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Abstract-Multimodal omics courses require students to work with 

diverse biological data and construct reproducible analytical 

workflows, yet little is known about how AI-enabled tools 

influence learning in these settings. Prior work highlights the value 

of project-based learning but offers limited evidence on module-

level outcomes that shape student performance. This study 

examines an undergraduate omics course in which six short 

projects-spanning genomics, transcriptomics, proteomics, 

metabolomics, imaging, and clinical data-were taught using a 

counterbalanced Latin-square design. Each project was delivered 

either with and without AI-integrated scaffolds, including 

automated baselines, experiment tracking, containerised 

execution, calibration measures, and interpretability tools. 

Performance, concept-inventory gains, behavioural traces, and 

affective measures were analysed using mixed-effects modelling 

and mediation analysis.  

Students in the AI-integrated condition showed higher technical 

performance, better calibration, stronger reproducibility, and 

good concept-learning gains. Qualitative feedback indicated that 

workflow tools supported iteration and clearer reasoning, though 

challenges with environment setup and over-reliance on 

automated outputs remained. The findings suggest that AI-

enabled scaffolds can strengthen learning in data-intensive omics 

courses when paired with structured, module-level projects. The 

study offers a methodological template for evaluating instructional 

designs that combine PBL with modern analytical workflows. 
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I. INTRODUCTION 

University-level courses in bioinformatics and multimodal 

omics increasingly require students to work with heterogeneous 

data-DNA and RNA counts, protein and metabolite profiles, 

imaging outputs, and clinical records that mix structured fields  

with free text and time-stamped measurements. Each modality 

demands its own preprocessing, quality checks, and analytical 

workflow. Bringing these elements together is a demanding 

learning task: students must select suitable methods, justify 

their choices, manage code and data, and interpret results in a 

transparent and defensible manner. As omics technologies 

advance, so does the expectation that learners navigate these 

varied data streams with confidence and reproducibility. 

Project-based learning (PBL) is frequently adopted in such 

settings because it gives students repeated practice with 

authentic data and mirrors the decision-making process found 

in research and industry. However, traditional course designs 

often rely on a single large capstone project. While capstones 

demonstrate what students can do at the end of a course, they 

offer limited insight into when learning occurs and which 
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instructional components actually influence it. Important week-

to-week growth-especially in areas such as quality control, 

calibration, or explainability-remains hidden. 

At the same time, modern analytical practice increasingly 

depends on software infrastructures that support productive 

iteration: notebook environments, workflow managers, 

experiment-tracking systems, containerized execution, version 

control, and automated baselines. These tools reduce the 

overhead of repetitive tasks and help students concentrate on 

conceptual decisions. Yet they can also obscure assumptions or 

encourage superficial model building if not taught deliberately. 

The challenge for instructors is to integrate such tools in a way 

that improves learning rather than simply accelerating 

computation. 

Although many course reports describe positive experiences 

with PBL in bioinformatics, few provide quantitative evidence 

that links specific instructional choices such as the use of 

AutoML baselines, reproducibility audits, or interpretability 

techniques to measurable gains in learning. Most studies rely 

on end-of-course grades or general satisfaction surveys, which 

do not capture the finer details of how students progress across 

different data types or how their behaviour changes when AI-

enabled scaffolds are introduced. Equally limited is the 

understanding of mechanisms-for example, whether improved 

performance arises from greater engagement, more frequent 

iteration, or increased confidence. 

To address these gaps, we designed an undergraduate course on 

multimodal data omics in which each major topic - genomics, 

transcriptomics, proteomics, metabolomics, imaging, and 

clinical data analysis is paired with its own short, tightly scoped 

Module level project. Each project requires students to 

assemble a functional workflow, interpret outputs, document 

their reasoning, and demonstrate reproducibility. Critically, we 

implemented two parallel versions of each module: one that 

incorporates AI-enabled workflow elements and one that uses a 

conventional notebook-centric approach. Sections rotate 

through these conditions using a Latin-square schedule, 

allowing us to disentangle module difficulty, sequencing, and 

instructional effects. 

The study examines four central questions: 

1. Do AI-integrated, module-level projects improve 

students’ technical performance and conceptual 

understanding? 

2. To what extent do engagement and self-efficacy 

explain these improvements? 

3. Which groups of students benefit the most from these 

scaffolds, and in which omics domains? 

