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Abstract—Generative Artificial Intelligence (AI) has emerged as a 

transformative force in engineering education, offering rapid 

content generation, intelligent code assistance, and simulation 

support. In Digital Electronics courses, AI can accelerate circuit 

design workflows, enhance self-regulated learning (SRL), and 

support deeper engagement with domain-specific concepts. This 

paper presents an engineering-adapted Human-Centered 

Learning and Teaching Framework (HCLTF) that integrates 

generative AI into the learning process while preserving analytical 

rigor and human-centered pedagogical values. The framework 

aligns with SRL's forethought, performance, and self-reflection 

phases, embedding AI in logic design, HDL development, 

simulation, and optimization tasks. A case study is presented in 

which 187 undergraduate students across three institutions design, 

simulate, and optimize a 4-bit synchronous up/down counter using 

a combination of traditional design methods and AI-assisted 

support. The AI was employed for Boolean simplification 

verification, Verilog code scaffolding, testbench generation, and 

timing optimization. AI-assisted workflows reduce HDL 

development time by 40% compared to traditional methods. 

Synthesis results reveal measurable differences between manual 

and AI-generated designs, including a 4.2% lower Fmax, 20% 

higher LUT usage, and a 9.5% increase in dynamic power prior to 

student-led optimization. Quantitative and qualitative findings 

indicate improvements in students’ Boolean reasoning, debugging 

proficiency, and reflective judgment across SRL phases. The study 

highlights the pedagogical value of guided GenAI integration and 

provides a scalable model for embedding AI-supported learning 

within Digital Electronics and broader engineering curricula. 
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I. INTRODUCTION 

HE emergence and rapid adoption of Generative Artificial 

Intelligence (GenAI) in engineering workflows have 

introduced a paradigm shift in how systems are conceived, 

modeled, implemented, and optimized. In undergraduate 

Digital Electronics education, this transformation is particularly 

impactful because students must bridge the gap between 

abstract theoretical knowledge—such as Boolean algebra, 

combinational and sequential logic design, and finite state 

machine theory—and its practical realization through Hardware 

Description Languages (HDLs) like Verilog or VHDL, 

culminating in hardware deployment on Field-Programmable 

Gate Arrays (FPGAs). The incorporation of GenAI-powered 

tools into this learning process offers the potential to accelerate 

concept acquisition, reduce design iteration cycles, and enhance 

overall design quality, while simultaneously exposing students 

to workflows increasingly common in professional engineering 

environments (Andersen et al., 2025). 

 

Traditionally, the workflow of digital electronics education 

has been sequential, manual, and concept-based: requirement 

analysis, logic derivation, HDL implementation, simulation and 

debugging, and ultimately synthesis and deployment. Although 

this approach develops strong analytical abilities, a keen eye 

and a solid grasp of ideas, it is also extremely time-consuming. 

Long debugging periods tend to limit the amount of time 

students have to devote to higher-order problem solving tasks 

like analyzing design trade-offs or experimenting with new 

architectures. As an example, one working on a 4-bit 

synchronous up/down counter could spend hours figuring out 

how to fix timing problems in a reset signal, with no time to 

evaluate anything about Gray code vs. binary state encoding or 

even to test power-reduction strategies like clock gating. 

There are various capabilities that can make this process more 

effective, and these may be provided by GenAI tools, including 
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ChatGPT, GitHub Copilot, and code generators specific to 

HDLs. These are Boolean expression checking, automatic 

writing of HDL code using natural language specifications, 

automatic testbench construction including edge-case coverage, 

optimization hints about timing and resource usage, and even 

interpretation of synthesis reports with repair advice. But they 

have their own dangers: when students use AI without critical 

analysis, they can overlook much in terms of necessary 

reasoning, forget how to derive things by hand (Đerić et al., 

2025), and fail to notice subtle design errors like asynchronous 

reset hazards or inefficient state encoding that can pass 

simulation but fail in practice. 

 

The modified HCLTF as applied to undergraduate Digital 

Electronics is shown in Fig. 1 as a three-circle Venn diagram 

comprising the Learning Domain, Teaching Domain, and 

Generative AI Domain. The Learning Domain is associated 

with activities led by students in setting goals and conceptual 

knowledge, as well as with iterative self-assessment, which are 

consistent with the phases of Self-Regulated Learning, 

including Forethought, Performance, and Self-Reflection. The 

Teaching Domain reflects the role of the instructor and creates 

an instructional guide, scaffold, and architectural AI to ensure 

cognitive participation. The Generative AI Domain 

encompasses AI tools that verify Boolean expressions, generate 

HDL programs, create testbenches, and optimise designs, 

primarily focusing on repetitive or syntactic tasks. The domains 

overlap shows the important interactions: instructor-led AI 

integration, student-led AI validation, and designed AI 

activities. The Design-Test-Reflect Loop at the centre of the 

diagram signifies the endless nature of the circuit creation, 

simulation, or hardware testing and reflective improvement 

process, so that AI is used to improve but not to replace 

analytical thought. 

