention (insert CGPA
values here). This ensures that any differences observed in the
results are due to the instructional method rather than pre-
existing performance differences.

A. Laboratory Context

The Computer Networks Laboratory is designed to give
students hands-on experience with networking concepts. The
lab included eight guided experiments and one open-ended
project. The guided experiments covered core areas such as
LAN configuration, router setup, ARP and DHCP, VLAN
design, switch port security, static and dynamic routing, NAT,
and wireless configuration. The open-ended project asked
students to design and implement a small campus network that
combined multiple protocols and services.

B. Intervention Design

The control group performed labs in the usual way, following
step-by-step instructions in the manual. When errors occurred,
they either rechecked the procedure or asked the instructor for
help until they reached the correct output. The FDL group, in
contrast, was given labs with deliberately infused errors. These
were realistic pitfalls that engineers often face, such as wrong
IP addresses, incomplete routing entries, or limited DHCP
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pools as given in the table I. Students in this group were
expected to:

1. Attempt the lab and experience the failure.

2. Capture the failure through screenshots or logs.

3. Think about possible causes and record their ideas.

4. Apply corrections step by step until the problem was
solved.

5. Write a short reflection on what went wrong and how
it was fixed.

The instructor’s role in the FDL group was to guide the
reasoning process with prompts and questions, but not to
provide direct solutions. These pitfalls were selected because
they represent the common mistakes students and professionals
often make in networking. Each pitfall was simple enough to be
fixed in the same lab session but meaningful enough to make
students stop, think, and diagnose. This design ensured that
failures became part of the learning process instead of
accidental roadblocks.

C. Data Collection

Data was collected throughout the semester across eight guided
experiments and one open-ended project. The following
streams were recorded:

1. Command logs: CLI transcripts from Packet Tracer,

capturing total commands issued, command
categories, and incorrect attempts.

2. System outputs: Results such as ping replies, ARP
tables, routing tables, DHCP leases, VLAN
membership, and NAT mappings.

3. Timestamps and attempts: The time taken to first
detect a failure, the time taken to correct it, and the
number of reconfiguration attempts before achieving
success.

4. Reflections and reports: Two-sentence reflection logs
written after each lab (FDL group) and project reports
for the open-ended campus network design task.

TABLE I
EXAMPLES OF DESIGNED PITFALLS IN FDL LAB SESSIONS

Experiment Normal Task

Designed Pitfall (FDL Group)

Basic Commands & LAN Setup
Router Configuration

ARP Observation

DHCP Configuration

VLAN (Single/Two Switch)
Switch Port Security

Static Routing

Dynamic Routing (RIP)

NAT

Wireless Network

Configure two LANs & view ARP tables.

Create VLANS and test isolation.
Configure sticky MAC, test violation.
Two routers with static routes.
Enable RIP on routers.

Configure WPA/WEP wireless router.

Configure hub/switch LAN, check connectivity.
Configure simple router links, verify connectivity.

Enable DHCP server & verify auto IP assignment.

Configure NAT between private & public.

Wrong IP address / subnet mask set on one PC — ping fails.
One interface left in shutdown state — no reply.

Wrong default gateway assigned — ARP incomplete.

DHCP pool exhausted (set only 2 users) — PC fails to get IP.
PC incorrectly assigned to wrong VLAN — cannot reach peers.
Connect new PC — port goes into error-disabled state.

Wrong next-hop IP in static route — inter-LAN ping fails.
Forgot to include one network in RIP — partial connectivity.
NAT mapping missing for one PC — cannot access server.
Wrong SSID key entered — device fails to join.

D. Data Pre-processing

The data collected was processed as follows:
1. Command classification: All commands

categorized as diagnostic (ping, show ip route, arp),
configuration (ip address, router rip, switchport access
vlan), or incorrect/syntax errors.

were

2. Error coding: First failures were labeled into four
categories: addressing errors, protocol
misconfigurations,  syntax/CLI  mistakes,
link/other issues.

3. Time metrics: Time to Detect Failure (TDF) and Time
to Correct Failure (TCF) were computed from

and

timestamps.

4. Reflection coding: Reflections were scored as surface
(vague), causal (specific error identified), or strategic
(reasoning linked with diagnostic tests).

5. Project rubric: The open-ended project was scored out
of 20 across five criteria: topology, addressing &
subnetting, routing, DHCP/DNS, and wireless

configuration.