4. How do AI-enabled workflows influence 

reproducibility, transparency, and fairness reporting? 

This work contributes to the engineering education community 

in three ways. First, it offers a systematic blueprint for 

embedding reproducible, AI-supported workflows into short 

Module level PBL tasks within an omics curriculum. Second, it 

introduces a measurement framework that connects 

instructional design to detailed behavioural, performance, and 

learning indicators at the module level. Third, it provides 

empirically grounded evidence-supported by mixed-effects 

modelling, structural equation analysis, and item-response-

theory-based inventories-showing not only whether the 

intervention helped, but how it shaped students’ learning 

processes. By focusing simultaneously on outcomes and 

mechanisms, the study aims to support instructors designing 

courses in data-intensive domains where transparency and 

reproducibility are as important as predictive accuracy. 

 

II. LITERATURE REVIEW 

Project-based learning (PBL) has long been used in 

bioinformatics and computational biology courses because it 

allows students to work with real data and develop analytic 

reasoning through repeated cycles of building, testing, and 

interpreting workflows. Studies in systems biology show that 

end-to-end modelling tasks help learners understand constraint-

based modelling and improve their ability to validate and 

reproduce results (Sauter et al., 2022). Similar benefits have 

been documented in inquiry-driven molecular biology and 

bioinformatics modules, where students gain confidence and 

functional competence when assignments integrate authentic 

datasets and genuine analytical decisions (Goller et al., 2021). 

More recent implementations that centre coursework around 

pressing biological problems, such as SARS-CoV-2 sequence 

analysis, demonstrate that PBL can support students from 

varied academic backgrounds while maintaining high 

engagement (Poličar et al., 2024). Although these reports 

establish the pedagogical value of PBL, their evaluation 

strategies are often limited. Many rely on course-level grades, 

student perceptions, or broad learning summaries. As a result, 

the field lacks fine-grained evidence about which module-level 

design choices influence specific learning outcomes. Moreover, 

very little is known about how students’ behaviours such as 

iteration frequency, debugging patterns, or documentation 

habits-develop over time within PBL courses, especially in 

data-intensive domains like multimodal omics. A second body 

of work examines the educational use of automated machine-

learning frameworks and workflow tools. Reviews of AutoML 

systems argue that while automation can reduce routine coding 

effort, it raises important questions about transparency, 

validation, and reproducibility (He et al., 2021). Studies 

conducted in healthcare analytics compare different AutoML 

platforms and show that model selection and calibration 

procedures can vary widely, underscoring the need for 

deliberate instructional guidance when using such tools in 

coursework (Scott et al., 2024). MLOps-oriented teaching 

approaches similarly emphasise experiment tracking, 

environment management, and continuous integration as 

essential components of responsible model development 

(Lanubile et al., 2023). Yet, despite the increasing adoption of 

these tools in industry, their educational impact has rarely been 

examined through rigorous empirical designs. The learning-

analytics literature offers additional insights that are relevant 

but not yet widely applied to data-science PBL. Research on 

student dashboards and activity-trace analysis shows that 

behavioural indicators such as time-on-task, iteration 

sequences, and error patterns-can help explain differences in 

learning gains (Paulsen & Lindsay, 2024; Saint et al., 2022). 

Temporal analyses of self-regulated learning further 

demonstrate that productive learning often emerges through 

cycles of planning, monitoring, and revising (Sun et al., 2023). 

Meanwhile, measurement-focused work highlights the 

usefulness of structural equation modelling for studying latent 
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constructs such as engagement or self-efficacy (Merkle et al., 

2021) and promotes item response theory (IRT) as a robust 

basis for comparing conceptual understanding before and after 

instruction (Sun et al., 2023). Despite these developments, such 

measurement approaches are seldom used in bioinformatics or 

omics courses, where assessments often emphasise correctness 

but overlook reproducibility, explainability, or fairness. A 

smaller but growing line of scholarship addresses the analytical 

complexity of multi-omics studies. Recent reviews outline the 

challenges of integrating genomics, transcriptomics, 

metabolomics, proteomics, and imaging data, noting that 

meaningful interpretation depends on strong foundations in 

quality control, calibration, and model transparency (Luo et al., 

2024). These demands suggest that training environments need 

to balance technical modelling skills with practices that 

encourage reproducible and ethical computation. Across these 

bodies of work, three major gaps emerge. First, module-level 

evaluations of PBL in omics or data-science courses remain 

scarce. Second, the instructional role of AI-enabled workflow 

tools-AutoML, explainability libraries, experiment tracking, 

and containerisation-is largely unexamined. Third, few studies 

integrate behavioural data, latent-construct modelling, and 

concept inventories to explain how and why specific design 

choices influence learning. These gaps motivate the present 

study, which investigates AI-integrated PBL within a 

multimodal omics course using a design that tracks learning, 

behaviour, and psychological mechanisms at the module level. 