 

To ensure that automation complements rather than replaces 

fundamental design thinking, we adapt the Human-Centered 

Learning and Teaching Framework (HCLTF) for Digital 

Electronics education. This adaptation defines a triadic 

relationship: students act as active designers and evaluators 

responsible for validating AI outputs; instructors serve as 

facilitators and cognitive coaches, guiding prompt formulation 

and critical evaluation; and AI tools function as scaffolding 

agents, accelerating repetitive or low-level tasks while 

preserving human responsibility for analytical reasoning, 

decision-making, and trade-off analysis. This alignment of AI-

assisted learning with the phases of Self-Regulated Learning 

(SRL)—Forethought, Performance, and Self-Reflection—

ensures that students cultivate the meta-cognitive skills required 

to thrive in an AI-augmented engineering environment (Peres 

et al., 2023). 

 

 
Fig. 1. Adapted HCLTF for undergraduate Digital Electronics 

 

Existing AI-assisted circuit design tools—such as HDL 

generators, Boolean minimizers, and FPGA optimization 

assistants—primarily automate tasks but do not cultivate 

metacognition, SRL, or critical evaluation of AI outputs. This 

creates a need for a pedagogical framework where AI 

augments, rather than replaces, analytical decision-making. The 

HCLTF, originally designed for K–12 STEM settings, 

emphasizes instructor facilitation, student agency, and iterative 

reflection, but has limited adaptation for engineering domains 

involving HDL, synthesis, and FPGA workflows. Unlike 

TPACK and SAMR, which address technology integration but 

not learner autonomy or AI collaboration, HCLTF supports 

student-led verification of AI outputs and structured SRL 

engagement. Therefore, the adapted HCLTF offers a 

distinctive, SRL-aligned approach tailored for AI-intensive 

engineering education. 

 

The differences between the traditional manual workflow and 

the proposed AI-assisted approach under the HCLTF are 

summarized in Table I. 

 
TABLE I 

DIFFERENCES BETWEEN THE TRADITIONAL MANUAL WORKFLOW AND THE 

PROPOSED AI-ASSISTED APPROACH UNDER THE HCLTF 

Design Stage Manual Workflow 
AI-Assisted Workflow 
(HCLTF) 

Requirement 
Analysis 

Interpret the 

problem statement 

manually 

Interpret with AI prompting 

suggestions, but validate the 

scope 

Logic 

Derivation 

Boolean 

simplification by 

hand (K-map, 
Quine–McCluskey) 

Manual derivation, AI cross-

check for minimization 

HDL 

Implementation 

Write 

Verilog/VHDL from 
scratch 

AI generates draft code; 

student refines and optimizes 

Simulation & 

Debugging 

Manual testbench 

creation, manual 
error detection 

AI generates testbench, 

student adds missing cases, 
and validates results 

Optimization & 

Synthesis 

Manual 

timing/power 
optimization 

AI suggests optimizations, 

and the student verifies via 
synthesis tools 
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Foundational designs such as counters, adders, and simple state 

machines have well-defined logic rules, predictable HDL 

structures, and limited design complexity, which make AI-

generated outputs easier to verify and compare against known 

correct behavior. This controlled environment allows students 

to safely evaluate AI reliability, identify inefficiencies or errors 

in AI-generated HDL, and develop essential skills in 

verification and reflective judgment before progressing to more 

complex digital systems. 

 

This paper applies the adapted HCLTF to a case study in which 

undergraduate students design, simulate, and optimize a 4-bit 

synchronous up/down counter with asynchronous reset using 

both traditional and AI-assisted workflows. The study evaluates 

efficiency gains, tracks the development of SRL skills, and 

assesses the quality and reliability of AI-generated HDL in an 

educational setting. Through this approach, the research 

demonstrates how structured AI integration can preserve 

analytical rigor while leveraging the speed and versatility of 

modern GenAI tools in engineering education. 

 

The organization of the paper is as follows: Section II gives the 

review of the existing literature, Section III provides the 

framework of HCLTF for digital electronics, Section IV 

discusses the impact of implementing HCLTF and provides a 

discussion on it, Section V provides the conclusion of the work 

and highlights the future work that can be implemented in near 

future. 

II. LITERATURE REVIEW 

Despite the growing use of GenAI in programming, data 

science, and problem-solving courses, significant gaps remain 

in the context of engineering education, particularly in digital 

electronics, HDL design, testbench generation, and FPGA-

based workflows. Existing studies focus largely on productivity 

gains or automated code generation, with limited attention to 

how GenAI influences conceptual understanding, verification 

strategies, or student metacognition. Furthermore, most 

published work does not address transitions between traditional 

analytical workflows and AI-assisted workflows, leaving 

unclear how students should critically evaluate AI outputs. To 

bridge these gaps, this study positions GenAI within a 

structured, human-centered pedagogical framework to ensure 

that AI enhances—not replaces—core engineering reasoning 

skills. Recent advances in AI and GenAI have increasingly 

shaped engineering education, influencing how students learn 

programming, circuit design, simulation, and problem-solving. 

