
Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707 

 

12                                  

 

  

Abstract—This study explores how broadened computational 

thinking (CT) models can support and enhance students’ 

approaches to problem solving within problem-based learning 

(PBL) settings. To evaluate the proposed model, the researchers 

introduced a structured framework that included clear 

metacognitive prompts, guidance for collaborative work, and 

support for iterative design. This framework was implemented 

with 70 undergraduate engineering students participating in a six-

week PBL cycle. Evidence gathered over three semesters showed 

notable gains in students’ CT performance, more balanced group 

participation, reduced unnecessary task switching, and smoother 

workflow patterns. Regression findings indicated that equitable 

involvement, idea generation, and overall PBL process efficiency 

were strong predictors of growth in CT scores. Students’ use of 

plan-monitor-evaluate (PME) strategies further suggested deeper 

metacognitive activity. Overall, the results show that extended CT 

scaffolding enables PBL groups to produce stronger and more 

numerous outcomes, while also refining the reasoning and 

teamwork practices required to achieve them. These insights can 

help educators design PBL environments that foster more effective 

thinking and reinforce students’ understanding of the value of 

their collaborative and reasoning processes. 

 
Keywords— Innovative Pedagogies and Active Learning; Project-

Based and Problem-Based Learning (PBL) 

 

 

I. INTRODUCTION 
 

Integrating Computational Thinking (CT) into STEM 

instruction is reshaping the way students approach challenging 

problems, break them into workable parts, and refine their 

solutions through repeated improvement. Earlier influential 

studies identified CT as a core framework for supporting 

abstraction, decomposition, and the creation of algorithms 
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within computing contexts (Wing, 2006; Grover & Pea, 2013). 

More recent studies indicate that CT also includes reasoning 

that develops from design projects, collaborative inquiries, and 

reflective decision-making activity (Weintrop et al., 2016). 

Problem-Based Learning (PBL) is set up in such a way that the 

breadth of CT can blossom. As a student participates in a 

problem-based environment, he/she must cooperate with 

his/her peers and come to a consensus about what the problem 

is, how best to proceed towards solving the problem, and how 

to modify their approach once their ideas have been confronted 

with new complexities. Although PBL has been shown to foster 

the development of higher-order thinking (Hmelo-Silver, 

2004), much of the assessment in these environments still 

centers around evaluating the students' final products, which 

means that many elements of a student’s thinking process, such 

as how they gauge their comprehension, interact with other 

students, adjust their techniques, etc. are less likely to be visible 

but have an important impact on a student’s growth in CT. As 

learning analytics and process-tracing have developed, they 

have shown a growing importance in capturing not only the 

internal processes that take place within the student when 

solving problems but also the collaborative processes that occur 

when students work together. The studies identified by the 

authors above have demonstrated that the results of the students 

are not where The meaning of the Process and the Path taken to 

get to a particular end is just as important if not more important 

than the Final Product. These emerging findings indicate a 

critical need for a Framework that considers all three 

Components of CT - the Cognitive/Collaborative/ 

Metacognitive as one cohesive Whole, rather than three Isolated 

Pieces. The framework introduced by this research will further 

develop on this Theme and provide a clearer visual 

representation of Students' Reasoning and Coordination when 

working in a PBL Environment, by including Metacognitive 
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Prompts and Scaffolded Collaboration as well as Iterative 

Design Support and Data collected through Multiple 

Sources/Methods within the Classroom Setting. The study will 

examine how students Plan for the completion of Problem-

Based Learning Projects, Share Ideas or Work through a Task 

before reaching their Final Solution, Manage the Completion of 

the Assigned Tasks, and Refine their Solutions Before 

Submitting Them for Evaluation. Utilizing this model, the 

original research then attempts to address the following three 

main questions about how to utilize extended computational 

thinking strategies when working with undergraduate 

engineering students: 

1. What impact does using extended computational 

thinking strategies have on how well students are able 

to solve problems and the overall nature of their 

problem-solving processes compared to traditional 

problem-based learning? 

2. What types of connections exist between the degree of 

equity within groups of students working together on 

collaborative projects, their degree of engagement in 

metacognitive activity during problem-solving, and 

the amount of improvement students demonstrate in 

their computational thinking abilities? 