III. METHODOLOGY 

The study was designed to evaluate the effect of integrating AI-

enabled analytical tools into short, module-level projects within 

an undergraduate multimodal omics course.  

 

A. Participants and Course Setting 

The study took place in a fourteen-week undergraduate course 

offered to students in biotechnology, bioinformatics, and data-

science programmes. A total of 90 students enrolled. All 

participants had prior exposure to introductory statistics, 

Python programming, and a basic molecular biology course. 

Students attended a shared weekly lecture and were distributed 

across three laboratory sections, each led by the same teaching 

team to minimise instructor variability. Participation in the 

research component was voluntary. Learning traces and 

submissions were pseudonymised in accordance with 

institutional ethical guidelines. 

 

B. Structure of Modules and Project Tasks 

The course consisted of six modules, each lasting two weeks 

and focusing on a different data modality. In each module, 

students completed a short, self-contained project aligned with 

that domain. 

1. Module domains and associated project tasks 

2. Genomics: classifying genomic variants using 

annotated features; identifying probable pathogenic 

variants. 

3. Transcriptomics: modelling differential gene 

expression; producing volcano plots and interpreting 

gene sets. 

4. Proteomics: spectral-to-peptide matching; building 

simple scoring models for peptide identification. 

5. Metabolomics: predicting metabolite classes or 

pathways using tabular features; handling class 

imbalance. 

6. Imaging: patch-based image classification optional 

segmentation using pretrained networks. 

7. Clinical and Text-Time Series: constructing risk-score 

models using structured clinical variables and short 

clinician notes; evaluating fairness across 

demographic groups when possible. 

8. What students were required to build 

For each module, students created: 

i. a working analysis pipeline or script, 

ii. one predictive model - classification, 

iii. a calibration assessment- ECE 

iv. an interpretability artefact, 

v. A brief model card explaining assumptions, 

limitations, dataset details, and performance. 

9. Required deliverables 

All submissions included: 

i. a code notebook or script, 

ii. environment/specification file, 

iii. intermediate plots and tables, 

iv. model-card document, 

v. summary write-up  

These deliverables were identical in both instructional 

conditions; only the tools differed. 

 

C. Instructional Conditions 

1) AI-Integrated PBL Condition (Treatment) 

Students assigned to this condition had access to a structured 

set of AI-enabled tools: 

i. AutoML: auto-sklearn for tabular datasets; AutoKeras 

for imaging modules. 

ii. Model families evaluated: logistic regression, random 

forests, gradient-boosted trees, multilayer perceptrons, 

and simple CNNs. 

iii. Interpretability: SHAP for feature-based tasks; guided 

back-propagation for imaging modules. 

iv. Reproducibility tooling: MLflow for run tracking; 

Docker containers for execution; Git repositories with 

simple CI checks. 

v. Calibration: expected calibration error (ECE) and 

Brier score computed via scikit-learn. 

vi. Fairness check: demographic-parity gap when 

demographic attributes existed. 

Students were explicitly required to critically interpret 

automated baselines rather than treat them as final answers. 

 

2) Traditional PBL Condition (Control) 

Sections in the control condition used standard notebook-based 

pipelines without automated tooling. Students: 

i. manually selected models using scikit-learn, PyTorch, 

or TensorFlow, 

ii. tuned hyperparameters by hand, 

iii. generated simple performance summaries (accuracy, 

loss curves), 

iv. produced minimal explainability outputs (e.g., built-in 

feature importance), 
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v. were not required to use MLflow, containers, or 

AutoML. 

 

3) Facilitation and Support Structure 

i. Each module began with a 25–30minute 

demonstration covering domain-specific workflows. 

ii. Students attended two 90-minute lab sessions per 

week, during which instructors assisted with 

debugging, data preprocessing, and interpretation. 

iii. Most modelling work occurred outside class in 6–10 

hours of independent effort. 

iv. Projects were completed individually, not in groups, to 

preserve measurement reliability. 

