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Abstract-Multimodal omics courses require students to work with
diverse biological data and construct reproducible analytical
workflows, yet little is known about how Al-enabled tools
influence learning in these settings. Prior work highlights the value
of project-based learning but offers limited evidence on module-
level outcomes that shape student performance. This study
examines an undergraduate omics course in which six short
projects-spanning  genomics, transcriptomics, proteomics,
metabolomics, imaging, and clinical data-were taught using a
counterbalanced Latin-square design. Each project was delivered
either with and without Al-integrated scaffolds, including
automated baselines, experiment tracking, containerised
execution, calibration measures, and interpretability tools.
Performance, concept-inventory gains, behavioural traces, and
affective measures were analysed using mixed-effects modelling
and mediation analysis.

Students in the Al-integrated condition showed higher technical
performance, better calibration, stronger reproducibility, and
good concept-learning gains. Qualitative feedback indicated that
workflow tools supported iteration and clearer reasoning, though
challenges with environment setup and over-reliance on
automated outputs remained. The findings suggest that Al-
enabled scaffolds can strengthen learning in data-intensive omics
courses when paired with structured, module-level projects. The
study offers a methodological template for evaluating instructional
designs that combine PBL with modern analytical workflows.

Keywords—Assessment; Explainable Al; Multimodal Data;
Project-based learning; Reproducibility; Student engagement.

JEET Category—Tracks and Sub-Tracks: Innovative Pedagogies
and Active Learning, Project-Based and Problem-Based Learning
(PBL).

[. INTRODUCTION

University-level courses in bioinformatics and multimodal
omics increasingly require students to work with heterogeneous
data-DNA and RNA counts, protein and metabolite profiles,
imaging outputs, and clinical records that mix structured fields
with free text and time-stamped measurements. Each modality
demands its own preprocessing, quality checks, and analytical
workflow. Bringing these elements together is a demanding
learning task: students must select suitable methods, justify
their choices, manage code and data, and interpret results in a
transparent and defensible manner. As omics technologies
advance, so does the expectation that learners navigate these
varied data streams with confidence and reproducibility.

Project-based learning (PBL) is frequently adopted in such
settings because it gives students repeated practice with
authentic data and mirrors the decision-making process found
in research and industry. However, traditional course designs
often rely on a single large capstone project. While capstones
demonstrate what students can do at the end of a course, they
offer limited insight into when learning occurs and which
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instructional components actually influence it. Important week-
to-week growth-especially in areas such as quality control,
calibration, or explainability-remains hidden.

At the same time, modern analytical practice increasingly
depends on software infrastructures that support productive
iteration: notebook environments, workflow managers,
experiment-tracking systems, containerized execution, version
control, and automated baselines. These tools reduce the
overhead of repetitive tasks and help students concentrate on
conceptual decisions. Yet they can also obscure assumptions or
encourage superficial model building if not taught deliberately.
The challenge for instructors is to integrate such tools in a way
that improves learning rather than simply accelerating
computation.

Although many course reports describe positive experiences
with PBL in bioinformatics, few provide quantitative evidence
that links specific instructional choices such as the use of
AutoML baselines, reproducibility audits, or interpretability
techniques to measurable gains in learning. Most studies rely
on end-of-course grades or general satisfaction surveys, which
do not capture the finer details of how students progress across
different data types or how their behaviour changes when Al-
enabled scaffolds are introduced. Equally limited is the
understanding of mechanisms-for example, whether improved
performance arises from greater engagement, more frequent
iteration, or increased confidence.

To address these gaps, we designed an undergraduate course on
multimodal data omics in which each major topic - genomics,
transcriptomics, proteomics, metabolomics, imaging, and
clinical data analysis is paired with its own short, tightly scoped
Module level project. Each project requires students to
assemble a functional workflow, interpret outputs, document
their reasoning, and demonstrate reproducibility. Critically, we
implemented two parallel versions of each module: one that
incorporates Al-enabled workflow elements and one that uses a
conventional notebook-centric approach. Sections rotate
through these conditions using a Latin-square schedule,
allowing us to disentangle module difficulty, sequencing, and
instructional effects.

