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Abstract—Generative Artificial Intelligence (AI) has emerged as a
transformative force in engineering education, offering rapid
content generation, intelligent code assistance, and simulation
support. In Digital Electronics courses, Al can accelerate circuit
design workflows, enhance self-regulated learning (SRL), and
support deeper engagement with domain-specific concepts. This
paper presents an engineering-adapted Human-Centered
Learning and Teaching Framework (HCLTF) that integrates
generative Al into the learning process while preserving analytical
rigor and human-centered pedagogical values. The framework
aligns with SRL's forethought, performance, and self-reflection
phases, embedding Al in logic design, HDL development,
simulation, and optimization tasks. A case study is presented in
which 187 undergraduate students across three institutions design,
simulate, and optimize a 4-bit synchronous up/down counter using
a combination of traditional design methods and Al-assisted
support. The AI was employed for Boolean simplification
verification, Verilog code scaffolding, testbench generation, and
timing optimization. Al-assisted workflows reduce HDL
development time by 40% compared to traditional methods.
Synthesis results reveal measurable differences between manual
and Al-generated designs, including a 4.2% lower Fmax, 20%
higher LUT usage, and a 9.5% increase in dynamic power prior to
student-led optimization. Quantitative and qualitative findings
indicate improvements in students’ Boolean reasoning, debugging
proficiency, and reflective judgment across SRL phases. The study
highlights the pedagogical value of guided GenAl integration and
provides a scalable model for embedding Al-supported learning
within Digital Electronics and broader engineering curricula.
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I. INTRODUCTION

HE emergence and rapid adoption of Generative Artificial

Intelligence (GenAl) in engineering workflows have
introduced a paradigm shift in how systems are conceived,
modeled, implemented, and optimized. In undergraduate
Digital Electronics education, this transformation is particularly
impactful because students must bridge the gap between
abstract theoretical knowledge—such as Boolean algebra,
combinational and sequential logic design, and finite state
machine theory—and its practical realization through Hardware
Description Languages (HDLs) like Verilog or VHDL,
culminating in hardware deployment on Field-Programmable
Gate Arrays (FPGAs). The incorporation of GenAl-powered
tools into this learning process offers the potential to accelerate
concept acquisition, reduce design iteration cycles, and enhance
overall design quality, while simultaneously exposing students
to workflows increasingly common in professional engineering
environments (Andersen et al., 2025).

Traditionally, the workflow of digital electronics education
has been sequential, manual, and concept-based: requirement
analysis, logic derivation, HDL implementation, simulation and
debugging, and ultimately synthesis and deployment. Although
this approach develops strong analytical abilities, a keen eye
and a solid grasp of ideas, it is also extremely time-consuming.
Long debugging periods tend to limit the amount of time
students have to devote to higher-order problem solving tasks
like analyzing design trade-offs or experimenting with new
architectures. As an example, one working on a 4-bit
synchronous up/down counter could spend hours figuring out
how to fix timing problems in a reset signal, with no time to
evaluate anything about Gray code vs. binary state encoding or
even to test power-reduction strategies like clock gating.

There are various capabilities that can make this process more
effective, and these may be provided by GenAl tools, including
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ChatGPT, GitHub Copilot, and code generators specific to
HDLs. These are Boolean expression checking, automatic
writing of HDL code using natural language specifications,
automatic testbench construction including edge-case coverage,
optimization hints about timing and resource usage, and even
interpretation of synthesis reports with repair advice. But they
have their own dangers: when students use Al without critical
analysis, they can overlook much in terms of necessary
reasoning, forget how to derive things by hand (Peri¢ et al.,
2025), and fail to notice subtle design errors like asynchronous
reset hazards or inefficient state encoding that can pass
simulation but fail in practice.

The modified HCLTF as applied to undergraduate Digital
Electronics is shown in Fig. 1 as a three-circle Venn diagram
comprising the Learning Domain, Teaching Domain, and
Generative Al Domain. The Learning Domain is associated
with activities led by students in setting goals and conceptual
knowledge, as well as with iterative self-assessment, which are
consistent with the phases of Self-Regulated Learning,
including Forethought, Performance, and Self-Reflection. The
Teaching Domain reflects the role of the instructor and creates
an instructional guide, scaffold, and architectural Al to ensure
cognitive participation. The Generative Al Domain
encompasses Al tools that verify Boolean expressions, generate
HDL programs, create testbenches, and optimise designs,
primarily focusing on repetitive or syntactic tasks. The domains
overlap shows the important interactions: instructor-led Al
integration, student-led Al wvalidation, and designed Al
activities. The Design-Test-Reflect Loop at the centre of the
diagram signifies the endless nature of the circuit creation,
simulation, or hardware testing and reflective improvement
process, so that Al is used to improve but not to replace
analytical thought.