 

 

 

 

  

 
Fig. 1 Overview of Proposed Methodology 

The diagram in Figure 1, outlines a sequence of six modules 

that guide students through different areas of omics analysis, 

with each module paired with a focused project that reinforces 

the skills introduced. The first module covers genomic variant 

interpretation, leading students to build a model that separates 

pathogenic variants from benign ones using standard annotation 

features. The second module turns to transcriptomics, where 

students identify genes that change between conditions and use 

those signals to train a simple classifier. The third module 

introduces proteomics through peptide–spectrum matching, and 

students develop a scoring model to distinguish reliable 

matches from incorrect ones. In the fourth module, attention 

shifts to metabolomics, and students use chemical descriptors 

to predict metabolite classes while addressing class-imbalance 

issues. The fifth module focuses on microscopy images; here, 

students train a small convolutional network to tell nuclei apart 

from background regions and explore visual explanations of 

model behaviour. The final module brings together structured 

clinical measurements and brief text notes, asking students to 

produce a risk-score model and check whether its predictions 

behave consistently across groups. Together, the modules move 

from sequence-based data to imaging and clinical records, 

giving students hands-on experience with a broad range of 

analytical tasks. The detailed methodology diagram is as shown 

in Figure 2 in the APPENDIX section. 

IV. EXPERIMENTAL DESIGN 

A Latin-square rotation was used to assign instructional 

conditions across the six modules and three sections. Each 

section experienced: 

i. three modules under AI-integrated PBL, 

ii. three modules under traditional PBL, 

iii. no repeated condition sequences. 

This counterbalanced design controlled for module difficulty, 

order effects, and section-specific differences. A timeline figure 

accompanies the paper to clarify when each section received 

each treatment. 

Contamination between sections was mitigated by maintaining 

private repositories, rotating support staff, and staggering 

assessment deadlines. 

A. Measurement and Data Collection Framework 

1) Technical Performance 

The main performance measure was a composite score based 

on: 

1. Discrimination (AUC or F1 score), and 

2. Calibration using: 

i. expected calibration error (ECE), and 

ii. Brier score. 

Equal weighting was chosen because in omics workflows, a 

model that is accurate but poorly calibrated can mislead 

biological interpretation. Weight sensitivity checks showed that 

alternative combinations produced the same outcome patterns. 

 

2) Rubric and Scoring Details 

The Table I provides the Rubrics used for evaluation and 

scoring. Each submission was rated on a five-criterion rubric: 

 
TABLE I 

THE RUBRIC FOR EVALUATION AND SCORING 

Criterion SCALE 

Analytic 
correctness 

0–4 

Documentation 

clarity 
0–4 

Reproducibility 

quality 
0–4 

Explainability and 
justification 

0–4 

Fairness or ethical 

reflection (when 
applicable) 

0–4 

Module 1: 
Genomics

Project: Build a model to classify variants as pathogenic vs benign using 
annotated features; evaluate calibration and interpret feature importance (SHAP).

Module 2: 
Transcriptomics

Project: Identify DE genes, train a classifier using top markers, 
assess calibration, and interpret influential genes and pathways.

Module 3: 
Proteomics

Project: Train a model to distinguish correct vs incorrect spectrum–
peptide matches; visualize scores and interpret important spectral features.

Module 4: 
Metabolomics

Project: Predict metabolite class or pathway using a supervised model; 
handle imbalance and use SHAP to interpret biochemical feature patterns.

Module 5: 
Imaging

Project: Train a CNN to classify nuclei vs background; generate 
saliency maps and optionally apply a pretrained segmentation model.

Module 6: Clinical/Text–
Time Series

Project: Build a risk-score model combining vitals and short notes; 
evaluate calibration and fairness across demographic groups.
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Two raters scored each submission independently. 

Inter-rater reliability was strong -ICC ranging from 0.74 to 0.88 

across modules. Disagreements were resolved in a short 

calibration meeting. 

 

3) Engagement Indicators 

Behavioural traces captured: 

i. number of runs, 

ii. Git commits and CI outcomes, 

iii. pipeline execution counts, 

iv. iteration cycles (error → fix → rerun), 

v. time within the notebook environment. 

These served as potential mediators in the model. 