The study examines four central questions:

1. Do Al-integrated, module-level projects improve
students’ technical performance and conceptual
understanding?

2. To what extent do engagement and self-efficacy
explain these improvements?

3. Which groups of students benefit the most from these
scaffolds, and in which omics domains?

4. How do Al-enabled workflows influence
reproducibility, transparency, and fairness reporting?

This work contributes to the engineering education community
in three ways. First, it offers a systematic blueprint for
embedding reproducible, Al-supported workflows into short
Module level PBL tasks within an omics curriculum. Second, it
introduces a measurement framework that connects
instructional design to detailed behavioural, performance, and
learning indicators at the module level. Third, it provides
empirically grounded evidence-supported by mixed-effects
modelling, structural equation analysis, and item-response-
theory-based inventories-showing not only whether the
intervention helped, but how it shaped students’ learning

processes. By focusing simultaneously on outcomes and
mechanisms, the study aims to support instructors designing
courses in data-intensive domains where transparency and
reproducibility are as important as predictive accuracy.

II. LITERATURE REVIEW

Project-based learning (PBL) has long been used in
bioinformatics and computational biology courses because it
allows students to work with real data and develop analytic
reasoning through repeated cycles of building, testing, and
interpreting workflows. Studies in systems biology show that
end-to-end modelling tasks help learners understand constraint-
based modelling and improve their ability to validate and
reproduce results (Sauter et al., 2022). Similar benefits have
been documented in inquiry-driven molecular biology and
bioinformatics modules, where students gain confidence and
functional competence when assignments integrate authentic
datasets and genuine analytical decisions (Goller et al., 2021).
More recent implementations that centre coursework around
pressing biological problems, such as SARS-CoV-2 sequence
analysis, demonstrate that PBL can support students from
varied academic backgrounds while maintaining high
engagement (Policar et al., 2024). Although these reports
establish the pedagogical value of PBL, their evaluation
strategies are often limited. Many rely on course-level grades,
student perceptions, or broad learning summaries. As a result,
the field lacks fine-grained evidence about which module-level
design choices influence specific learning outcomes. Moreover,
very little is known about how students’ behaviours such as
iteration frequency, debugging patterns, or documentation
habits-develop over time within PBL courses, especially in
data-intensive domains like multimodal omics. A second body
of work examines the educational use of automated machine-
learning frameworks and workflow tools. Reviews of AutoML
systems argue that while automation can reduce routine coding
effort, it raises important questions about transparency,
validation, and reproducibility (He et al., 2021). Studies
conducted in healthcare analytics compare different AutoML
platforms and show that model selection and calibration
procedures can vary widely, underscoring the need for
deliberate instructional guidance when using such tools in
coursework (Scott et al., 2024). MLOps-oriented teaching
approaches similarly emphasise experiment tracking,
environment management, and continuous integration as
essential components of responsible model development
(Lanubile et al., 2023). Yet, despite the increasing adoption of
these tools in industry, their educational impact has rarely been
examined through rigorous empirical designs. The learning-
analytics literature offers additional insights that are relevant
but not yet widely applied to data-science PBL. Research on
student dashboards and activity-trace analysis shows that
behavioural indicators such as time-on-task, iteration
sequences, and error patterns-can help explain differences in
learning gains (Paulsen & Lindsay, 2024; Saint et al., 2022).
Temporal analyses of self-regulated learning further
demonstrate that productive learning often emerges through
cycles of planning, monitoring, and revising (Sun et al., 2023).
Meanwhile, measurement-focused work highlights the
usefulness of structural equation modelling for studying latent
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constructs such as engagement or self-efficacy (Merkle et al.,
2021) and promotes item response theory (IRT) as a robust
basis for comparing conceptual understanding before and after
instruction (Sun et al., 2023). Despite these developments, such
measurement approaches are seldom used in bioinformatics or
omics courses, where assessments often emphasise correctness
but overlook reproducibility, explainability, or fairness. A
smaller but growing line of scholarship addresses the analytical
complexity of multi-omics studies. Recent reviews outline the
challenges of integrating genomics, transcriptomics,
metabolomics, proteomics, and imaging data, noting that
meaningful interpretation depends on strong foundations in
quality control, calibration, and model transparency (Luo et al.,
2024). These demands suggest that training environments need
to balance technical modelling skills with practices that
encourage reproducible and ethical computation. Across these
bodies of work, three major gaps emerge. First, module-level
evaluations of PBL in omics or data-science courses remain
scarce. Second, the instructional role of Al-enabled workflow
tools-AutoML, explainability libraries, experiment tracking,
and containerisation-is largely unexamined. Third, few studies
integrate behavioural data, latent-construct modelling, and
concept inventories to explain sow and why specific design
choices influence learning. These gaps motivate the present
study, which investigates Al-integrated PBL within a
multimodal omics course using a design that tracks learning,
behaviour, and psychological mechanisms at the module level.