While prior studies demonstrate GenAI’s potential to enhance 

efficiency and provide adaptive guidance, much of the existing 

work remains centered on programming, algorithmic learning, 

or Intelligent Tutoring Systems (ITS), with limited focus on 

hardware-oriented fields such as Digital Electronics (Anderson 

et al., 1995). These systems have since expanded to GenAI 

systems that can generate context-sensitive solutions and write 

code, as well as help to solve complex problems (Amuru & 

Abbas, 2024). Although most of these developments have been 

implemented in the context of programming and data science 

education, an increase in the awareness of the potential of AI in 

hardware-oriented fields, especially Digital Electronics, is 

observed. 

 

The classic methodology of teaching digital system design is to 

proceed through a sequence of manual derivations of logic, the 

implementation of Hardware Description Language (HDL), 

simulation, and repeated debugging (Dames & Eves, 2025). 

Although this process can lead to profound conceptual 

knowledge, it can be time-consuming and decrease the 

student’s possibilities to think at higher design levels. Recent 

studies have suggested AI-based design assistants that could be 

used to automate the process of verification of Boolean logic, 

produce synthesizable HDL code based on high-level 

specifications, and synthesize simulation test benches (Song et 

al., 2023). For example, HDL-specific GenAI models can 

translate natural language descriptions of digital circuits—such 

as counters, multiplexers, or finite state machines—into fully 

functional Verilog modules, often accompanied by verification 

scripts. However, without careful instructional design, these 

tools may create black box scenarios where students accept AI-

generated outputs without verifying correctness or efficiency. 

 

The challenge of integrating AI into Digital Electronics 

instruction is closely linked to SRL theory, which emphasizes 

learner autonomy in setting goals, monitoring progress, and 

evaluating outcomes (Tang, 2023). Educational research 

suggests that combining AI support with SRL strategies can 

maintain student agency while enhancing efficiency. The 

HCLTF initially applied in K–12 STEM contexts (Zhang et al., 

2025) offer a balanced model where instructors act as 

facilitators, students serve as active evaluators, and AI tools 

operate as scaffolding agents. However, research on applying 

this framework to undergraduate Digital Electronics—with its 

emphasis on hardware timing constraints, synthesis 

optimization, and FPGA prototyping—is still scarce. 

 

Another critical dimension is AI literacy, defined as the ability 

to use AI tools effectively, critically assess their outputs, and 

understand their limitations (Long & Magerko, 2020). In 

Digital Electronics, AI literacy encompasses evaluating the 

synthesizability of HDL code, recognizing potential timing 

violations, and identifying inefficient resource utilization in 

FPGA implementations. Empirical findings from AI-assisted 

circuit design studies (Khojah et al., 2025) indicate that, when 

implemented within a guided framework, AI can reduce 

development time by up to 50% without a drop in design 

quality. Conversely, unstructured AI usage often leads to over-

reliance and reduced retention of manual design skills. 

 

This review underscores the need to adapt the HCLTF for 

Digital Electronics to leverage AI’s efficiency gains while 

safeguarding analytical rigor. Embedding AI interaction within 

SRL phases can provide structured engagement, ensuring that 

students develop both technical competence and the critical 

thinking skills necessary for AI-integrated engineering practice. 

Table II shows the differences between HCLTF and two widely 

used educational technology models, TPACK and SAMR. 
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TABLE II 
COMPARISON OF HCLTF WITH SAMR AND TPACK MODELS 

Aspect TPACK SAMR HCLTF (Proposed 

Framework) 

Primary 

Focus 

Balancing 

technology, 
pedagogy, 

and content 

knowledge 

Classifying levels 

of technology 
integration 

Human-centered 

learning with AI-
assisted scaffolding 

Learner 

Autonomy 

Not 

explicitly 

emphasized 

Not addressed Strong emphasis on 

student agency and 

decision-making 
Role of AI Not 

considered 

Not considered AI treated as a 

cognitive 

collaborator to 
support reasoning 

Self-

Regulated 
Learning 

(SRL) 

Not 

integrated 

Not integrated Fully aligned with 

SRL phases 
(Forethought, 

Performance, 

Reflection) 
Critical 

Evaluation 

of AI 
Outputs 

Not included Not included Students are 

required to verify, 

critique, and refine 
AI suggestions 

 

To further clarify the theoretical basis of the proposed 

approach, a new subsection has been added highlighting how 

the adapted HCLTF differs from existing AI-assisted learning 

models. Unlike Intelligent Tutoring Systems, which centralize 

decision-making and automate feedback, or HDL automation 

tools that directly generate code from specifications, the 

adapted HCLTF positions AI as a scaffolding partner rather 

than an automation engine. Moreover, the framework explicitly 

maps AI support onto the Forethought, Performance, and Self-

Reflection phases of SRL, offering a pedagogical integration 

does not present in conventional engineering AI tools. This 

distinction underscores the unique value of HCLTF in 

supporting reasoning-driven, AI-integrated learning 

environments. 

 

III. FRAMEWORK DESIGN: HCLTF FOR DIGITAL 

ELECTRONICS 

The HCLTF is an instructional model that integrates best 

pedagogical practices, SRL principles, and GenAI tools into a 

cohesive learning ecosystem. In the context of Digital 

Electronics education, its goal is to create a balanced workflow 

where automation accelerates repetitive tasks. At the same time, 

human reasoning remains central to problem-solving, design 

validation, and critical decision-making (Brenner, 2022).  