3. To what extent can the examination of student work 

products provide reliable measures for predicting 

improvements in students' computational thinking 

skills and competencies?  

The model incorporates a range of methods, including 

quantitative measures, the analysis of qualitative data, and the 

process of tracing how students approach solving problems, to 

provide a more complete perspective on the development of 

computational thinking skills in a problem-based learning 

environment. The results of this research will serve as valuable 

resources for educators, curriculum designers, and education 

research scholars in creating learning environments that 

promote both the visible and invisible aspects of computational 

thinking. 

II. LITERATURE REVIEW 

Research on project-based and problem-based learning (PBL) 

has shown that both types of learning positively impact 

students' ability to develop Computational Thinking (CT). 

Meta-analyses of these studies suggest that projects and 

problems can help increase students' abilities to decompose 

problems, create algorithmic reasoning, and develop higher-

order cognitive skills in many STEM settings, provided that the 

students are engaged in real-world open-ended tasks (Zhang et 

al., 2024; Zhang et al., 2023). The studies demonstrate that 

students' growth in CT is typically the most significant when 

they are required to articulate their reasoning and make iterative 

design choices rather than simply focus on producing a correct 

final product. In addition to contributing to the literature 

regarding CT development, there has been an increased interest 

in understanding how CT develops over time. Researchers have 

begun to explore how students use CT to solve problems not 

just at the end of the problem-solving process, but throughout 

the entire problem-solving process. Empirical studies that 

utilize process tracing and multimodal learning have provided 

insights into how students use CT when they plan, explore, 

revise, and evaluate their work using different strategies (Pan et 

al., 2023; Hartmann et al., 2022). These studies provide detailed 

information about how students transition between using 

various CT practices such as abstraction, debugging, and 

iterative refinement. The present study also builds on the 

findings from the empirical studies mentioned above and uses 

workflow and interaction data to examine how students engage 

in CT behaviors. Research about collaboration has brought us a 

new way to view CT development in tandem with PBL through 

LLAs for CLAs. Several new studies of CLA have identified 

patterns in which collaboration impacts group performance and 

the ability for students to engage in deeper reasoning (Catasus 

et al., 2025; Esterhazy et al., 2025). Additionally, there has been 

evidence that by sharing their knowledge and resources with 

one another, students will create a much higher level of CT 

(Yang, Yuan & Chen, 2024; Yang, Yuan, Zhu & Jiao, 2024). 

Through metacognitive development, collaboration and CT are 

related through the processes of monitoring, evaluating, and 

regulating the behaviours associated with managing complex 

problem solving, diagnosing errors in one's thinking, and 

amending strategies when necessary (Gamby, Kersaint & 

Waters, 2022; Halmo, Eddy & Brownell, 2024). Given that in 

PBL situations students must work repeatedly with uncertainty 

and iterating solutions, developing metacognitive abilities is 

critical to supporting learning through productive strategic 

progress and preventing unproductive trial-and-error cycles. 

From this collection of studies, it is evident that CT within 

Authentic Learning comes from a combination of several types 

of activity, including Cognitive Problem Solving, Collaborative 

Coordination, and Metacognitive Regulation. While there has 

been much investigation into each of these areas separately, 

there has been less focus on how they may interact to create an 

integrated framework that better reflects the “Hidden Layers” 

of Student Thinking. The growing ease with which we can 

gather Multimodal Data through Digital Technology means that 

there is now the potential for very Created Approaches to be 

considered, although some of these approaches may prove 

difficult or impossible to implement in Classrooms. At the same 

time, there are many practical challenges associated with the 

use of a Multimodal Process-Oriented Approach, including the 

challenge of managing and analyzing large datasets, the need 

for Instructor/Teacher training, and the need for Protective 

Measures for Individuals' Personal Data. The limitations posed 

by these obstacles demonstrate the necessity for frameworks 

that effectively balance the said limitations on the one hand and 

provide Teachers/Teaching Assistants with information and 

advice concerning how to observe and help their students 

develop CT, without the need for instructors to be able to 

provide expert understanding of all technical aspects of the 

framework. In light of this context, this Research Study, which 

demonstrates how to apply developed CT Framework, is based 

on existing research literature and will address the need for 

Additional Integrated Classroom Ready Methods of Exploring 

Students' Problem Solving Processes through a Combination of 
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Cognitive, Collaborative, Metacognitive and Process Level 

Indicators. 