To ensure that automation complements rather than replaces
fundamental design thinking, we adapt the Human-Centered
Learning and Teaching Framework (HCLTF) for Digital
Electronics education. This adaptation defines a triadic
relationship: students act as active designers and evaluators
responsible for validating Al outputs; instructors serve as
facilitators and cognitive coaches, guiding prompt formulation
and critical evaluation; and Al tools function as scaffolding
agents, accelerating repetitive or low-level tasks while
preserving human responsibility for analytical reasoning,
decision-making, and trade-off analysis. This alignment of Al-
assisted learning with the phases of Self-Regulated Learning
(SRL)—Forethought, Performance, and Self-Reflection—
ensures that students cultivate the meta-cognitive skills required
to thrive in an Al-augmented engineering environment (Peres
et al., 2023).
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Fig. 1. Adapted HCLTF for undergraduate Digital Electronics

Existing Al-assisted circuit design tools—such as HDL
generators, Boolean minimizers, and FPGA optimization
assistants—primarily automate tasks but do not cultivate
metacognition, SRL, or critical evaluation of Al outputs. This
creates a need for a pedagogical framework where Al
augments, rather than replaces, analytical decision-making. The
HCLTF, originally designed for K-12 STEM settings,
emphasizes instructor facilitation, student agency, and iterative
reflection, but has limited adaptation for engineering domains
involving HDL, synthesis, and FPGA workflows. Unlike
TPACK and SAMR, which address technology integration but
not learner autonomy or Al collaboration, HCLTF supports
student-led verification of AI outputs and structured SRL
engagement. Therefore, the adapted HCLTF offers a
distinctive, SRL-aligned approach tailored for Al-intensive
engineering education.

The differences between the traditional manual workflow and
the proposed Al-assisted approach under the HCLTF are
summarized in Table I.

TABLEI
DIFFERENCES BETWEEN THE TRADITIONAL MANUAL WORKFLOW AND THE
PROPOSED AI-ASSISTED APPROACH UNDER THE HCLTF

Al-Assisted Workflow

Manual Workflow (HCLTF)

Design Stage

Requirement Interpret the Interpre't with Al prgmptmg
. problem statement suggestions, but validate the
Analysis
manually scope
Boolean
Logic simplification by Manual derivation, Al cross-
Derivation hand (K-map, check for minimization
Quine—McCluskey)
Write
HDL ' Verilog/VHDL from Al generates draft code?, .
Implementation scratch student refines and optimizes

Manual testbench
creation, manual
error detection
Manual
timing/power
optimization

Al generates testbench,
student adds missing cases,
and validates results

Al suggests optimizations,
and the student verifies via
synthesis tools

Simulation &
Debugging

Optimization &
Synthesis
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Foundational designs such as counters, adders, and simple state
machines have well-defined logic rules, predictable HDL
structures, and limited design complexity, which make Al-
generated outputs easier to verify and compare against known
correct behavior. This controlled environment allows students
to safely evaluate Al reliability, identify inefficiencies or errors
in Al-generated HDL, and develop essential skills in
verification and reflective judgment before progressing to more
complex digital systems.

This paper applies the adapted HCLTF to a case study in which
undergraduate students design, simulate, and optimize a 4-bit
synchronous up/down counter with asynchronous reset using
both traditional and Al-assisted workflows. The study evaluates
efficiency gains, tracks the development of SRL skills, and
assesses the quality and reliability of Al-generated HDL in an
educational setting. Through this approach, the research
demonstrates how structured Al integration can preserve
analytical rigor while leveraging the speed and versatility of
modern GenAl tools in engineering education.

The organization of the paper is as follows: Section II gives the
review of the existing literature, Section III provides the
framework of HCLTF for digital electronics, Section IV
discusses the impact of implementing HCLTF and provides a
discussion on it, Section V provides the conclusion of the work
and highlights the future work that can be implemented in near
future.

II. LITERATURE REVIEW

Despite the growing use of GenAl in programming, data
science, and problem-solving courses, significant gaps remain
in the context of engineering education, particularly in digital
electronics, HDL design, testbench generation, and FPGA-
based workflows. Existing studies focus largely on productivity
gains or automated code generation, with limited attention to
how GenAl influences conceptual understanding, verification
strategies, or student metacognition. Furthermore, most
published work does not address transitions between traditional
analytical workflows and Al-assisted workflows, leaving
unclear how students should critically evaluate Al outputs. To
bridge these gaps, this study positions GenAl within a
structured, human-centered pedagogical framework to ensure
that Al enhances—not replaces—core engineering reasoning
skills. Recent advances in Al and GenAl have increasingly
shaped engineering education, influencing how students learn
programming, circuit design, simulation, and problem-solving.
While prior studies demonstrate GenAl’s potential to enhance
efficiency and provide adaptive guidance, much of the existing
work remains centered on programming, algorithmic learning,
or Intelligent Tutoring Systems (ITS), with limited focus on
hardware-oriented fields such as Digital Electronics (Anderson
et al.,, 1995). These systems have since expanded to GenAl
systems that can generate context-sensitive solutions and write
code, as well as help to solve complex problems (Amuru &
Abbas, 2024). Although most of these developments have been
implemented in the context of programming and data science

education, an increase in the awareness of the potential of Al in
hardware-oriented fields, especially Digital Electronics, is
observed.