 

A. Core Components of the HCLTF 

The adapted framework consists of three interconnected 

domains: 

1. Learning Domain – This represents the student’s 

active cognitive process, mapped directly to the three 

phases of SRL: 

• Forethought – Students set learning objectives, 

identify constraints (e.g., timing < 50 ns, minimal 

gate count), and plan their design approach. 

• Performance – Students engage in design activities, 

simulation, optimization, and AI-assisted 

verification. 

• Self-Reflection – Students analyze simulation 

results, compare manual and AI-generated designs, 

and extract lessons learned for future tasks. 

 

2. Teaching Domain – Instructors act as facilitators 

rather than sole knowledge transmitters. Their role 

includes: 

• Designing project-based tasks that require AI 

integration without replacing critical thinking. 

• Guiding students on how to formulate effective AI 

prompts for HDL design. 

• Ensuring that learning outcomes target both 

technical mastery and critical AI literacy. 

3. Generative AI Domain – This represents the toolset 

that supports learning, including: 

• Boolean simplification checkers. 

• HDL code generators. 

• Testbench creators. 

• Optimization advisors for timing, power, and area. 

AI operates as a scaffolding agent—offering 

suggestions, templates, and optimizations—while 

the student decides what to adopt, modify, or 

discard. 

B. Interactions Between Domains 

The three domains overlap in ways that are critical to effective 

AI integration: 

• Learning + Teaching – Instructor-guided project 

design where AI tools are introduced at specific 

workflow stages to promote conceptual understanding 

before automation. 

• Learning + AI – Students use AI to validate manual 

calculations (e.g., Karnaugh map minimization) but 

still perform the derivation themselves to reinforce 

logic theory. 

• Teaching + AI – Instructors design scaffolded 

activities where AI outputs contain intentional 
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ambiguities or inefficiencies, encouraging students to 

identify and correct them. 

• Central Overlap – All three domains converge when 

students design, test, and reflect using both human 

reasoning and AI support, ensuring an iterative 

improvement cycle. 

C. Alignment with SRL in Digital Electronics 

The adapted HCLTF maps directly onto the three SRL phases—

Forethought, Performance, and Self-Reflection—ensuring that 

Generative AI integration supports, rather than bypasses, 

critical learning stages. 

 

    Forethought Phase – This is the planning and goal-setting 

stage. In a Digital Electronics course, students begin by 

analyzing design specifications, identifying constraints (e.g., 

maximum propagation delay, power budget, or logic 

minimization requirements), and selecting a high-level design 

strategy. Here, AI can be used as a brainstorming partner, 

offering possible block diagrams, design architectures, or logic 

flow suggestions. However, students must critically evaluate 

these proposals for feasibility, correctness, and adherence to 

course constraints. 

 

    Performance Phase – This is the execution and monitoring 

stage, where students engage in the actual design and 

implementation process. They perform Boolean simplification, 

write HDL code, simulate designs, and run synthesis. AI 

support during this phase might include generating initial 

Verilog/VHDL code templates, verifying manual Karnaugh 

map simplifications, or producing a baseline testbench. 

Crucially, students must still engage in manual derivation and 

simulation analysis to avoid over-reliance on AI. 

 

    Self-Reflection Phase– This is the evaluation and 

improvement stage, where students review simulation 

waveforms, analyze synthesis reports, and compare manual 

designs against AI-assisted versions. AI can assist in producing 

performance comparison tables or suggesting optimizations, 

but the interpretation and final design decisions remain with the 

student (Vosniadou et al., 2024). This phase reinforces 

metacognitive skills, encouraging students to identify what 

worked, what failed, and how to improve future projects. 

 

This mapping ensures that AI is embedded strategically within 

each SRL phase, reinforcing rather than replacing student 

agency, and helping learners develop both technical 

competence and critical AI literacy. Table III illustrates how the 

SRL phases align with specific activities in a Digital Electronics 

course and how Generative AI supports each stage. In the 

Forethought phase, students plan their design by defining 

specifications and constraints, with AI suggesting possible 

architectures for review. During the Performance phase, AI 

assists in generating draft HDL code, verifying Boolean 

simplifications, and recommending timing optimizations while 

students carry out core design and simulation tasks. In the Self-

Reflection phase, AI assists in creating performance 

comparison tables; however, students are responsible for 

interpreting the results and making the final design decisions. 

 
TABLE III 

INTEGRATION OF GENERATIVE AI WITHIN SRL PHASES FOR DIGITAL 

ELECTRONICS COURSE 

SRL Phase Digital Electronics 

Activity 

AI Integration 

Forethought Define design specs, 

identify 
performance 

constraints. 

AI suggests possible 

architectures or block 
diagrams for consideration. 

Performance Logic derivation, 
HDL coding, 

simulation, 

optimization. 

AI generates draft HDL, 
verifies Boolean 

minimization, and proposes 

timing improvements. 
Self-Reflection Compare manual vs. 