III. METHODOLOGY 

The Proposed methodology of Problem based Learning 

includes several steps. This section starts with the overview of 

the Framework. 

A. Research Framework Overview 

The research presented here employs an extended version of the 

Computational Thinking (CT) framework within the scope of a 

Problem-based Learning (PBL) environment. The purpose of 

this extended framework is to highlight all areas of the CT 

process that are generally neglected using conventional CT 

assessments, including how cognitive, collaborative, 

metacognitive and workflow-related elements are utilized 

throughout the process of solving problems. 

While most CT assessments place a significant emphasis on 

evaluating the final product, this framework also emphasizes 

the importance of understanding the processes behind the final 

product and documenting how students organize and develop 

their CT skills. The cyclical nature of the PBL-based process 

shows that after you create a PBL task, collect multiple forms 

of data, analyze the use of CT skills during the process of 

solving a problem, provide students with feedback, and finally 

provide students with the opportunity to reassess and re-engage 

with the process of solving the problem. 

B. Experimental Design 

1) Participants and Setting 

The research participants were 70 undergraduate engineering 

students from a 3rd-year Interdisciplinary Engineering course, 

who worked in teams of 4-5 over a 6-week project cycle. This 

course included programming, electronics and applied system 

design elements within an authentic environment for the 

development of critical thinking skills (CT). 

To clarify the conditions of this research study, the engineering 

problems addressed within the classrooms were very similar to 

those described here. As part of the course, each team was given 

two open-ended engineering design challenges which required 

them to combine hardware and software components. Such 

challenges included: 

1. Building an environmental sensing system that 

included live-data processing; 

2. Designing a control algorithm for a simulated robotic 

system; and 

3. Using MATLAB/Simulink to develop the optimal 

configuration of a power management system. 

All three tasks included a process to break them down into 

smaller and more manageable sections, to conduct iterative 

testing, to identify any faulty assumptions and continually 

communicate and collaborate with each other. Each team was 

provided with a physical and digital workspace in which to 

conduct their collaborative activities and document their 

interactions. 

2) Learning Environment Setup 

To enable collaborative planning and iterative refinement of 

their projects, the course utilized Microsoft Teams for group 

discussions, planning and process documentation alongside 

Miro boards for sharing information and documents. There are 

several software programs that can be used for project 

modelling and implementation, namely MATLAB/Simulink 

and Python. The course used Event log systems and audio/video 

recordings to record the time-stamped actions and comments 

made by students while working on projects collaboratively as 

a team. Process mining software has been used to recreate the 

processes that students followed to complete their projects 

based on the digital evidence available to the course. The tools 

were valuable in providing an accurate overview of how 

students moved between different tasks, developed their project 

ideas and worked collaboratively with peers in their groups. 

While digital tools were used to capture project-related data, the 

framework has been developed to provide approximations of 

the previously mentioned indicators based upon classroom 

observation, thus making the framework suitable for 

implementation in environments where the use of digital 

technology is limited. 

 

C. Data Sources and Collection Methods 

Several complementary forms of data were gathered for this 

study, including: 

1. Student work samples such as code files, design 

diagrams, written reports, and project planning 

materials. 

2. System event logs documenting when students carried 

out actions in the shared development workspace. 

3. Interaction records consisting of transcripts of group 

conversations and chat exchanges. 

4. Measures of collaboration, including counts of 

individual contributions, speaking turns, and chat 

messages. 

5. Metacognitive prompts intended to guide planning and 

self-monitoring at designated points during the 

project. 

Bringing these sources together made it possible to examine 

students’ CT practices from both Outcome and Process 

perspectives and to gain a detailed view of how these practices 

shifted as teams moved through the different phases of a CT-

focused project. 

D. Extended CT Strategy Operationalization 

To make the internal and collaborative dimensions of 

Computational Thinking more visible, several teaching 

approaches were incorporated into the course, including: 

1. Layered Abstraction - distinguishing core conceptual 

structures from the specific implementation steps. 

2. Detailed Decomposition - dividing the overall task 

into clear, workable subtasks. 