III. METHODOLOGY

The study was designed to evaluate the effect of integrating Al-
enabled analytical tools into short, module-level projects within
an undergraduate multimodal omics course.

A. Participants and Course Setting

The study took place in a fourteen-week undergraduate course
offered to students in biotechnology, bioinformatics, and data-
science programmes. A total of 90 students enrolled. All
participants had prior exposure to introductory statistics,
Python programming, and a basic molecular biology course.
Students attended a shared weekly lecture and were distributed
across three laboratory sections, each led by the same teaching
team to minimise instructor variability. Participation in the
research component was voluntary. Learning traces and
submissions were pseudonymised in accordance with
institutional ethical guidelines.

B. Structure of Modules and Project Tasks

The course consisted of six modules, each lasting two weeks
and focusing on a different data modality. In each module,
students completed a short, self-contained project aligned with
that domain.
1. Module domains and associated project tasks
2. Genomics: classifying genomic variants using
annotated features; identifying probable pathogenic
variants.
3. Transcriptomics: modelling differential  gene
expression; producing volcano plots and interpreting
gene sets.

4. Proteomics: spectral-to-peptide matching; building
simple scoring models for peptide identification.

5. Metabolomics: predicting metabolite classes or
pathways using tabular features; handling class
imbalance.

6. Imaging: patch-based image classification optional
segmentation using pretrained networks.

7. Clinical and Text-Time Series: constructing risk-score
models using structured clinical variables and short

clinician notes; evaluating  fairness  across
demographic groups when possible.
8. What students were required to build
For each module, students created:
. a working analysis pipeline or script,
ii. one predictive model - classification,
iii. a calibration assessment- ECE
iv. an interpretability artefact,
v. A Dbrief model card explaining assumptions,
limitations, dataset details, and performance.
9. Required deliverables
All submissions included:
i. a code notebook or script,
il. environment/specification file,
1. intermediate plots and tables,
iv. model-card document,
v. summary write-up
These deliverables were identical in both instructional

conditions; only the tools differed.

C. Instructional Conditions

1) Al-Integrated PBL Condition (Treatment)

Students assigned to this condition had access to a structured
set of Al-enabled tools:

i AutoML: auto-sklearn for tabular datasets; AutoKeras
for imaging modules.

il. Model families evaluated: logistic regression, random
forests, gradient-boosted trees, multilayer perceptrons,
and simple CNNSs.

1. Interpretability: SHAP for feature-based tasks; guided
back-propagation for imaging modules.

iv. Reproducibility tooling: MLflow for run tracking;
Docker containers for execution; Git repositories with
simple CI checks.

v. Calibration: expected calibration error (ECE) and
Brier score computed via scikit-learn.

vi. Fairness check: demographic-parity gap when
demographic attributes existed.

Students were explicitly required to critically interpret
automated baselines rather than treat them as final answers.

2) Traditional PBL Condition (Control)
Sections in the control condition used standard notebook-based
pipelines without automated tooling. Students:
. manually selected models using scikit-learn, PyTorch,
or TensorFlow,
ii. tuned hyperparameters by hand,

1. generated simple performance summaries (accuracy,
loss curves),
iv. produced minimal explainability outputs (e.g., built-in

feature importance),
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were not required to use MLflow, containers, or
AutoML.

V.

3) Facilitation and Support Structure

i. Each module began with a 25-30minute
demonstration covering domain-specific workflows.
Students attended two 90-minute lab sessions per
week, during which instructors assisted with
debugging, data preprocessing, and interpretation.

il.

Module 1:
Genomics

Project: Build a model to classify variants as pathogenic vs benign using
annotated features; evaluate calibration and interpret feature importance (SHAP).

Module 2:
Transcriptomics

Project: Identify DE genes, train a classifier using top markers,
assess calibration, and interpret influential genes and pathways.

Module 3:
Proteomics

Project: Train a model to distinguish correct vs incorrect spectrum—
peptide matches; visualize scores and interpret important spectral features.

Module 4:
Metabolomics

Project: Predict metabolite class or pathway using a supervised model;
handle imbalance and use SHAP to interpret biochemical feature patterns.