Both quantitative and qualitative analyses were carried out:

1. Descriptive statistics for interactions, errors, times,
and attempts.

2. Sequence analysis of CLI logs to identify common
troubleshooting patterns.

3. Time-to-event analysis
compare correction times.

(Kaplan—Meier style) to

4. Learning curve fitting (exponential) to capture
efficiency improvements across labs.

5. Reflection content analysis to assess reasoning depth
and vocabulary shifts.

V. RESULTS AND ANALYSIS

This section presents the outcomes of the study, highlighting
student interaction patterns, error profiles, time efficiency,
diagnostic strategies, and their impact on overall lab
performance and project success.

All data analysis was carried out using open-source tools to
ensure accessibility and reproducibility. Packet Tracer outputs
were exported as command logs and screenshots, which were
first organized in spreadsheets for tabulation of command
counts, error frequencies, and rubric scores. Statistical
calculations, curve fitting, and visualizations were then
performed in Python using libraries such as pandas for data
handling, and matplotlib for plots. This combination of simple
spreadsheet processing and open-source Python analysis
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allowed all results to be obtained without relying on paid
statistical software.

E.  Student Interactions

TABLE II
INTERACTION METRICS (PER LAB, MEAN =+ SD)

Metric Control (n=32) FDL (n=34)
Total commands issued 146+5.0 16.1£53
Incorrect / rejected commands 38+1.9 23+14
Distinct command types used 54+1.6 7.1+1.9
Diagnostic command share (EI)  0.49 £0.15 0.71+0.12

As shown in Table II, both groups issued a similar number of
total commands during each lab. However, the key difference
lies in how purposeful the commands were. Control students
issued more incorrect commands and repeated the same
commands until they eventually succeeded, whereas FDL
students issued fewer incorrect commands and made wider use
of diagnostic commands. The higher Efficiency Index (0.71
compared to 0.49) indicates that students in the FDL group were
not experimenting randomly but instead were systematically
verifying network status before attempting configuration. This
shows that when students are deliberately exposed to failures,
they begin to value diagnostic testing as an essential part of the
problem-solving process. In real-world practice, this mirrors
how professional engineers troubleshoot networks—
diagnosing first, then acting—showing that the FDL approach
nurtured professional habits in the lab.

F. Error Profiles

Error type distribution

Link/Other
Syntax/CLI

Protocol misconfig

0 10 20 30 40 50
mFDL (%) m Control (%)

Fig. 2. First-Failure Error Types

The error distribution in figure 2 clearly shows that nearly half
of the first failures in the control group were due to addressing
mistakes such as wrong IP addresses or subnet masks. In
contrast, these errors reduced to about one-third in the FDL
group. This indicates that when failures were intentionally
introduced, students learned to check their basic addressing
setup more carefully in subsequent labs, leading to fewer
repeated mistakes. Interestingly, protocol-level errors were
higher in the FDL group. This shift is positive because it shows
that once trivial addressing issues were eliminated, students

were now wrestling with deeper conceptual challenges like
DHCP pools, NAT translations, and RIP advertisements. Such
protocol-related mistakes represent more advanced learning
opportunities compared to simple typing or addressing errors.
Thus, the error profile suggests that the FDL approach helped
students move beyond surface-level mistakes and engage with
more meaningful aspects of networking.

G. Troubleshooting Sequences

6. Control: ping — conft — int g0/1 — ip address ...
7. FDL: ping — show ip route — show arp — conft —
int g0/1 — no shut

The action sequences observed reinforce the trends in Table 11
and figure 2. Control students usually attempted to reconfigure
devices immediately after a failed ping. This approach reflects
a trial-and-error strategy—students guessed what might be
wrong and kept changing parameters until something worked.
In contrast, FDL students developed a diagnostic-first
sequence: after a failed ping, they used commands like show ip
route and show arp to gather evidence before making
configuration changes. This approach is slower at first but
results in more accurate fixes and fewer repeated mistakes.
More importantly, it shows a clear development of structured
thinking: students learned to test their hypotheses with
diagnostics instead of guessing. This behavioral change aligns
with one of the core aims of engineering education—training
students to think like engineers rather than technicians.