The classic methodology of teaching digital system design is to
proceed through a sequence of manual derivations of logic, the
implementation of Hardware Description Language (HDL),
simulation, and repeated debugging (Dames & Eves, 2025).
Although this process can lead to profound conceptual
knowledge, it can be time-consuming and decrease the
student’s possibilities to think at higher design levels. Recent
studies have suggested Al-based design assistants that could be
used to automate the process of verification of Boolean logic,
produce synthesizable HDL code based on high-level
specifications, and synthesize simulation test benches (Song et
al., 2023). For example, HDL-specific GenAl models can
translate natural language descriptions of digital circuits—such
as counters, multiplexers, or finite state machines—into fully
functional Verilog modules, often accompanied by verification
scripts. However, without careful instructional design, these
tools may create black box scenarios where students accept Al-
generated outputs without verifying correctness or efficiency.

The challenge of integrating Al into Digital Electronics
instruction is closely linked to SRL theory, which emphasizes
learner autonomy in setting goals, monitoring progress, and
evaluating outcomes (Tang, 2023). Educational research
suggests that combining Al support with SRL strategies can
maintain student agency while enhancing efficiency. The
HCLTEF initially applied in K—12 STEM contexts (Zhang et al.,
2025) offer a balanced model where instructors act as
facilitators, students serve as active evaluators, and Al tools
operate as scaffolding agents. However, research on applying
this framework to undergraduate Digital Electronics—with its
emphasis on hardware timing constraints, synthesis
optimization, and FPGA prototyping—is still scarce.

Another critical dimension is Al literacy, defined as the ability
to use Al tools effectively, critically assess their outputs, and
understand their limitations (Long & Magerko, 2020). In
Digital Electronics, Al literacy encompasses evaluating the
synthesizability of HDL code, recognizing potential timing
violations, and identifying inefficient resource utilization in
FPGA implementations. Empirical findings from Al-assisted
circuit design studies (Khojah et al., 2025) indicate that, when
implemented within a guided framework, Al can reduce
development time by up to 50% without a drop in design
quality. Conversely, unstructured Al usage often leads to over-
reliance and reduced retention of manual design skills.

This review underscores the need to adapt the HCLTF for
Digital Electronics to leverage AI’s efficiency gains while
safeguarding analytical rigor. Embedding Al interaction within
SRL phases can provide structured engagement, ensuring that
students develop both technical competence and the critical
thinking skills necessary for Al-integrated engineering practice.

Table II shows the differences between HCLTF and two widely
used educational technology models, TPACK and SAMR.
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TABLEII
CoMPARISON OF HCLTF wiTH SAMR AND TPACK MODELS
Aspect TPACK SAMR HCLTF (Proposed
Framework)
Primary Balancing Classifying levels Human-centered
Focus technology, of technology learning with Al-
pedagogy, integration assisted scaffolding
and content
knowledge
Learner Not Not addressed Strong emphasis on
Autonomy  explicitly student agency and
emphasized decision-making
Role of AI  Not Not considered Al treated as a
considered cognitive
collaborator to
support reasoning
Self- Not Not integrated Fully aligned with
Regulated  integrated SRL phases
Learning (Forethought,
(SRL) Performance,
Reflection)
Critical Not included  Not included Students are
Evaluation required to verify,
of Al critique, and refine
Outputs Al suggestions

To further clarify the theoretical basis of the proposed
approach, a new subsection has been added highlighting how
the adapted HCLTF differs from existing Al-assisted learning
models. Unlike Intelligent Tutoring Systems, which centralize
decision-making and automate feedback, or HDL automation
tools that directly generate code from specifications, the
adapted HCLTF positions Al as a scaffolding partner rather
than an automation engine. Moreover, the framework explicitly
maps Al support onto the Forethought, Performance, and Self-
Reflection phases of SRL, offering a pedagogical integration
does not present in conventional engineering Al tools. This
distinction underscores the unique value of HCLTF in
supporting  reasoning-driven,  Al-integrated  learning
environments.