Module 5:
Imaging

Project: Train a CNN to classify nuclei vs background; generate
saliency maps and optionally apply a pretrained segmentation model.

Module 6: Clinical/Text—
e Series

Project: Build a risk-score model combining vitals and short notes;
evaluate calibration and fairness across demographic groups.

Fig. 1 Overview of Proposed Methodology

The diagram in Figure 1, outlines a sequence of six modules
that guide students through different areas of omics analysis,
with each module paired with a focused project that reinforces
the skills introduced. The first module covers genomic variant
interpretation, leading students to build a model that separates
pathogenic variants from benign ones using standard annotation
features. The second module turns to transcriptomics, where
students identify genes that change between conditions and use
those signals to train a simple classifier. The third module
introduces proteomics through peptide—spectrum matching, and
students develop a scoring model to distinguish reliable
matches from incorrect ones. In the fourth module, attention
shifts to metabolomics, and students use chemical descriptors
to predict metabolite classes while addressing class-imbalance
issues. The fifth module focuses on microscopy images; here,
students train a small convolutional network to tell nuclei apart
from background regions and explore visual explanations of
model behaviour. The final module brings together structured
clinical measurements and brief text notes, asking students to
produce a risk-score model and check whether its predictions
behave consistently across groups. Together, the modules move
from sequence-based data to imaging and clinical records,
giving students hands-on experience with a broad range of

24

Most modelling work occurred outside class in 6—-10
hours of independent effort.

Projects were completed individually, not in groups, to
preserve measurement reliability.

iii.

iv.

analytical tasks. The detailed methodology diagram is as shown
in Figure 2 in the APPENDIX section.

IV. EXPERIMENTAL DESIGN

A Latin-square rotation was used to assign instructional
conditions across the six modules and three sections. Each
section experienced:
i. three modules under Al-integrated PBL,

ii. three modules under traditional PBL,

iil. no repeated condition sequences.
This counterbalanced design controlled for module difficulty,
order effects, and section-specific differences. A timeline figure
accompanies the paper to clarify when each section received
each treatment.
Contamination between sections was mitigated by maintaining
private repositories, rotating support staff, and staggering
assessment deadlines.

A. Measurement and Data Collection Framework

1) Technical Performance
The main performance measure was a composite score based
on:
1.
2.

Discrimination (AUC or F1 score), and
Calibration using:

i expected calibration error (ECE), and

il. Brier score.
Equal weighting was chosen because in omics workflows, a
model that is accurate but poorly calibrated can mislead
biological interpretation. Weight sensitivity checks showed that
alternative combinations produced the same outcome patterns.

2) Rubric and Scoring Details
The Table I provides the Rubrics used for evaluation and
scoring. Each submission was rated on a five-criterion rubric:

TABLE I
THE RUBRIC FOR EVALUATION AND SCORING

Criterion SCALE
Analytic 04
correctness

Documentation

clarity 0-4
Replfoducibility 04
quality

Explamaplhty and 04
justification

Fairness or ethical
reflection (when 0-4

applicable)
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Two raters scored each submission independently.
Inter-rater reliability was strong -ICC ranging from 0.74 to 0.88
across modules. Disagreements were resolved in a short
calibration meeting.

3) Engagement Indicators
Behavioural traces captured:

1. number of runs,
il. Git commits and CI outcomes,
iii. pipeline execution counts,
iv. iteration cycles (error — fix — rerun),
V. time within the notebook environment.

These served as potential mediators in the model.

4) Conceptual Learning and Affective Measures
Students completed:

i. Module-specific concept inventories: 10-15 items,
developed and validated using a two-parameter
logistic item response theory (IRT) model, producing
0-ability estimates.

ii. Self-efficacy and cognitive load short scales at pre-
and post-module checkpoints.

5) Validity Evidence

i. Convergent validity: concept-inventory  scores
correlated positively with technical performance.

il. Discriminant validity: low correlations between
cognitive load and rubric sub-scores confirmed
distinct constructs.

iii. CO-assessment alignment: a blueprint linking each
learning outcome to rubric items and concept-
inventory questions is included in Appendix B.

B. Data Analysis

1) Mixed-Effects Models
We used mixed-effects regression with:

i. random intercepts for students and modules,

il. fixed effects for condition, baseline 6-ability, and

module order.