 

4) Conceptual Learning and Affective Measures 

Students completed: 

i. Module-specific concept inventories: 10-15 items, 

developed and validated using a two-parameter 

logistic item response theory (IRT) model, producing 

θ-ability estimates. 

ii. Self-efficacy and cognitive load short scales at pre- 

and post-module checkpoints. 

 

5) Validity Evidence 

i. Convergent validity: concept-inventory scores 

correlated positively with technical performance. 

ii. Discriminant validity: low correlations between 

cognitive load and rubric sub-scores confirmed 

distinct constructs. 

iii. CO–assessment alignment: a blueprint linking each 

learning outcome to rubric items and concept-

inventory questions is included in Appendix B. 

B. Data Analysis 

1) Mixed-Effects Models 

We used mixed-effects regression with: 

i. random intercepts for students and modules, 

ii. fixed effects for condition, baseline θ-ability, and 

module order. 

Coefficients are denoted by β. 

2) Mediation Modelling 

Structural equation models (SEMs) evaluated whether 

engagement and self-efficacy mediated performance gains. 

Model fit was checked using multiple indices (CFI, RMSEA, 

SRMR). 

3) Heterogeneous Effects 

Causal forests estimated conditional average treatment effects 

to determine which students (low-preparation, low-ability, low-

confidence) benefited the most. 

4) Handling of Missing Data 

Survey missingness (4–7%) was addressed using multiple 

imputation and full-information maximum likelihood. 

C. Ethical Oversight 

All procedures followed institutional ethics guidelines. 

Students gave informed consent. All behavioural logs were 

pseudonymised and retained for no more than ninety days. 

Participation had no effect on grades. 

V. RESULTS 

This section reports the quantitative and qualitative findings 

from the six module-level projects across the three instructional 

sections. Results are organised around the research questions 

and incorporate model outputs, rubric scoring patterns, 

behavioural indicators, and student reflections. A CONSORT-

style diagram summarising participant flow is included in 

Appendix A, and a week-by-week timeline figure clarifies the 

rotation of conditions. 

A. Cohort Flow and Baseline Equivalence 

Across the semester, 90 students completed at least five 

modules, and 84 students completed all six. Baseline θ-ability 

from the initial concept inventories did not differ by section 

(F(2,87) = 0.84, p = .44). Prior programming experience and 

GPA distributions were also comparable. Missing data were 

minimal, and patterns did not suggest condition-related 

attrition. 

 

RQ1: Effect of AI-Integrated PBL on Technical Performance 

1) Overall Effects 

Mixed-effects modelling revealed a positive effect of the AI-

integrated condition on composite performance scores. The 

estimated coefficient was β = 0.36 (SE = 0.07, p < .001), 

corresponding to a medium effect size. Students in the AI 

condition produced pipelines that were both more accurate and 

better calibrated. 

2) Module-Wise Differences 

Performance varied across modalities: 

i. Imaging: largest improvement (d ≈ 0.48); students 

benefited from automated baselines and guided 

backpropagation. 

ii. Proteomics: notable gains (d ≈ 0.41); experiment 

tracking helped manage complex files. 

iii. Genomics and Transcriptomics: moderate 

improvements (d ≈ 0.28-0.32). 

iv. Metabolomics: smaller effect (d ≈ 0.22); class 

imbalance remained challenging. 

v. Clinical/Text: modest gains (d ≈ 0.25), likely due to 

difficulties with mixed data types. 

Across all six modules, students in the AI-integrated condition 

achieved higher reconstruction quality, clearer documentation, 

and fewer reproducibility failures. 

 

RQ1 (Part 2): Conceptual Learning Gains 

Pre- and post-module concept inventories analysed with a two-

parameter IRT model showed an average θ-ability gain of +0.27 

SD for students in the AI-integrated condition, compared with 

+0.11 SD for the control. Gains were strongest in modules 

involving structured tabular data, where students could link 

interpretability outputs to biological reasoning. 

 

RQ2: Engagement and Self-Efficacy as Mediators 

Structural equation modelling indicated that both engagement 

and self-efficacy partially mediated the relationship between 

instructional condition and performance. 

i. Engagement path: β = 0.19, p < .01 

ii. Self-efficacy path: β = 0.14, p < .05 

iii. Overall mediated effect: ~41% of the total effect 
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Students in the AI-integrated condition ran more iterations, 

logged more tracked experiments, and documented pipelines 

more consistently. These behaviours were associated with 

higher confidence in handling unfamiliar data. 