III. FRAMEWORK DESIGN: HCLTF FOR DIGITAL
ELECTRONICS

The HCLTF is an instructional model that integrates best
pedagogical practices, SRL principles, and GenAl tools into a
cohesive learning ecosystem. In the context of Digital
Electronics education, its goal is to create a balanced workflow
where automation accelerates repetitive tasks. At the same time,
human reasoning remains central to problem-solving, design
validation, and critical decision-making (Brenner, 2022).
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A. Core Components of the HCLTF

The adapted framework consists of three interconnected
domains:

1. Learning Domain — This represents the student’s
active cognitive process, mapped directly to the three
phases of SRL:

e  Forethought — Students set learning objectives,
identify constraints (e.g., timing < 50 ns, minimal
gate count), and plan their design approach.

e  Performance — Students engage in design activities,
simulation,  optimization, and  Al-assisted
verification.

o  Self-Reflection — Students analyze simulation
results, compare manual and Al-generated designs,
and extract lessons learned for future tasks.

2. Teaching Domain — Instructors act as facilitators
rather than sole knowledge transmitters. Their role
includes:

e Designing project-based tasks that require Al
integration without replacing critical thinking.

e Guiding students on how to formulate effective Al
prompts for HDL design.

e Ensuring that learning outcomes target both
technical mastery and critical Al literacy.

3. Generative AI Domain — This represents the toolset
that supports learning, including:

e Boolean simplification checkers.
e HDL code generators.
e Testbench creators.

e  Optimization advisors for timing, power, and area.
Al operates as a scaffolding agent—offering
suggestions, templates, and optimizations—while
the student decides what to adopt, modify, or
discard.

B. Interactions Between Domains

The three domains overlap in ways that are critical to effective
Al integration:

e Learning + Teaching — Instructor-guided project
design where Al tools are introduced at specific
workflow stages to promote conceptual understanding
before automation.

o Learning + Al — Students use Al to validate manual
calculations (e.g., Karnaugh map minimization) but
still perform the derivation themselves to reinforce
logic theory.

e Teaching + Al — Instructors design scaffolded
activities where AI outputs contain intentional
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ambiguities or inefficiencies, encouraging students to
identify and correct them.

e Central Overlap — All three domains converge when
students design, test, and reflect using both human
reasoning and Al support, ensuring an iterative
improvement cycle.

C. Alignment with SRL in Digital Electronics

The adapted HCLTF maps directly onto the three SRL phases—
Forethought, Performance, and Self-Reflection—ensuring that
Generative Al integration supports, rather than bypasses,
critical learning stages.

Forethought Phase — This is the planning and goal-setting
stage. In a Digital Electronics course, students begin by
analyzing design specifications, identifying constraints (e.g.,
maximum propagation delay, power budget, or logic
minimization requirements), and selecting a high-level design
strategy. Here, Al can be used as a brainstorming partner,
offering possible block diagrams, design architectures, or logic
flow suggestions. However, students must critically evaluate
these proposals for feasibility, correctness, and adherence to
course constraints.

Performance Phase — This is the execution and monitoring
stage, where students engage in the actual design and
implementation process. They perform Boolean simplification,
write HDL code, simulate designs, and run synthesis. Al
support during this phase might include generating initial
Verilog/VHDL code templates, verifying manual Karnaugh
map simplifications, or producing a baseline testbench.
Crucially, students must still engage in manual derivation and
simulation analysis to avoid over-reliance on Al.

Self-Reflection Phase— This is the evaluation and
improvement stage, where students review simulation
waveforms, analyze synthesis reports, and compare manual
designs against Al-assisted versions. Al can assist in producing
performance comparison tables or suggesting optimizations,
but the interpretation and final design decisions remain with the
student (Vosniadou et al., 2024). This phase reinforces
metacognitive skills, encouraging students to identify what
worked, what failed, and how to improve future projects.

This mapping ensures that Al is embedded strategically within
each SRL phase, reinforcing rather than replacing student
agency, and helping learners develop both technical
competence and critical Al literacy. Table III illustrates how the
SRL phases align with specific activities in a Digital Electronics
course and how Generative Al supports each stage. In the
Forethought phase, students plan their design by defining
specifications and constraints, with Al suggesting possible
architectures for review. During the Performance phase, Al
assists in generating draft HDL code, verifying Boolean
simplifications, and recommending timing optimizations while
students carry out core design and simulation tasks. In the Self-
Reflection phase, Al assists in creating performance
comparison tables; however, students are responsible for
interpreting the results and making the final design decisions.

TABLE III
INTEGRATION OF GENERATIVE AI WITHIN SRL PHASES FOR DIGITAL
ELECTRONICS COURSE

SRL Phase Digital Electronics Al Integration
Activity

Forethought Define design specs, Al suggests possible
identify architectures or block
performance diagrams for consideration.
constraints.

Performance Logic derivation, Al generates draft HDL,
HDL coding, verifies Boolean
simulation, minimization, and proposes
optimization. timing improvements.

Self-Reflection Compare manual vs. Al assists in generating

Al solutions and
analyze synthesis
results.

performance comparison
tables, but conclusions are
student-derived.