Coefficients are denoted by p.
2) Mediation Modelling
Structural equation models (SEMs) evaluated whether
engagement and self-efficacy mediated performance gains.
Model fit was checked using multiple indices (CFI, RMSEA,
SRMR).
3) Heterogeneous Effects
Causal forests estimated conditional average treatment effects
to determine which students (low-preparation, low-ability, low-
confidence) benefited the most.
4) Handling of Missing Data
Survey missingness (4—7%) was addressed using multiple
imputation and full-information maximum likelihood.
C. Ethical Oversight
All procedures followed institutional ethics guidelines.
Students gave informed consent. All behavioural logs were
pseudonymised and retained for no more than ninety days.
Participation had no effect on grades.

V.RESULTS

This section reports the quantitative and qualitative findings
from the six module-level projects across the three instructional
sections. Results are organised around the research questions
and incorporate model outputs, rubric scoring patterns,
behavioural indicators, and student reflections. A CONSORT-
style diagram summarising participant flow is included in
Appendix A, and a week-by-week timeline figure clarifies the
rotation of conditions.

A. Cohort Flow and Baseline Equivalence

Across the semester, 90 students completed at least five
modules, and 84 students completed all six. Baseline 6-ability
from the initial concept inventories did not differ by section
(F(2,87) = 0.84, p = .44). Prior programming experience and
GPA distributions were also comparable. Missing data were
minimal, and patterns did not suggest condition-related
attrition.

RQ1: Effect of Al-Integrated PBL on Technical Performance
1) Overall Effects
Mixed-effects modelling revealed a positive effect of the Al-
integrated condition on composite performance scores. The
estimated coefficient was f = 0.36 (SE = 0.07, p < .001),
corresponding to a medium effect size. Students in the Al
condition produced pipelines that were both more accurate and
better calibrated.
2) Module-Wise Differences
Performance varied across modalities:

i. Imaging: largest improvement (d = 0.48); students

benefited from automated baselines and guided

backpropagation.

ii. Proteomics: notable gains (d = 0.41); experiment
tracking helped manage complex files.

1. Genomics and Transcriptomics: moderate
improvements (d = 0.28-0.32).

iv. Metabolomics: smaller effect (d = 0.22); class

imbalance remained challenging.
v. Clinical/Text: modest gains (d = 0.25), likely due to
difficulties with mixed data types.
Across all six modules, students in the Al-integrated condition
achieved higher reconstruction quality, clearer documentation,
and fewer reproducibility failures.

RQI1 (Part 2): Conceptual Learning Gains

Pre- and post-module concept inventories analysed with a two-
parameter IRT model showed an average 0-ability gain of +0.27
SD for students in the Al-integrated condition, compared with
+0.11 SD for the control. Gains were strongest in modules
involving structured tabular data, where students could link
interpretability outputs to biological reasoning.

RQ2: Engagement and Self-Efficacy as Mediators
Structural equation modelling indicated that both engagement
and self-efficacy partially mediated the relationship between
instructional condition and performance.
1. Engagement path: § =0.19, p <.01
ii. Self-efficacy path: p =0.14, p <.05
iii. Overall mediated effect: ~41% of the total effect
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Students in the Al-integrated condition ran more iterations,
logged more tracked experiments, and documented pipelines
more consistently. These behaviours were associated with
higher confidence in handling unfamiliar data.

RQ3: Heterogeneous Treatment Effects

Causal-forest estimates showed stronger benefits for:

i. students with low prior coding experience (CATE =
+0.44),

il. students with lower baseline 8-ability (CATE =
+0.39),

iil. students who initially reported low modelling

confidence (CATE = +0.36).
High-prepared students also improved, but gains were smaller.
This suggests that Al-enabled scaffolding helped reduce
performance gaps.

RQ4: Reproducibility, Documentation, and Fairness
1) Reproducibility
The reproducibility rubric revealed striking differences:
1. Al-integrated condition: 88% of submissions
reproduced successfully on a clean container image.
il. Control condition: 41% reproduced successfully.
Typical failures in the control condition involved missing
dependencies, inconsistent file paths, and untracked
hyperparameter settings.
2) Documentation and Explainability
Documentation scores were significantly higher under the Al
condition (B = 0.42, p < .001). Explainability write-ups were
also more coherent, with students referencing SHAP values or
visual saliency maps when justifying decisions.
3) Fairness and Ethical Reflection
Where applicable (e.g., Clinical/Text), students in the Al
condition more frequently completed fairness checks and
commented on demographic disparities. These reflections were
rare in the control submissions.