3. Algorithmic Refinement - continually improving the 

efficiency/accuracy of a solution through iteration. 

4. Iterative Evaluation - testing, validating and revising 

after each stage of development. 

Incorporated as part of the course design process through 

supportive prompts and checkpoints, these strategies were 

intended to support, rather than disrupt, the flow of projects. 
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E. Analytical Methods 

1) Quantitative Metrics 

Four indicators were used to examine collaboration and 

workflow: 

i. Participation Equity Index (PEI): 

Measures how evenly team members contributed. 

PEI = 1 −
∑ ∣ 𝑝𝑖 − 𝑝̄ ∣𝑛

𝑖=1

2𝑝̄𝑛
 

where 𝑝𝑖represents individual participation shares. 

ii. Task Transition Rate (TTR): 

Frequency of task switching relative to total 

collaboration time. 

TTR =
Number of Task Changes

Collaboration Hours
 

 

iii. Idea Contribution Ratio (ICR): 

Proportion of unique idea contributions within total 

interactions. 

ICR =
Unique Ideas

Total Interactions
 

 

iv. Process Efficiency (E): 

Ratio of value-adding actions to total observed 

actions. 

𝐸 =
Value-Adding Actions

Total Actions
 

 

How to use this in class: Although formulae were used in the 

analysis, teachers could also estimate these indicators without 

having access to these types of sophisticated tools. Some 

examples of how a teacher might estimate these indicators are:  

1. The number of times a student takes a speaking turn or 

does form work can be used as indicators of their level 

of participation.  

2. When teams switch from one task to another or start 

over on a task, those occurrences can be counted as an 

estimate of team production time (Time to Rework).  

3. Counting the number of unique ideas generated can be 

used for assessing team creativity (Idea Creation 

Rate).  

4. Process efficiency can be estimated by counting the 

number of times a team needs to repeat, throw away or 

modify a step. 

5. As a result, this framework is flexible enough to be 

applicable in classrooms where access to analytics 

software is limited. 

 

2) Qualitative Analysis 

To code the metacognitive statements, the researchers assigned 

them to preestablished categories based on the rules for using 

metacognitive code. Collaborative talk was analyzed using 

discourse analysis to determine the patterns of idea generation, 

justification, and negotiation. 

F. Validation and Reliability 

Qualitative data were double coded by two professional coders; 

the level of agreement between the coders for the qualitative 

data was significant (Cohen's κ = .84). The process mining 

model was validated by comparing it to historical data from 

previous courses; therefore, the workflow interpretation is 

deemed reliable. 

G. Ethical Considerations 

Consent was obtained from all participants for audio/video 

recording and the storage of logs. Identifying information was 

removed from the data before conducting analyses, and data 

were stored securely in encrypted systems. Collaboration 

metrics were utilized exclusively to provide instructional 

insight, and secondarily to offer an overall assessment of 

student performance. 

H. Methodology Diagram 

A simplified diagram serves as a conceptual model of how the 

extended CT Framework combines PBL task design, 

multimodal trace collection, CT indicator identification, and 

feedback. 

 

 
Fig. 1. Overview of Proposed Methodology 
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Fig. 2 Detailed Steps of the Proposed Methodology of Problem Based 
Learning 

 

Table I presents the mapping between CT indicators and data 

sources, and Table II links learning outcomes to evaluation 

metrics. 
TABLE I  

MAPPING OF EXTENDED CT INDICATORS TO DATA SOURCES 

 

Indicator DESCRIPTION Primary Data 

Sources 

Participation Equity 
Index (PEI) 

Degree to which 
contributions are 

distributed evenly within 

a team 

Event logs, chat 
transcripts, speaking-

turn counts 

Task Transition 

Rate (TTR) 

Frequency of switching 

between tasks relative to 

collaboration time 

Collaboration 

timelines, workflow 

logs 
Idea Contribution 

Ratio (ICR) 

Proportion of unique ideas 

within total interactions 

Discussion 

transcripts, chat 

messages 
Process Efficiency 

(E) 

Ratio of value-adding 

actions to total observed 

actions 

Process mining 

outputs, action logs 

 

 
TABLE II 

MAPPING OF LEARNING OUTCOMES TO EVALUATION METRICS 

 