H. Time Efficiency and Attempts

The time to correct error attempts in figure 3 provide evidence
of growing efficiency in the FDL group. The time taken by
students to correct failures showed a clear difference between
the two groups. In the control group, the median correction
time started at 24 minutes in the first lab and gradually
decreased to 16 minutes by the eighth lab. In contrast, students
in the experimental group began with a slightly shorter
correction time of 21 minutes, and by the final labs they had
reduced this to just 9 minutes. This pattern shows that while
both groups improved with practice, the improvement was
much steeper for the students who followed the failure-driven
learning approach. These students developed the habit of
diagnosing problems systematically, which allowed them to
correct mistakes more quickly as the semester progressed. By
the later labs, they were correcting errors in almost half the
time taken by the control group.
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Learning Curves: Time to Correction Across Labs
24
22 === Control

20 =@ FDL
18
16
14
12

10

Median time taken to correct the errors

1 2 3 4 5 6 7 8
Lab Number

Fig. 3. Learning Curves: Time to Correction Across Labs

I Reflection Depth

The quality of student reflections, presented in figure 4,
highlights another key advantage of the FDL approach.
Control students mostly produced surface-level reflections,
often limited to statements such as “ping failed” without any
attempt to identify causes. In contrast, over half of the FDL
group’s reflections were causal, and nearly one-third were
strategic, linking reasoning directly with diagnostic
commands. This shift shows that FDL students were not only
fixing problems but also thinking about why the problems
occurred and how their actions resolved them. Such reflective
practice is essential in developing higher-order problem-
solving skills. Over time, the reflections also showed a richer
use of networking vocabulary—terms like “default gateway,”
“VLAN trunk,” and “NAT mapping”—indicating growth in
conceptual understanding alongside practical skills.

Control group Reflections

Strategic
12%

Surface
39%

Causal
49%

(a)

FDL group reflections

Surface
12%

Strategic
32%

Causal
56%
(b)

Fig. 4. Reflection depth distribution (a)Control group (b)FDL group
J.  Transfer of Learning Verification

The open-ended campus network project was used to verify
the transfer of learning from guided lab experiments to a
complex, design-based task. Table III shows the rubric used to
evaluate one FDL group and one Control group in the Open-
Ended Experiment (Campus Network Project). Students in the
FDL group not only achieved higher completeness scores but
also documented a larger number of failures and their
resolutions. This demonstrates that the diagnostic skills and
reflective habits cultivated during structured lab sessions
successfully carried over into an unstructured, real-world—like
scenario. In other words, students learned not only to solve a
given problem but also to apply troubleshooting strategies
independently in new contexts, which is a critical indicator of
deep learning and professional readiness.

TABLE III
RUBRIC FOR VERIFICATION OF TRANSFER OF LEARNING IN OPEN-ENDED CAMPUS NETWORK PROJECT

Criterion Description Max Marks Indicators of Transfer of Learning
Technical Accuracy of network topology, addressing, routing, 6 Students apply prior lab knowledge to configure all required
Completeness DHCP, DNS, NAT, and wireless integration. services correctly without major instructor intervention.
Application of Evidence of systematic troubleshooting using 4 Student demonstrates habits learned in guided labs by
Diagnostic commands and checks (ping, show ip route, arp, diagnosing faults before applying fixes; uses at least 2—3
Strategies VLAN/NAT tables). diagnostic tools appropriately.
Error Recording failures, attempted solutions, and final 4 Student documents errors in a structured way (symptom —
Documentation corrections. cause — fix); shows growth from guided labs to independent
and Recovery logging.
Reflection and Quality of explanation for why configurations failed 3 Reflection includes causal or strategic reasoning (e.g., “ARP
Reasoning Depth and how solutions were reached. incomplete because wrong gateway; fixed by correcting
pool”).
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Independence and
Adaptation

Ability to adapt prior learning to new tasks not
directly covered in manual.

Total

20

Students successfully applies learned strategies in novel
contexts (e.g., configuring DNS, combining VLAN with
DHCP, securing wireless).

How to Use this Rubric?

1. A score of 16-20 = Strong transfer of learning
(student applies diagnostic-first approach, documents
and reflects thoroughly, solves independently).

2. Ascoreof 11-15 = Moderate transfer (student applies
some strategies but with limited reflection or partial
independence).

3. Ascore of <10 = Weak transfer (student relies on trial-
and-error, limited documentation, or instructor help).

TABLE IV
CAMPUS NETWORK PROJECT SCORES (MEAN =+ SD)

Group Score /20 >16/20 Achieved  Failures Documented

Control  13.8+2.6 28% 0.9+0.7

FDL 169+22  62% 23+0.8

The open-ended project results in Table IV provide strong
evidence of transfer of learning. FDL students not only
achieved higher average scores, but more of them reached a
high completeness level (>16 out of 20). Importantly, they
documented over twice as many unique failures as the control
group. This shows that FDL students had become comfortable
with the idea that failure is part of the learning process. Instead
of hiding their mistakes, they openly recorded them and
explained how they were fixed. This diagnostic mindset carried
over from the structured labs into the project, proving that the
skills learned were not isolated to guided experiments but
extended to complex, real-world-like tasks.