AI solutions and 

analyze synthesis 
results. 

AI assists in generating 

performance comparison 

tables, but conclusions are 
student-derived. 

 

Fig. 2 depicts the sequential workflow of a Digital Electronics 

design process aligned with the phases of SRL. It begins with 

defining design specifications (Forethought), followed by logic 

design, HDL coding, simulation, and optimization 

(Performance), and concludes with result evaluation and 

improvement through reflection.  

 

 
Fig. 2. Sequential workflow of SRL Phases in Digital Electronics Course 

 

The adapted HCLTF is integrated into the Digital Electronics 

laboratory sequence through three structured AI-supported 

modules. Week 3 introduces AI-assisted exploration of 

combinational logic, including Boolean simplification and truth 
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table verification. Week 6 extends AI use to sequential circuit 

design, focusing on timing behavior, state progression, and 

HDL synthesis. Week 9 centres on testbench creation, 

waveform interpretation, and debugging using AI-guided 

refinement. To ensure effective implementation, instructors 

undergo short workshops on prompt engineering, monitoring 

SRL behaviours, and ethical and responsible AI practices. The 

required resources include Artix-7 FPGA boards, 

Vivado/ModelSim for synthesis and simulation, VS Code with 

GitHub Copilot for AI-assisted coding, and institutional 

guidelines that govern appropriate and secure student access to 

GenAI tools. 

 

D. Example Workflow: 4-bit Synchronous Up/Down Counter 

To demonstrate the practical application of the HCLTF in an 

undergraduate Digital Electronics setting, we conducted a case 

study involving the design, simulation, and optimization of a 4-

bit synchronous up/down counter with asynchronous reset. This 

case study demonstrates how the framework aligns SRL phases 

with the integration of GenAI, ensuring that students maintain 

active control over the design process while benefiting from AI-

driven efficiency gains. 

 

1. Problem Specification (Forethought Phase) 

 

The design objective was to implement a 4-bit synchronous 

counter that: 

 

• Supports both up-counting and down-counting modes. 

• Includes an asynchronous reset that clears the counter 

to 0000. 

• Operates at a maximum clock frequency of 20 MHz or 

higher when implemented on a target FPGA board 

(Xilinx Artix-7). 

 

At this stage, students manually interpret the problem statement 

to extract functional and performance requirements. GenAI is 

introduced only as a support tool—providing potential block 

diagram layouts and suggesting alternative design approaches, 

such as ripple counters vs. fully synchronous counters. The 

students evaluate each AI-suggested architecture, ultimately 

selecting a fully synchronous design to meet timing 

requirements. 

 

2. Logic Derivation and HDL Development (Performance 

Phase) 

 

2.1 Manual Derivation 

 

Students begin with the state transition table for the 4-bit 

counter, considering both up and down modes. They derive the 

next state equations for each flip-flop using Karnaugh maps. 

For example, for the least significant bit (Q₀), the next state 

toggles every clock pulse, whereas higher bits toggle only when 

all lower bits meet specific conditions. 

 

 

 

 

2.2 AI Verification 

 

Once the manual minimization is complete, students use a 

GenAI tool to verify their Boolean expressions. The AI cross-

checks Karnaugh map results, flags redundant logic, and 

suggests minimal forms where applicable. This serves as a 

conceptual safeguard—ensuring students spot simplification 

errors early without replacing their manual effort. 

 

2.3 HDL Coding 

 

Students proceed to implement the counter in Verilog HDL. 

They manually write the core module but use AI to: 

• Suggest syntactic corrections. 

• Generate reusable parameterized modules. 

• Provide a draft testbench including clock generation, 

reset application, and mode switching scenarios. 

 

3. Simulation and Debugging (Performance Phase) 

 

Students simulate their design using ModelSim or Vivado 

Simulator. They examine waveform outputs to confirm: 

• Correct counting sequences in both modes. 

• Proper reset behavior. 

• No metastability or glitching in mode control. 

 

AI assistance here is limited to diagnostic hints—for instance, 

suggesting where a reset signal may need synchronization or 

proposing minor code refactoring for cleaner simulation output. 

 

4. Synthesis, Optimization, and Hardware Testing (Self-

Reflection Phase) 

 

4.1 Comparative Synthesis 

 

Students synthesize both their manually designed counter and 

the AI-generated counter on the same FPGA platform. They 

compare key metrics from the synthesis report, such as: 

 

• Maximum clock frequency (Fmax) 

• Logic utilization (LUT count) 

• Flip-flop count 

• Dynamic power consumption 

 

4.2 Observations and Refinement 

 

In this case, the AI-generated version introduced an 

unnecessary combinational enable logic, resulting in a slightly 

lower Fmax compared to the manual design. Recognizing this 

inefficiency, students modified the AI code to streamline the 

enable path, achieving performance parity while maintaining 

low resource usage. 

 

4.3 Hardware Verification 

 

The optimized design was then programmed onto an Artix-7 

FPGA development board. Students validated real-time 

performance by connecting LEDs to the counter outputs and 
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observing correct count sequences under varying mode and 

reset inputs. 