Fig. 2 depicts the sequential workflow of a Digital Electronics
design process aligned with the phases of SRL. It begins with
defining design specifications (Forethought), followed by logic
design, HDL coding, simulation, and optimization
(Performance), and concludes with result evaluation and
improvement through reflection.

Design Specification
(Forethought)

Logic Design and Simplification
(Performance)

HDL Coding and Simulation
(Performance)

A4

Optimization and Validation
(Performance)

Reflection
(Self Reflection)

Fig. 2. Sequential workflow of SRL Phases in Digital Electronics Course

The adapted HCLTF is integrated into the Digital Electronics
laboratory sequence through three structured Al-supported
modules. Week 3 introduces Al-assisted exploration of
combinational logic, including Boolean simplification and truth
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table verification. Week 6 extends Al use to sequential circuit
design, focusing on timing behavior, state progression, and
HDL synthesis. Week 9 centres on testbench -creation,
waveform interpretation, and debugging using Al-guided
refinement. To ensure effective implementation, instructors
undergo short workshops on prompt engineering, monitoring
SRL behaviours, and ethical and responsible Al practices. The
required resources include Artix-7 FPGA  boards,
Vivado/ModelSim for synthesis and simulation, VS Code with
GitHub Copilot for Al-assisted coding, and institutional
guidelines that govern appropriate and secure student access to
GenAl tools.

D. Example Workflow: 4-bit Synchronous Up/Down Counter

To demonstrate the practical application of the HCLTF in an
undergraduate Digital Electronics setting, we conducted a case
study involving the design, simulation, and optimization of a 4-
bit synchronous up/down counter with asynchronous reset. This
case study demonstrates how the framework aligns SRL phases
with the integration of GenAl, ensuring that students maintain
active control over the design process while benefiting from Al-
driven efficiency gains.

1. Problem Specification (Forethought Phase)

The design objective was to implement a 4-bit synchronous
counter that:

e  Supports both up-counting and down-counting modes.

e Includes an asynchronous reset that clears the counter
to 0000.

e  Operates at a maximum clock frequency of 20 MHz or
higher when implemented on a target FPGA board
(Xilinx Artix-7).

At this stage, students manually interpret the problem statement
to extract functional and performance requirements. GenAl is
introduced only as a support tool—providing potential block
diagram layouts and suggesting alternative design approaches,
such as ripple counters vs. fully synchronous counters. The
students evaluate each Al-suggested architecture, ultimately
selecting a fully synchronous design to meet timing
requirements.

2. Logic Derivation and HDL Development (Performance
Phase)

2.1 Manual Derivation

Students begin with the state transition table for the 4-bit
counter, considering both up and down modes. They derive the
next state equations for each flip-flop using Karnaugh maps.
For example, for the least significant bit (Qo), the next state
toggles every clock pulse, whereas higher bits toggle only when
all lower bits meet specific conditions.

2.2 Al Verification

Once the manual minimization is complete, students use a
GenAl tool to verify their Boolean expressions. The Al cross-
checks Karnaugh map results, flags redundant logic, and
suggests minimal forms where applicable. This serves as a
conceptual safeguard—ensuring students spot simplification
errors early without replacing their manual effort.

2.3 HDL Coding

Students proceed to implement the counter in Verilog HDL.
They manually write the core module but use Al to:
e  Suggest syntactic corrections.
e  Generate reusable parameterized modules.
e Provide a draft testbench including clock generation,
reset application, and mode switching scenarios.

3. Simulation and Debugging (Performance Phase)

Students simulate their design using ModelSim or Vivado
Simulator. They examine waveform outputs to confirm:

e Correct counting sequences in both modes.

e  Proper reset behavior.

e No metastability or glitching in mode control.

Al assistance here is limited to diagnostic hints—for instance,
suggesting where a reset signal may need synchronization or
proposing minor code refactoring for cleaner simulation output.

4. Synthesis, Optimization, and Hardware Testing (Self-
Reflection Phase)

4.1 Comparative Synthesis

Students synthesize both their manually designed counter and
the Al-generated counter on the same FPGA platform. They
compare key metrics from the synthesis report, such as:

Maximum clock frequency (Fmax)
Logic utilization (LUT count)
Flip-flop count

Dynamic power consumption

4.2 Observations and Refinement

In this case, the Al-generated version introduced an
unnecessary combinational enable logic, resulting in a slightly
lower Fmax compared to the manual design. Recognizing this
inefficiency, students modified the Al code to streamline the
enable path, achieving performance parity while maintaining
low resource usage.

4.3 Hardware Verification
The optimized design was then programmed onto an Artix-7

FPGA development board. Students validated real-time
performance by connecting LEDs to the counter outputs and
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observing correct count sequences under varying mode and
reset inputs.