B. Cross-Module Transfer

Students faced a new, unseen modality in Module 6
(Clinical/Text). Those with prior exposure to the Al-integrated
condition showed greater transfer:

i. performance difference: d =~ 0.28
il. time-to-first-working-pipeline: reduced by ~20%
ii. fewer failed runs and configuration errors

This suggests that the scaffolding had cumulative benefits.

C. What Did Not Work
Despite overall gains, several challenges emerged:

1. Containerisation difficulties: Beginners struggled with
environment files and path configurations.

2. AutoML  misunderstandings:  Some  students
misinterpreted hyperparameter search outputs as
“optimal truth” rather than baselines.

3. Explainability overload: SHAP values
occasionally treated as definitive causal claims.

4. Proteomics and imaging workloads: Students reported
higher cognitive load due to unfamiliar formats and
file sizes.

These issues are addressed in the Discussion section.

weEre

D. Qualitative Findings

Open-ended responses were coded using a simple inductive
approach. Three major themes emerged.

Theme 1: Iteration Builds Confidence

Many students reported that having tracked runs made it easier
to see progress:

“Once I could see each change and its effect on the metrics, 1
wasn’t guessing anymore.”’

Theme 2: Al Tools Reduce Frustration but Not Thinking
Students appreciated automated baselines but understood their
limits:

“AutoML helped me get unstuck, but I still had to explain why
the model behaved the way it did.”

Theme 3: Reproducibility Felt Tangible

The containerised checks helped clarify expectations:

“When my pipeline ran in the container, it finally felt like a real
workflow and not just something that worked on my machine.”
Students also expressed concerns about environment setup and
the learning curve for MLflow, reinforcing the need for stronger
onboarding.

E. Discussion

This study set out to examine how Al-enabled analytical tools
influence learning when embedded into short, module-level
projects within a multimodal omics course. By combining a
counterbalanced design with detailed behavioural and
performance measures, the analysis provides insight not only
into whether the intervention helped but also why the observed
improvements occurred.

1) Interpretation of the Main Findings

The Al-integrated approach led to consistently higher
composite scores across all six omics domains. These gains
were not uniform; imaging and proteomics modules showed the
strongest improvements, largely because students faced
complex feature spaces and unfamiliar file structures.
Automated baselines and experiment tracking appeared to
lower the initial barrier to engagement, enabling students to
spend more time interpreting results rather than struggling with
configuration. This result aligns with prior observations that
well-structured workflow tools can amplify analytical
reasoning rather than diminish it (He et al., 2021). The increase
in 0-ability from the concept inventories suggests that students
were not merely producing cleaner pipelines; they were
acquiring deeper conceptual grounding. Modules that required
students to relate model outputs to biological meaning—such
as transcriptomics and clinical/time-series-showed particularly
strong cognitive gains. These improvements indicate that the
scaffolding encouraged students to connect technical decisions
with domain reasoning, an important outcome in an area where
data often originate from high-stakes biological or clinical
settings (Luo et al., 2024).

2) Mechanisms Underlying the Improvements

A clear contribution of this study is the demonstration that
engagement and self-efficacy help explain the observed
learning patterns. Students in the Al-supported condition ran
more experiments, documented their choices more carefully,
and reflected on their results with greater confidence. These
behaviours are signs of productive iteration rather than
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superficial automation. The mediation results therefore suggest
that the workflow tools changed Zow students interacted with
the material-prompting earlier attempts, more revisions, and
more structured reasoning. This adds empirical support to
arguments about the importance of process analytics in data-
science education (Paulsen & Lindsay, 2024; Sun et al., 2023).
The heterogeneity findings further show that students with
weaker backgrounds benefitted the most. For instructors, this is
an encouraging result: Al-enabled scaffolds can act as levellers,
giving lower-prepared students a clearer foothold in complex
analytical spaces. At the same time, stronger students still
improved, albeit to a lesser degree, suggesting that scaffolding
does not cap learning for students who are already comfortable
with modelling.
3) Implications for Teaching Multimodal Omics
Multimodal omics presents unusual instructional challenges.
Each dataset brings its own preprocessing requirements,
biological conventions, and evaluation criteria. Short module-
level projects allow students to encounter a variety of
workflows without being overwhelmed by a single, oversized
capstone. The study demonstrates that combining these projects
with Al-enabled tools can support reproducibility and
documentation-practices increasingly expected in research
settings but often absent from undergraduate curricula.
Model cards, tracking systems, and calibration metrics also
encourage habits of transparency. Students were more explicit
about model limitations and potential biases, which is essential
when working with biological datasets that often include
demographic or batch-related inconsistencies. These practices
have relevance beyond omics. Any engineering education
programme that teaches data-driven modelling can adopt
similar scaffolds to foreground model governance and ethical
reflection.
4) Lessons for Engineering Education
This work highlights several design principles that may be
useful for the EE community:
1. Module-level rotation provides stronger evidence than
course-level evaluations.
Short projects, when combined with counterbalancing,
allow precise attribution of learning effects to specific
instructional elements.
2. Workflow tools can be pedagogical devices, not just
conveniences.
When used intentionally, tools such as AutoML,
reproducibility checkers, and explainability libraries help
clarify expectations and reduce “invisible” technical
hurdles.
3. Measurement frameworks should capture both outcomes