K. Enhanced Statistical Analysis

To strengthen the reliability of our findings, we supplemented
the descriptive analysis with inferential statistics. The Mann—
Whitney U test, effect sizes, and 95% confidence intervals were
calculated for the main performance indicators. Since the data
were non-normal, non-parametric tests were chosen. These
metrics offer a clearer and more rigorous assessment of how
strongly the FDL approach influenced student learning
outcomes.

The statistical results given in table V clearly demonstrate that
the Failure-Driven Learning (FDL) approach produced stronger
learning outcomes than the traditional method across all
measured indicators. The most notable improvement appeared
in troubleshooting performance, where the FDL group achieved
a median score of 18.5/20, compared to 14.0/20 in the control
group.

TABLE V
STATISTICAL COMPARISON BETWEEN FDL AND CONTROL GROUPS

Measure FDL(Median  Control Mann— P- Effec

) (Median ~ Whitne Valu  tSize
) yU e R)

Troubleshootin 18.5 14.0 248.0 .003 0.52

g Performance

(Score/20)

Completion 27.4 34.8 266.5 .012 0.41

Time (Minutes)

Diagnostic 14 9 231.0 .001 0.57

Commands

Used

Post-Test Score  82% 71% 259.0 .009 0.44

(%)

This difference was statistically significant (p = .003) with a
large effect size (r = 0.52), indicating that exposure to structured
failure and guided reflection meaningfully enhanced students’
ability to diagnose and correct network issues.

A similar trend was seen in completion time for lab tasks, where
students in the FDL group completed activities faster (median
27.4 minutes) than those in the control group (34.8 minutes).
The difference was statistically significant (p .012),
suggesting that FDL students not only understood the concepts
better but were also more efficient in applying them. This

efficiency reflects increased confidence and

procedural fluency during troubleshooting.

improved

The difference in diagnostic command usage further highlights
the impact of FDL. Students in the FDL group used a broader
and more appropriate set of diagnostic commands (median 14
commands) compared to the control group (9 commands), with
a highly significant difference (p = .001). This suggests that
FDL students approached problems more strategically, relying
on systematic verification rather than guesswork—a core
objective of the intervention. The post-test conceptual
understanding also favored the FDL group, which scored a
median of 82%, compared to 71% in the control group. This
statistically significant improvement (p = .009) demonstrates
that the benefits of FDL extend beyond immediate task
durable

performance and contribute more

understanding.

to deeper,

L. Limitations and Curriculum Implications

During the study, several challenges emerged that shaped both
teaching and learning in the Computer Networks laboratory. At
the outset, many students expressed resistance to the idea of
working with incorrect configurations, and some reported
feeling anxious about deliberately engaging with mistakes.
Time management also proved difficult: diagnosing errors and
composing meaningful reflections often required more time
than conventional laboratory exercise. Student preparedness
varied considerably. Although some quickly adopted diagnostic
commands, others needed additional guidance, which
occasionally slowed the overall pace of group work. Instructors,
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too, faced an adjustment period. Rather than providing ready-
made solutions, they had to shift toward a facilitative role—
posing questions and prompting reasoning—a transition that
required patience and practice. Logistics added further
complexity. Collecting complete logs and reflections for every
student was sometimes hindered by technical glitches or missed
submissions. Assessment practices also needed revision; the
prevailing system rewarded only correct results, making it
necessary to design new rubrics that recognized error
documentation and reflective commentary. Despite these
obstacles, the experience highlighted the value of failure-driven
learning.

CONCLUSION

The study shows that failure-driven learning (FDL) can be an
effective method for engineering laboratories. Instead of
avoiding mistakes, students were encouraged to use them as
part of the learning process. The FDL group students applied
more diagnostic commands, repeated fewer errors, and solved
problems faster. Their reflections also improved in quality,
showing clear reasoning and better use of technical terms. In
the open-ended project also, FDL students performed better and
showed more confidence and independence. It can be
concluded that designing labs with possible failures, along with
guidance and reflection, not only improves immediate learning
but also prepares with important
professional skills like persistence, systematic troubleshooting,
and adaptability.

outcomes students
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