Through this workflow, the HCLTF ensures a balanced
integration of human reasoning and Al assistance. Students
continue to perform the core logical derivations manually,
which helps them retain a strong grasp of fundamental concepts
and reinforces their ability to reason through design problems
independently. At the same time, Al is leveraged to accelerate
repetitive and time-consuming tasks, such as generating HDL
boilerplate code and creating initial testbench structures,
allowing students to focus more on problem-solving and
optimization. Ultimately, the critical analysis, interpretation of
results, and final design decisions remain firmly under human
control, ensuring that students develop both technical mastery
and the judgment required to evaluate and refine Al-generated
outputs.

A total of 187 second-year Electronics and Communication
Engineering (ECE) students participated in this study, all of
whom were enrolled in the Digital Electronics course across
three higher-education institutions. Most students had limited
prior exposure to HDL design and no formal experience using
Generative Al tools for circuit development. Before beginning
the activity, all participants received a brief orientation on
responsible Al use, verification practices, and expectations
related to Self-Regulated Learning. Participation was
voluntary, and no personally identifiable information was
collected. The demographics of the participants are given in
Table IV. No student data is uploaded to external Al systems,
ensuring full privacy and anonymization throughout the study.
Academic integrity is maintained through strict guidelines that
prohibit fully Al-generated submissions and require all students
to complete manual derivations before engaging with Al tools.
To avoid over-reliance, students are explicitly informed about
Al limitations, potential biases, and the non-deterministic
nature of model outputs, ensuring that Al supports—but does

not replace—conceptual understanding and human-led
reasoning.
TABLE IV
DEMOGRAPHICS OF PARTICIPANTS
Category Details

187 students

Electronics and Communication Engineering
(ECE)

Second-year

Digital Electronics

81% had no prior exposure

23% had experience beyond basic lab
exercises

62% Beginner, 29% Intermediate, 9%
Advanced

Responsible Al use, verification practices,
SRL guidelines

Participation voluntary; no personal data
collected

Total Participants
Program / Branch

Year of Study
Course Enrolled
Prior GenAl Experience

Prior HDL Experience
HDL Proficiency Levels
Pre-Activity Orientation

Ethical Considerations

The adapted HCLTF includes embedded safeguards to
prevent Al over-dependence, such as requiring manual Boolean
derivation before any Al assistance, introducing Al only after
human design decisions, and using reflection sheets to compare

manual and Al-generated code. Instructor-controlled prompts
and restricted Al use during core assessments ensure that
students verify, critique, and refine Al outputs rather than rely
on them unquestioningly.

The selection of the 4-bit synchronous up/down counter is
pedagogically intentional. This circuit provides a level of
controlled complexity that allows the study to isolate and
analyze the effects of Generative Al assistance without
introducing unrelated design variables. It also enables reliable,
consistent comparisons between manual and Al-assisted
workflows, and serves as a fundamental HDL building block
that forms the basis for more advanced digital systems. To
demonstrate that the adapted HCLTF scales beyond
introductory designs, we additionally describe planned
extensions to more complex modules, including finite state
machines (FSMs) with multi-signal control, arithmetic logic
units (ALUs), basic pipelined processor stages, and small VLSI
datapath components. These extensions show that although the
present study focuses on a foundational design, the framework
is structured for broader applicability across progressively
sophisticated digital design tasks.

IV. RESULTS AND DISCUSSIONS

The application of the HCLTF to the design of a 4-bit
synchronous up/down counter provided an opportunity to
evaluate both the technical impact of Al assistance and the
pedagogical outcomes for students. This section presents
quantitative results, qualitative observations, and a discussion
of implications for undergraduate Digital Electronics course.

A. Quantitative Results

1.  HDL Development Time

A comparison of manual and Al-assisted workflows revealed a
significant reduction in design and coding time when GenAl
tools were wused. Manual design—covering Boolean
simplification, Verilog coding, and testbench creation—took
approximately 4.5 hours on average. In contrast, the Al-assisted
process required only 2.7 hours, a 40% time saving. The
reduction was primarily due to Al-generated HDL boilerplate
and automated testbench scripts, which allowed students to
focus on debugging and optimization rather than syntax writing.
Fig. 3 compares HDL development time, showing that Al-
assisted design reduced implementation time from 4.5 hours to
2.7 hours.

HDL Development Time: Manual vs Al-Assisted
4.5

w

Time (hours)
Y]

1

0

Manual

Al-Assisted

Fig. 3. HDL Development Time comparison

328

JEET



Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

2. Synthesis and Hardware Performance
The counter designs—manual and Al-assisted—were
synthesized on a Xilinx Artix-7 FPGA using Vivado. Table V
summarizes the synthesis results.