RQ3: Heterogeneous Treatment Effects 

Causal-forest estimates showed stronger benefits for: 

i. students with low prior coding experience (CATE = 

+0.44), 

ii. students with lower baseline θ-ability (CATE = 

+0.39), 

iii. students who initially reported low modelling 

confidence (CATE = +0.36). 

High-prepared students also improved, but gains were smaller. 

This suggests that AI-enabled scaffolding helped reduce 

performance gaps. 

 

RQ4: Reproducibility, Documentation, and Fairness 

1) Reproducibility 

The reproducibility rubric revealed striking differences: 

i. AI-integrated condition: 88% of submissions 

reproduced successfully on a clean container image. 

ii. Control condition: 41% reproduced successfully. 

Typical failures in the control condition involved missing 

dependencies, inconsistent file paths, and untracked 

hyperparameter settings. 

2) Documentation and Explainability 

Documentation scores were significantly higher under the AI 

condition (β = 0.42, p < .001). Explainability write-ups were 

also more coherent, with students referencing SHAP values or 

visual saliency maps when justifying decisions. 

3) Fairness and Ethical Reflection 

Where applicable (e.g., Clinical/Text), students in the AI 

condition more frequently completed fairness checks and 

commented on demographic disparities. These reflections were 

rare in the control submissions. 

 

B. Cross-Module Transfer 

Students faced a new, unseen modality in Module 6 

(Clinical/Text). Those with prior exposure to the AI-integrated 

condition showed greater transfer: 

i. performance difference: d ≈ 0.28 

ii. time-to-first-working-pipeline: reduced by ~20% 

iii. fewer failed runs and configuration errors 

This suggests that the scaffolding had cumulative benefits. 

 

C. What Did Not Work 

Despite overall gains, several challenges emerged: 

1. Containerisation difficulties: Beginners struggled with 

environment files and path configurations. 

2. AutoML misunderstandings: Some students 

misinterpreted hyperparameter search outputs as 

“optimal truth” rather than baselines. 

3. Explainability overload: SHAP values were 

occasionally treated as definitive causal claims. 

4. Proteomics and imaging workloads: Students reported 

higher cognitive load due to unfamiliar formats and 

file sizes. 

These issues are addressed in the Discussion section. 

 

D. Qualitative Findings 

Open-ended responses were coded using a simple inductive 

approach. Three major themes emerged. 

Theme 1: Iteration Builds Confidence 

Many students reported that having tracked runs made it easier 

to see progress: 

“Once I could see each change and its effect on the metrics, I 

wasn’t guessing anymore.” 

Theme 2: AI Tools Reduce Frustration but Not Thinking 

Students appreciated automated baselines but understood their 

limits: 

“AutoML helped me get unstuck, but I still had to explain why 

the model behaved the way it did.” 

Theme 3: Reproducibility Felt Tangible 

The containerised checks helped clarify expectations: 

“When my pipeline ran in the container, it finally felt like a real 

workflow and not just something that worked on my machine.” 

Students also expressed concerns about environment setup and 

the learning curve for MLflow, reinforcing the need for stronger 

onboarding. 

 

E. Discussion 

This study set out to examine how AI-enabled analytical tools 

influence learning when embedded into short, module-level 

projects within a multimodal omics course. By combining a 

counterbalanced design with detailed behavioural and 

performance measures, the analysis provides insight not only 

into whether the intervention helped but also why the observed 

improvements occurred. 

 

1) Interpretation of the Main Findings 

The AI-integrated approach led to consistently higher 

composite scores across all six omics domains. These gains 

were not uniform; imaging and proteomics modules showed the 

strongest improvements, largely because students faced 

complex feature spaces and unfamiliar file structures. 

Automated baselines and experiment tracking appeared to 

lower the initial barrier to engagement, enabling students to 

spend more time interpreting results rather than struggling with 

configuration. This result aligns with prior observations that 

well-structured workflow tools can amplify analytical 

reasoning rather than diminish it (He et al., 2021). The increase 

in θ-ability from the concept inventories suggests that students 

were not merely producing cleaner pipelines; they were 

acquiring deeper conceptual grounding. Modules that required 

students to relate model outputs to biological meaning—such 

as transcriptomics and clinical/time-series-showed particularly 

strong cognitive gains. These improvements indicate that the 

scaffolding encouraged students to connect technical decisions 

with domain reasoning, an important outcome in an area where 

data often originate from high-stakes biological or clinical 

settings (Luo et al., 2024). 