 

Through this workflow, the HCLTF ensures a balanced 

integration of human reasoning and AI assistance. Students 

continue to perform the core logical derivations manually, 

which helps them retain a strong grasp of fundamental concepts 

and reinforces their ability to reason through design problems 

independently. At the same time, AI is leveraged to accelerate 

repetitive and time-consuming tasks, such as generating HDL 

boilerplate code and creating initial testbench structures, 

allowing students to focus more on problem-solving and 

optimization. Ultimately, the critical analysis, interpretation of 

results, and final design decisions remain firmly under human 

control, ensuring that students develop both technical mastery 

and the judgment required to evaluate and refine AI-generated 

outputs. 

 

A total of 187 second-year Electronics and Communication 

Engineering (ECE) students participated in this study, all of 

whom were enrolled in the Digital Electronics course across 

three higher-education institutions. Most students had limited 

prior exposure to HDL design and no formal experience using 

Generative AI tools for circuit development. Before beginning 

the activity, all participants received a brief orientation on 

responsible AI use, verification practices, and expectations 

related to Self-Regulated Learning. Participation was 

voluntary, and no personally identifiable information was 

collected. The demographics of the participants are given in 

Table IV. No student data is uploaded to external AI systems, 

ensuring full privacy and anonymization throughout the study. 

Academic integrity is maintained through strict guidelines that 

prohibit fully AI-generated submissions and require all students 

to complete manual derivations before engaging with AI tools. 

To avoid over-reliance, students are explicitly informed about 

AI limitations, potential biases, and the non-deterministic 

nature of model outputs, ensuring that AI supports—but does 

not replace—conceptual understanding and human-led 

reasoning. 
 

TABLE IV 
DEMOGRAPHICS OF PARTICIPANTS 

Category Details 

Total Participants 187 students 

Program / Branch 
Electronics and Communication Engineering 

(ECE) 
Year of Study Second-year 

Course Enrolled Digital Electronics 

Prior GenAI Experience 81% had no prior exposure 

Prior HDL Experience 
23% had experience beyond basic lab 

exercises 

HDL Proficiency Levels 
62% Beginner, 29% Intermediate, 9% 
Advanced 

Pre-Activity Orientation 
Responsible AI use, verification practices, 

SRL guidelines 

Ethical Considerations 
Participation voluntary; no personal data 

collected 

 

The adapted HCLTF includes embedded safeguards to 

prevent AI over-dependence, such as requiring manual Boolean 

derivation before any AI assistance, introducing AI only after 

human design decisions, and using reflection sheets to compare 

manual and AI-generated code. Instructor-controlled prompts 

and restricted AI use during core assessments ensure that 

students verify, critique, and refine AI outputs rather than rely 

on them unquestioningly. 

 

The selection of the 4-bit synchronous up/down counter is 

pedagogically intentional. This circuit provides a level of 

controlled complexity that allows the study to isolate and 

analyze the effects of Generative AI assistance without 

introducing unrelated design variables. It also enables reliable, 

consistent comparisons between manual and AI-assisted 

workflows, and serves as a fundamental HDL building block 

that forms the basis for more advanced digital systems. To 

demonstrate that the adapted HCLTF scales beyond 

introductory designs, we additionally describe planned 

extensions to more complex modules, including finite state 

machines (FSMs) with multi-signal control, arithmetic logic 

units (ALUs), basic pipelined processor stages, and small VLSI 

datapath components. These extensions show that although the 

present study focuses on a foundational design, the framework 

is structured for broader applicability across progressively 

sophisticated digital design tasks. 

IV. RESULTS AND DISCUSSIONS 

The application of the HCLTF to the design of a 4-bit 

synchronous up/down counter provided an opportunity to 

evaluate both the technical impact of AI assistance and the 

pedagogical outcomes for students. This section presents 

quantitative results, qualitative observations, and a discussion 

of implications for undergraduate Digital Electronics course. 

A. Quantitative Results 

1. HDL Development Time 

A comparison of manual and AI-assisted workflows revealed a 

significant reduction in design and coding time when GenAI 

tools were used. Manual design—covering Boolean 

simplification, Verilog coding, and testbench creation—took 

approximately 4.5 hours on average. In contrast, the AI-assisted 

process required only 2.7 hours, a 40% time saving. The 

reduction was primarily due to AI-generated HDL boilerplate 

and automated testbench scripts, which allowed students to 

focus on debugging and optimization rather than syntax writing. 

Fig. 3 compares HDL development time, showing that AI-

assisted design reduced implementation time from 4.5 hours to 

2.7 hours.  

 
Fig. 3. HDL Development Time comparison  
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2.  Synthesis and Hardware Performance 

The counter designs—manual and AI-assisted—were 

synthesized on a Xilinx Artix-7 FPGA using Vivado. Table V 

summarizes the synthesis results. 