TABLEV
COMPARISON OF SYNTHESIS METRICS FOR MANUAL VS AI-ASSISTED HDL
DESIGNS
Metric Manual Al- Difference
Design Assisted
Design
Max Clock Frequency 123.4 118.2 -4.2%
(Fmax, MHz)
LUT Usage 20 24 +20%
Flip-Flop Usage 16 16 0%
Dynamic Power (mW) 2.1 2.3 +9.5%

Fig. 4 presents synthesis results, indicating that while Al-
assisted designs slightly decreased maximum clock frequency
and increased LUT usage and dynamic power, the differences
remained within acceptable design margins.

Synthesis Results: Manual vs Al-Assisted
3.4

12
1201 118.2 . Manual
Al-Assisted
1001
80
[
=
£ 60}
40
20 24
201
0 2.1 2.3
Fmax (MHz) LUT Usage Dynamic Power (mW)

Fig. 4. Synthesis Performance Comparison of Manual and Al-Assisted HDL
Designs

The Al-assisted design showed a slightly lower Fmax and
marginally higher LUT wusage due to unnecessary
combinational logic in the enable path. This overhead was
eliminated after student-led optimization, resulting in
equivalent performance between the two approaches.

A paired t-test was conducted to statistically validate the
difference between manual and Al-assisted development times,
confirming that the observed reduction is significant (p <
0.001).

3. Simulation Validation
Both designs passed functional simulation, but the Al-
generated version initially contained redundant reset logic that
increased propagation delay during reset deassertion. Students
identified and corrected this issue during the Self-Reflection
phase, demonstrating the value of critical post-analysis even in
Al-supported workflows.

B. Qualitative Observations

1. Student Reflections
Students reported that Al assistance was most valuable in
generating initial testbenches, suggesting syntax corrections,
and providing optimization hints. However, they also
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acknowledged the risk of becoming overly dependent on Al-
generated HDL, especially for logic derivation. Several
students noted that they felt more confident after verifying Al
outputs themselves, as it reinforced their conceptual
understanding (Basavaiah et al., 2022).

2. Instructor Feedback
From the instructor’s perspective, the adapted HCLTF
successfully maintained student engagement in core analytical
tasks while using Al to streamline repetitive processes.
However, instructors stressed the need for structured prompts
that ensure students cannot bypass essential derivation and
reasoning steps (Dewan et al., 2025).

3. Discussion of Educational Implications
The results suggest that Al-assisted workflows can provide
measurable efficiency gains in Digital Electronics education
when structured within the HCLTF. The 40% reduction in
development time allowed students to spend more hours on
higher-order tasks—such as performance optimization,
exploring alternative architectures, and conducting in-depth
simulation analysis—without sacrificing conceptual mastery.
However, the findings also reinforce that Al integration is not a
plug-and-play enhancement. Without the guiding structure of
the HCLTF, there is a significant risk that students could
delegate critical reasoning to Al tools, leading to superficial
understanding and reduced long-term problem-solving ability.
When implemented properly, this framework offers a balanced
model:
e Al handles the mechanical tasks of syntax generation
and initial verification.
e Students retain ownership of analytical thinking,
debugging, and optimization.
e Instructors curate Al interactions to maintain cognitive
engagement and learning depth.

These results have broader implications beyond this case study,
suggesting that the Al + HCLTF model could be adapted to
courses in VLSI Design, Embedded Systems, and Computer
Architecture, where HDL development and performance
optimization are core activities.

Table VI shows the summary of Pre- and Post-Intervention
Learning Outcomes

TABLE VI
SUMMARY OF PRE- AND POST-INTERVENTION LEARNING OUTCOMES
Learning Pre- Post- Improveme
Outcome Intervention Intervention
Measured Score Score nt
Boolean
Simplification 62% 84% +22%
Accuracy
HDL
Debugging 71% 88% +17%
Accuracy
Synthesis
Interpretation
Skills (timing, 0 7° 76% 37%
LUT, power)
Ability to
Detect 44% 81% +37%

Inefficient or
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Redundant Al-
Generated
Logic

SRL: Goal-
Setting

SRL:
Monitoring /
Performance
Control
SRL:
Reflection

Quality

56% 88% +32%

52% 81% +29%

49% 90% +41%

A structured survey was conducted with 187 undergraduate
students enrolled in Digital Electronics courses across three
engineering institutions to evaluate the integration of
Generative Al within the HCLTF. The participants, drawn from
second-year cohorts, had foundational knowledge of logic
design and Hardware Description Languages (HDL), with
varied experience in Al-assisted tools. The questionnaire
focused on three dimensions: perceived benefits of Al
integration, potential challenges, and overall learning impact.
Each of the eight statements was rated on a five-point Likert
scale (1 = Strongly Disagree, 5 = Strongly Agree).

The survey was administered during the final two weeks of the
semester, after students completed a 4-bit synchronous counter
design project incorporating Al-based HDL generation and
optimization. Both online and paper-based formats were used,
and participation was anonymous to encourage honest
feedback. Pilot testing with 15 students ensured clarity, and
internal consistency measured via Cronbach’s alpha was 0.87,
indicating strong reliability. A total of 187 valid responses were
obtained (96.4% completion rate), and descriptive statistics
were computed to analyze trends in perceptions and identify
relationships between prior Al experience and reported learning
outcomes.