and mechanisms.
Only examining final accuracy scores obscures the
behavioural transformations that support long-term
growth.

4. Structured documentation improves reasoning.

Requiring a model card or explanatory narrative pushes
students to articulate assumptions more clearly, a practice
aligned with engineering design thinking.
These insights contribute to ongoing discussions about
integrating modern data practices into engineering

programmes, particularly in fields where models interface with
scientific or clinical decision-making.

5) What Did Not Work and Areas for Improvement

Several issues surfaced during the semester:

1. Technical friction: Containerisation and environment
setup were difficult for students new to these tools.
More onboarding materials and preconfigured
templates would help.

2. Over-reliance on AutoML: A minority of students
treated automated baselines as authoritative. Future
versions of the course should emphasise the
interpretive, rather than generative, purpose of these
tools.

3. Explainability confusion: Some students interpreted
SHAP values or saliency maps as causal explanations.
Additional guidance is needed to highlight the limits
of post-hoc interpretation.

4. High workload in proteomics and imaging: Students
described these modules as dense and unfamiliar.
Breaking tasks into smaller checkpoints may reduce
cognitive load.

Documenting these challenges is important, as they inform
future instructional refinements and help avoid overclaiming in
the conclusions.

6) Generalizability and Limitations

Although the design was robust, the study was conducted in a
single institution with a relatively homogeneous cohort. Effects
may differ in programmes with different student populations or
in courses where computational prerequisites vary. The datasets
used were curated to fit instructional goals; real research
datasets may introduce additional complexities. Moreover,
while the behavioural indicators captured much of the students’
iterative process, they could not capture off-platform learning
or peer discussions. These factors should be considered when
interpreting the scope of the findings.

7) Limitations

This study was conducted at a single institution with a relatively
uniform group of students, which limits broader generalisation.
The datasets used in each module were curated and therefore
less complex than fully raw omics data; this may have made the
Al-enabled workflows easier to adopt. Although the Latin-
square rotation reduced ordering and instructor effects,
informal discussions across sections could not be fully
controlled. The behavioural data captured only activity within
the instrumented tools, leaving untracked learning outside the
platform. Self-efficacy and cognitive-load measures relied on
short questionnaires, and the qualitative component, while
helpful, was modest. The intervention combined several Al-
enabled tools at once, making it difficult to isolate which
component contributed most to the observed improvements.
The proposed teaching method is evaluated interms of the pre-
course survey, post-course survey and feedback questionnaire.
The pre-course results in Table II show that most students
began with moderate to high confidence across core areas such
as omics, modelling, and workflow documentation, though
familiarity with AutoML tools and evaluating fairness started

lower for some.
TABLE II
PRE-COURSE SURVEY QUESTIONS
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Pre-Course Question 5 4 3 2 1
Confidence in omics domains 4 7 12 24 53
Comfort with predictive modelling 3 7 13 23 54
Ability to interpret model outputs 2 7 15 25 51
Conﬁdence in troubleshooting 3 6 16 24 51
pipelines

Ability to document workflows 4 4 13 22 57
Familiarity with AutoML/workflow 3 7 17 26 47
tools

Belief Al tools will support learning 2 5 13 21 59
Expect omics workflows to be 4 6 15 26 49
manageable

Confidence evaluating model fairness 2 8 17 27 46
Preparedness for course expectations 4 7 14 23 52

After completing the module, the post-course surveys in Table
[T indicate clear improvement in almost every skill, with strong
gains in understanding omics concepts, building and refining
models, debugging, and creating reproducible workflows.
Students also reported that Al-supported tools were useful and
contributed to their learning.