 
TABLE V 

COMPARISON OF SYNTHESIS METRICS FOR MANUAL VS AI-ASSISTED HDL 

DESIGNS 
Metric Manual 

Design 

AI-

Assisted 

Design 

Difference 

Max Clock Frequency 

(Fmax, MHz) 

123.4 118.2 -4.2% 

LUT Usage 20 24 +20% 
Flip-Flop Usage 16 16 0% 

Dynamic Power (mW) 2.1 2.3 +9.5% 

 

Fig. 4 presents synthesis results, indicating that while AI-

assisted designs slightly decreased maximum clock frequency 

and increased LUT usage and dynamic power, the differences 

remained within acceptable design margins. 

 

 
Fig. 4. Synthesis Performance Comparison of Manual and AI-Assisted HDL 

Designs 

 

The AI-assisted design showed a slightly lower Fmax and 

marginally higher LUT usage due to unnecessary 

combinational logic in the enable path. This overhead was 

eliminated after student-led optimization, resulting in 

equivalent performance between the two approaches. 

 

A paired t-test was conducted to statistically validate the 

difference between manual and AI-assisted development times, 

confirming that the observed reduction is significant (p < 

0.001). 

 

3.  Simulation Validation 

Both designs passed functional simulation, but the AI-

generated version initially contained redundant reset logic that 

increased propagation delay during reset deassertion. Students 

identified and corrected this issue during the Self-Reflection 

phase, demonstrating the value of critical post-analysis even in 

AI-supported workflows. 

 

B. Qualitative Observations 

1.  Student Reflections 

Students reported that AI assistance was most valuable in 

generating initial testbenches, suggesting syntax corrections, 

and providing optimization hints. However, they also 

acknowledged the risk of becoming overly dependent on AI-

generated HDL, especially for logic derivation. Several 

students noted that they felt more confident after verifying AI 

outputs themselves, as it reinforced their conceptual 

understanding (Basavaiah et al., 2022). 

 

2. Instructor Feedback 

From the instructor’s perspective, the adapted HCLTF 

successfully maintained student engagement in core analytical 

tasks while using AI to streamline repetitive processes. 

However, instructors stressed the need for structured prompts 

that ensure students cannot bypass essential derivation and 

reasoning steps (Dewan et al., 2025). 

 

3. Discussion of Educational Implications 

The results suggest that AI-assisted workflows can provide 

measurable efficiency gains in Digital Electronics education 

when structured within the HCLTF. The 40% reduction in 

development time allowed students to spend more hours on 

higher-order tasks—such as performance optimization, 

exploring alternative architectures, and conducting in-depth 

simulation analysis—without sacrificing conceptual mastery. 

However, the findings also reinforce that AI integration is not a 

plug-and-play enhancement. Without the guiding structure of 

the HCLTF, there is a significant risk that students could 

delegate critical reasoning to AI tools, leading to superficial 

understanding and reduced long-term problem-solving ability. 

When implemented properly, this framework offers a balanced 

model: 

• AI handles the mechanical tasks of syntax generation 

and initial verification. 

• Students retain ownership of analytical thinking, 

debugging, and optimization. 

• Instructors curate AI interactions to maintain cognitive 

engagement and learning depth. 

 

These results have broader implications beyond this case study, 

suggesting that the AI + HCLTF model could be adapted to 

courses in VLSI Design, Embedded Systems, and Computer 

Architecture, where HDL development and performance 

optimization are core activities. 

 

Table VI shows the summary of Pre- and Post-Intervention 

Learning Outcomes 

 
TABLE VI 

SUMMARY OF PRE- AND POST-INTERVENTION LEARNING OUTCOMES 

Learning 
Outcome 

Measured 

Pre-
Intervention 

Score 

Post-
Intervention 

Score 

Improveme

nt 

Boolean 
Simplification 

Accuracy 

62% 84% +22% 

HDL 
Debugging 

Accuracy 

71% 88% +17% 

Synthesis 
Interpretation 

Skills (timing, 

LUT, power) 

39% 76% +37% 

Ability to 

Detect 

Inefficient or 

44% 81% +37% 
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Redundant AI-
Generated 

Logic 

SRL: Goal-
Setting 

56% 88% +32% 

SRL: 

Monitoring / 
Performance 

Control 

52% 81% +29% 

SRL: 
Reflection 

Quality 

49% 90% +41% 

 

A structured survey was conducted with 187 undergraduate 

students enrolled in Digital Electronics courses across three 

engineering institutions to evaluate the integration of 

Generative AI within the HCLTF. The participants, drawn from 

second-year cohorts, had foundational knowledge of logic 

design and Hardware Description Languages (HDL), with 

varied experience in AI-assisted tools. The questionnaire 

focused on three dimensions: perceived benefits of AI 

integration, potential challenges, and overall learning impact. 

Each of the eight statements was rated on a five-point Likert 

scale (1 = Strongly Disagree, 5 = Strongly Agree). 

 

The survey was administered during the final two weeks of the 

semester, after students completed a 4-bit synchronous counter 

design project incorporating AI-based HDL generation and 

optimization. Both online and paper-based formats were used, 

and participation was anonymous to encourage honest 

feedback. Pilot testing with 15 students ensured clarity, and 

internal consistency measured via Cronbach’s alpha was 0.87, 

indicating strong reliability. A total of 187 valid responses were 

obtained (96.4% completion rate), and descriptive statistics 

were computed to analyze trends in perceptions and identify 

relationships between prior AI experience and reported learning 

outcomes. 