 

2) Mechanisms Underlying the Improvements 

A clear contribution of this study is the demonstration that 

engagement and self-efficacy help explain the observed 

learning patterns. Students in the AI-supported condition ran 

more experiments, documented their choices more carefully, 

and reflected on their results with greater confidence. These 

behaviours are signs of productive iteration rather than 
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superficial automation. The mediation results therefore suggest 

that the workflow tools changed how students interacted with 

the material-prompting earlier attempts, more revisions, and 

more structured reasoning. This adds empirical support to 

arguments about the importance of process analytics in data-

science education (Paulsen & Lindsay, 2024; Sun et al., 2023). 

The heterogeneity findings further show that students with 

weaker backgrounds benefitted the most. For instructors, this is 

an encouraging result: AI-enabled scaffolds can act as levellers, 

giving lower-prepared students a clearer foothold in complex 

analytical spaces. At the same time, stronger students still 

improved, albeit to a lesser degree, suggesting that scaffolding 

does not cap learning for students who are already comfortable 

with modelling. 

3) Implications for Teaching Multimodal Omics 

Multimodal omics presents unusual instructional challenges. 

Each dataset brings its own preprocessing requirements, 

biological conventions, and evaluation criteria. Short module-

level projects allow students to encounter a variety of 

workflows without being overwhelmed by a single, oversized 

capstone. The study demonstrates that combining these projects 

with AI-enabled tools can support reproducibility and 

documentation-practices increasingly expected in research 

settings but often absent from undergraduate curricula. 

Model cards, tracking systems, and calibration metrics also 

encourage habits of transparency. Students were more explicit 

about model limitations and potential biases, which is essential 

when working with biological datasets that often include 

demographic or batch-related inconsistencies. These practices 

have relevance beyond omics. Any engineering education 

programme that teaches data-driven modelling can adopt 

similar scaffolds to foreground model governance and ethical 

reflection. 

4) Lessons for Engineering Education 

This work highlights several design principles that may be 

useful for the EE community: 

1. Module-level rotation provides stronger evidence than 

course-level evaluations. 

Short projects, when combined with counterbalancing, 

allow precise attribution of learning effects to specific 

instructional elements. 

2. Workflow tools can be pedagogical devices, not just 

conveniences. 

When used intentionally, tools such as AutoML, 

reproducibility checkers, and explainability libraries help 

clarify expectations and reduce “invisible” technical 

hurdles. 

3. Measurement frameworks should capture both outcomes 

and mechanisms. 

Only examining final accuracy scores obscures the 

behavioural transformations that support long-term 

growth. 

4. Structured documentation improves reasoning. 

Requiring a model card or explanatory narrative pushes 

students to articulate assumptions more clearly, a practice 

aligned with engineering design thinking. 

These insights contribute to ongoing discussions about 

integrating modern data practices into engineering 

programmes, particularly in fields where models interface with 

scientific or clinical decision-making. 

 

5) What Did Not Work and Areas for Improvement 

Several issues surfaced during the semester: 

1. Technical friction: Containerisation and environment 

setup were difficult for students new to these tools. 

More onboarding materials and preconfigured 

templates would help. 

2. Over-reliance on AutoML: A minority of students 

treated automated baselines as authoritative. Future 

versions of the course should emphasise the 

interpretive, rather than generative, purpose of these 

tools. 

3. Explainability confusion: Some students interpreted 

SHAP values or saliency maps as causal explanations. 

Additional guidance is needed to highlight the limits 

of post-hoc interpretation. 

4. High workload in proteomics and imaging: Students 

described these modules as dense and unfamiliar. 

Breaking tasks into smaller checkpoints may reduce 

cognitive load. 

Documenting these challenges is important, as they inform 

future instructional refinements and help avoid overclaiming in 

the conclusions. 

6) Generalizability and Limitations 
Although the design was robust, the study was conducted in a 

single institution with a relatively homogeneous cohort. Effects 

may differ in programmes with different student populations or 

in courses where computational prerequisites vary. The datasets 

used were curated to fit instructional goals; real research 

datasets may introduce additional complexities. Moreover, 

while the behavioural indicators captured much of the students’ 

iterative process, they could not capture off-platform learning 

or peer discussions. These factors should be considered when 

interpreting the scope of the findings. 