TABLE III
POST-COURSE SURVEY QUESTIONS

Post-Course Question 5 4 3 2 1
Understanding of omics improved 64 20 10 4 2
Ablllty to build/calibrate models 60 22 11 5 9
improved

Confidence in debugging improved 58 23 11 5 4
Al-enabled tools helpful 66 18 10 4 2
Al topls strengthened conceptual 57 2 1 6 3
learning

Ability to create reproducible
workflows improved

Interpretability and model cards were
useful

Module tasks appropriately
challenging

Confidence identifying fairness issues 53 25 14 5 3
Course_: 1mpr(_)ved technical & 67 9 10 4 4
analytical skills

60 21 11 4 4

57 22 12 5 4

48 27 15 7 3

The feedback responses in Table IV largely mirrored the post-
course trends, reinforcing that the activities were appropriately
challenging and that the course helped strengthen both technical
and analytical abilities.

TABLE IV
FEEDBACK QUESTIONNAIRE

Post-Course Question 5 4 3 2 1
Understanding of omics improved 62 20 10 4 4
Ablhty to build/calibrate models 61 29 1 3 3
improved

Confidence in debugging improved 59 23 11 5 2
Al-enabled tools helpful 67 18 10 1 3
Al topls strengthened conceptual 57 2 2 6 3
learning

Ability to create reproducible
workflows improved

Interpretability and model cards were
useful

60 21 11 4 4

59 22 12 5 2

Module tasks appropriately
challenging

Confidence identifying fairness issues 52 25 14
Cours_e 1mpr9ved technical & 65 19 10
analytical skills

48 27 15

B ]
[SS I SN V]

CONCLUSION
Embedding Al-enabled workflow tools into short, module-level
projects improved students’ performance, calibration quality,
reproducibility, and conceptual gains across six omics domains.
These gains were supported by higher engagement and
confidence, especially among students with limited prior
preparation.  The  intervention  encouraged  clearer
documentation and more transparent modelling practices,
aligning with contemporary expectations in data-driven
biological work. While the findings are promising, they reflect
one instructional context. Future studies across multiple
institutions and with more diverse datasets are needed to
confirm how widely these results apply.
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APPENDIX

Study Aim

Evaluate the effect of integrating
Al-enabled analytical tools into
module-level projects in a multimodal omics course

Y

Participants & Course Setting

* 14-week undergraduate course
+ 90 students (biotech, bioinfo, data science)
= Shared lecture + 3 lab sections
* Prior stats, Python, molecular bislogy
* Voluntary, pseudonymised leaming traces

Course Structure: Six 2-week Modules

Genomics, Transcriptomics, Proteomics,
Metabolomics, Imaging,
Clinical/Text-Time Series

Per-Module Project Tasks

* Domain-specific analysis
+ Build analysis pipeline & model
= Calibration check
« Interpretability artefact
* Model card

Common Deliverables (Both Conditions)
+ Notebook/script
+ Environment/spec file
* Plots & tables
* Model card
+* 500-700 word summary

(Deliverables identical; tocls differ)

Instructional Conditions

‘Al-Integrated PEL “\Traditional PEL

Al-Integrated PBL Condition ( al PBL Condition (Control)

Al-enabled Tocling Standard Notebook-based Pipelines
- AutoML (tabular, imaging) - Manual model selection
+ Standard model families * Hand-tuned hyperparameters
* SHAP/ guided backprop = Accuracy / loss summaries
* MLilow, Docker, Git * Minimal explainability
= Calibration metrics & faimess checks * No AutoML or MLflow required
Student Work (Treatment) Student Work (Control)
+ Use Al tools to build models + Implement pipelines manually
+ Critically interpret automated baselines +» Build and evaluate models
* Produce calibrated, interpretable models = Produce basic performance summaries

N/

Facilitation & Support Structure

* 25-30 min module demo
» 2 % 90 min labs/week
* =10 h independent work per module
» Individual projects

Data Collected

* Pseudonymised leaming traces
- Code, models, plots
* Model cards & summaries

Fig. 2. Detailed Steps of the Proposed Methodology
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