 

Table VII summarizes student perceptions of AI-assisted 

learning in Digital Electronics, showing high agreement on time 

savings, improved problem-solving focus, and overall learning 

enhancement. Moderate concerns were noted regarding over-

reliance and occasional inefficiencies in AI-generated designs. 

 
TABLE VII 

STUDENT SURVEY RESULTS ON AI-ASSISTED LEARNING IN DIGITAL 

ELECTRONICS (N = 187) 

Q.No Survey Question Mean Score Std. Dev. 
Agreemen

t (%) 

1 

AI-assisted 

workflow helped 
me complete 

designs faster 

4.58 0.52 93.6% 

2 

AI allowed me to 
focus more on 

complex problem-

solving 

4.42 0.59 88.2% 

3 

AI-generated 

HDL code was 
easy to 

understand and 

edit 

4.14 0.66 81.3% 

4 

AI improved my 

Boolean 

simplification and 

4.33 0.54 85.6% 

verification 
accuracy 

5 

The framework 

encouraged me to 
critically evaluate 

AI outputs 

4.05 0.73 78.6% 

6 

I became over-
reliant on AI for 

certain design 

tasks 

3.21 0.96 42.8% 

7 

AI sometimes 

produced 

inefficient designs 

3.29 0.84 46.0% 

8 

Overall, AI 

integration 

improved my 
learning 

experience 

4.49 0.48 91.4% 

 

Over 90% of students reported that AI integration accelerated 

design work and enhanced their overall learning experience, 

with approximately 88% noting that it allowed them to dedicate 

more time to higher-order problem-solving activities. Moderate 

concerns were expressed regarding over-reliance (42.8%) and 

occasional inefficiencies in AI-generated designs (46%), 

reflecting an awareness of the technology’s limitations. 

Furthermore, the high agreement rate on the ease of 

understanding AI-generated HDL code (81%) indicates that the 

implemented workflow successfully balanced automation with 

the retention of core conceptual and practical skills. 

 

While the findings of this study demonstrate clear 

improvements in efficiency, reasoning accuracy, and SRL 

development, certain limitations must be acknowledged. First, 

the work is not longitudinal; students were assessed within a 

single semester, limiting insights into long-term retention and 

transfer of skills. Second, although the study included 187 

students across three institutions, its scope is confined to 

foundational digital design tasks, and broader validation across 

more complex courses is still required. Third, AI-generated 

HDL behavior may vary with different prompting or model 

versions, requiring instructor oversight to ensure consistency. 

These limitations inform and motivate the planned longitudinal 

extension of this research. 

V. CONCLUSION AND FUTURE WORK 

This study presented an adaptation of the HCLTF for 

undergraduate Digital Electronics education by integrating 

Generative AI into the design, simulation, and optimization 

workflow. Using the 4-bit synchronous up/down counter as a 

case study, the framework demonstrated how AI support can be 

aligned with SRL phases so that students maintain ownership 

of analytical reasoning and manual derivation while benefiting 

from AI-assisted verification and code scaffolding. The results 

showed a substantial reduction—approximately 40%—in HDL 

development time, enabling students to focus on higher-order 

tasks such as optimization and synthesis interpretation. 

Although AI-generated HDL occasionally introduced 

redundant logic or minor inefficiencies, these were effectively 

identified during the self-reflection phase, confirming that the 

framework strikes a balance between AI efficiency and 
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conceptual understanding. 

 

From a pedagogical standpoint, the adapted HCLTF ensures 

that students remain active decision-makers throughout the 

design process while AI serves as a supportive cognitive 

partner. Instructors guide the process through structured 

safeguards, including mandatory manual derivation, staged AI 

integration, and reflection-based validation. This approach 

prevents over-reliance and encourages deeper engagement with 

design concepts, making it a viable model for modernizing 

Digital Electronics education. Future work will extend the 

framework to more complex digital systems such as FSMs with 

multiple control signals, ALUs, pipelined stages, and small 

VLSI datapath components. Additional lines of work include 

integrating AI directly into FPGA toolchains for real-time 

optimization and evaluating how AI-augmented learning 

environments influence graduates’ technical competence, 

ethical awareness, and industry readiness. 

 

Despite the promising outcomes, the study has certain 

limitations. The framework was tested on a foundational circuit, 

which may constrain generalizability to more complex 

architectures. AI tools sometimes generated suboptimal HDL, 

requiring instructor oversight and student diagnostic skills, and 

SRL development varied across learners. To address these gaps, 

a structured longitudinal research plan has been proposed. This 

includes Year 1–2 assessments of SRL retention using non-AI 

tasks, Year 2–3 tracking of student performance in advanced 

digital design courses, internship supervisor evaluations, 

employability metrics for HDL/FPGA roles, and 6- and 12-

month conceptual retention tests. An AI-Competence Growth 

Index (AI-Lit Index) will also be used to measure sustained 

progress, providing a comprehensive roadmap for evaluating 

the long-term educational impact of the adapted HCLTF. 
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