7) Limitations 

This study was conducted at a single institution with a relatively 

uniform group of students, which limits broader generalisation. 

The datasets used in each module were curated and therefore 

less complex than fully raw omics data; this may have made the 

AI-enabled workflows easier to adopt. Although the Latin-

square rotation reduced ordering and instructor effects, 

informal discussions across sections could not be fully 

controlled. The behavioural data captured only activity within 

the instrumented tools, leaving untracked learning outside the 

platform. Self-efficacy and cognitive-load measures relied on 

short questionnaires, and the qualitative component, while 

helpful, was modest. The intervention combined several AI-

enabled tools at once, making it difficult to isolate which 

component contributed most to the observed improvements. 

The proposed teaching method is evaluated interms of the pre-

course survey, post-course survey and feedback questionnaire. 

The pre-course results in Table II show that most students 

began with moderate to high confidence across core areas such 

as omics, modelling, and workflow documentation, though 

familiarity with AutoML tools and evaluating fairness started 

lower for some.  
TABLE II  

PRE-COURSE SURVEY QUESTIONS 
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Pre-Course Question 5 4 3 2 1 

Confidence in omics domains 4 7 12 24 53 

Comfort with predictive modelling 3 7 13 23 54 

Ability to interpret model outputs 2 7 15 25 51 

Confidence in troubleshooting 
pipelines 

3 6 16 24 51 

Ability to document workflows 4 4 13 22 57 

Familiarity with AutoML/workflow 

tools 
3 7 17 26 47 

Belief AI tools will support learning 2 5 13 21 59 

Expect omics workflows to be 

manageable 
4 6 15 26 49 

Confidence evaluating model fairness 2 8 17 27 46 

Preparedness for course expectations 4 7 14 23 52 

 

After completing the module, the post-course surveys in Table 

III indicate clear improvement in almost every skill, with strong 

gains in understanding omics concepts, building and refining 

models, debugging, and creating reproducible workflows. 

Students also reported that AI-supported tools were useful and 

contributed to their learning.  

 
TABLE III  

POST-COURSE SURVEY QUESTIONS 

Post-Course Question 5 4 3 2 1 

Understanding of omics improved 64 20 10 4 2 

Ability to build/calibrate models 

improved 
60 22 11 5 2 

Confidence in debugging improved 58 23 11 5 4 

AI-enabled tools helpful 66 18 10 4 2 

AI tools strengthened conceptual 

learning 
57 22 12 6 3 

Ability to create reproducible 

workflows improved 
60 21 11 4 4 

Interpretability and model cards were 
useful 

57 22 12 5 4 

Module tasks appropriately 

challenging 
48 27 15 7 3 

Confidence identifying fairness issues 53 25 14 5 3 

Course improved technical & 
analytical skills 

67 19 10 4 4 

 

The feedback responses in Table IV largely mirrored the post-

course trends, reinforcing that the activities were appropriately 

challenging and that the course helped strengthen both technical 

and analytical abilities. 
 

TABLE IV  

FEEDBACK QUESTIONNAIRE 

Post-Course Question 5 4 3 2 1 

Understanding of omics improved 62 20 10 4 4 

Ability to build/calibrate models 

improved 
61 22 11 3 3 

Confidence in debugging improved 59 23 11 5 2 

AI-enabled tools helpful 67 18 10 1 3 

AI tools strengthened conceptual 

learning 
57 22 12 6 3 

Ability to create reproducible 
workflows improved 

60 21 11 4 4 

Interpretability and model cards were 

useful 
59 22 12 5 2 

Module tasks appropriately 

challenging 
48 27 15 7 3 

Confidence identifying fairness issues 52 25 14 5 4 

Course improved technical & 

analytical skills 
65 19 10 4 2 

 

CONCLUSION 

Embedding AI-enabled workflow tools into short, module-level 

projects improved students’ performance, calibration quality, 

reproducibility, and conceptual gains across six omics domains. 

These gains were supported by higher engagement and 

confidence, especially among students with limited prior 

preparation. The intervention encouraged clearer 

documentation and more transparent modelling practices, 

aligning with contemporary expectations in data-driven 

biological work. While the findings are promising, they reflect 

one instructional context. Future studies across multiple 

institutions and with more diverse datasets are needed to 

confirm how widely these results apply. 
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Fig. 2.  Detailed Steps of the Proposed Methodology 