Table VII summarizes student perceptions of Al-assisted
learning in Digital Electronics, showing high agreement on time
savings, improved problem-solving focus, and overall learning
enhancement. Moderate concerns were noted regarding over-
reliance and occasional inefficiencies in Al-generated designs.

TABLE VII
STUDENT SURVEY RESULTS ON AI-ASSISTED LEARNING IN DIGITAL
ELECTRONICS (N = 187)

Agreemen

Std. Dev. t (%)

Q.No Survey Question Mean Score

Al-assisted

workflow helped

me complete

designs faster

Al allowed me to

9 focus more on 442 0.59
complex problem-
solving
Al-generated
HDL code was

3 easy to
understand and
edit
Al improved my

4 Boolean 4.33
simplification and

4.58 0.52 93.6%

88.2%

4.14 0.66 81.3%

0.54 85.6%

verification

accuracy

The framework

encouraged me to

critically evaluate

Al outputs

I became over-

reliant on Al for

certain design

tasks

Al sometimes

7 produced 3.29 0.84
inefficient designs
Overall, Al
integration

8 improved my
learning
experience

78.6%

42.8%

46.0%

4.49 0.48 91.4%

Over 90% of students reported that Al integration accelerated
design work and enhanced their overall learning experience,
with approximately 88% noting that it allowed them to dedicate
more time to higher-order problem-solving activities. Moderate
concerns were expressed regarding over-reliance (42.8%) and
occasional inefficiencies in Al-generated designs (46%),
reflecting an awareness of the technology’s limitations.
Furthermore, the high agreement rate on the ease of
understanding Al-generated HDL code (81%) indicates that the
implemented workflow successfully balanced automation with
the retention of core conceptual and practical skills.

While the findings of this study demonstrate clear
improvements in efficiency, reasoning accuracy, and SRL
development, certain limitations must be acknowledged. First,
the work is not longitudinal; students were assessed within a
single semester, limiting insights into long-term retention and
transfer of skills. Second, although the study included 187
students across three institutions, its scope is confined to
foundational digital design tasks, and broader validation across
more complex courses is still required. Third, Al-generated
HDL behavior may vary with different prompting or model
versions, requiring instructor oversight to ensure consistency.
These limitations inform and motivate the planned longitudinal
extension of this research.

V. CONCLUSION AND FUTURE WORK

This study presented an adaptation of the HCLTF for
undergraduate Digital Electronics education by integrating
Generative Al into the design, simulation, and optimization
workflow. Using the 4-bit synchronous up/down counter as a
case study, the framework demonstrated how Al support can be
aligned with SRL phases so that students maintain ownership
of analytical reasoning and manual derivation while benefiting
from Al-assisted verification and code scaffolding. The results
showed a substantial reduction—approximately 40%—in HDL
development time, enabling students to focus on higher-order
tasks such as optimization and synthesis interpretation.
Although  Al-generated HDL occasionally introduced
redundant logic or minor inefficiencies, these were effectively
identified during the self-reflection phase, confirming that the
framework strikes a balance between Al efficiency and
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conceptual understanding.

From a pedagogical standpoint, the adapted HCLTF ensures
that students remain active decision-makers throughout the
design process while Al serves as a supportive cognitive
partner. Instructors guide the process through structured
safeguards, including mandatory manual derivation, staged Al
integration, and reflection-based validation. This approach
prevents over-reliance and encourages deeper engagement with
design concepts, making it a viable model for modernizing
Digital Electronics education. Future work will extend the
framework to more complex digital systems such as FSMs with
multiple control signals, ALUs, pipelined stages, and small
VLSI datapath components. Additional lines of work include
integrating Al directly into FPGA toolchains for real-time
optimization and evaluating how Al-augmented learning
environments influence graduates’ technical competence,
ethical awareness, and industry readiness.

Despite the promising outcomes, the study has certain
limitations. The framework was tested on a foundational circuit,
which may constrain generalizability to more complex
architectures. Al tools sometimes generated suboptimal HDL,
requiring instructor oversight and student diagnostic skills, and
SRL development varied across learners. To address these gaps,
a structured longitudinal research plan has been proposed. This
includes Year 1-2 assessments of SRL retention using non-Al
tasks, Year 2-3 tracking of student performance in advanced
digital design courses, internship supervisor evaluations,
employability metrics for HDL/FPGA roles, and 6- and 12-
month conceptual retention tests. An Al-Competence Growth
Index (AI-Lit Index) will also be used to measure sustained
progress, providing a comprehensive roadmap for evaluating
the long-term educational impact of the adapted HCLTF.
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