Learning Outcome ASSOCIATED METRIC(S) Analysis Type 

Problem 

Decomposition 

Depth and clarity of task 

breakdown 

Qualitative coding 

Collaboration 

Quality 

PEI, ICR Quantitative 

indicators 

Metacognitive 

Engagement 

Frequency of planning, 

monitoring, and 

evaluation statements 

Qualitative coding 

Process 
Optimization 

Process Efficiency (E), 
Task Transition Rate 

(TTR) 

Quantitative 
workflow analysis 

 

The process depicted in the Figure 1 is a repeated set of multiple 

steps-Cyclical, that illustrate how students engage in the critical 

thinking behaviors of problem-solving, collaborating with 

peers on engineering tasks, and honing their final solutions 

while learning. An open-ended engineering task was designed 

to include several engineering prompts that were strategically 

spread out to promote Computational Thinking (CT) 

behaviours. To encourage this behaviour, each open-ended 

engineering task is designed to be sufficiently vague to require 

students to dissect, plan, and justify their 

approach/decisions/actions; this requires the use of CT in 

everyday problem-solving situations. During the period when 

students are actively solving an engineering problem, data are 

gathered from several different sources regarding their 

problem-solving activity, including materials produced - code, 

design sketches, etc., analysis of digital evidence generated 

from collaboration tools, video/audio documentation of 

students during team meetings, and questions related to the 

students’ initial planning and monitoring throughout the 

process. All of these sources together will provide a complete 

picture of the process students went through in order to create a 

product, as well as the process used to create it. During the 

subsequent phase of analysis, data will be analyzed via four (4) 

types of CT Indicators: Cognitive Indicators reflect student 

development of problem decomposition and idea refinement; 

Collaborative Indicators illustrate the extent to which team 

members equally participate and utilize strategies for sharing 

ideas with others; Metacognitive Indicators describe the extent 

to which students are planning/cognitive-checking their 

progress throughout the task process and subsequently 

evaluating their effectiveness; and Process Indicators compare 

various team task switches or breakdowns. The combination of 

these CT Indicators provides insight into students' thought 

processes, team interaction, and interaction with processes 

utilized during the completion of the science process. Once the 

CT Indicators have been identified and analysed, the instructor 

will provide both group-level feedback regarding the 

participation pattern and workflow habit of each group and 

individual-level feedback in terms of encouraging an increased 

level of reflective thought about their planning (cognitive-

checking) and monitoring of their strategy as a result of their 

use of the CT Indicators. In closing, we saw how, after 

gathering their group's feedback, student groups typically use 

that information to revisit their projects and create new plans 

for working together, optimizing the contribution of each 

member's ideas, and gaining better understanding of how to 

think computationally. Moving forward, as student groups work 

to complete a project, they will take advantage of the lessons 

they acquired through the interactions of their peers, thereby 

increasing the overall quality of their solutions (i.e., what they 

built) and how they think about the way in which they execute 

their project goals. 

IV. RESULTS 

The research included 70 undergraduate students assigned to 14 

groups over a six-week duration during which the students 

learned through a PBL approach enhanced by CT Scaffolding. 

The students completed open-ended data-driven algorithmic 

modeling challenges such as building Decision Modelling 

(DM) models, creating a basic simulation and executing multi-

step algorithms. Students were required to go through repeated 

cycles of contingent decision-making, collaborative critical 

thinking and modifying solutions, supporting the study's aim in 

exploring CT growth, collaborative patterns of behavior and 

students' engagement in developing metacognitive strategies. 

Students improved according to multiple forms of data (CT 

assessments, collaboration logs, workflow efficiency logs, and 

reflective writing). Below is a brief summary of each data 

source’s changes in CT performance, collaboration quality, 

workflow efficiency, and metacognitive activity, with 

comparisons to other performance levels. 

A. Computational Thinking Development 

1) Statistically Significant Results 

CT proficiency of students grew significantly through the use 

of the intervention. Prior to the intervention 

Pre-Intervention Mean: M = 61.3 SD = 8.4 

Post-Intervention Mean: M = 78.9, SD = 7.6 

The resulting t-test from the paired samples was found to be a 

statistically significant difference t (67) = 14.21, p < .001,            

d =1.21, indicating a high level of effect size and substantial 

learning growth. 
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B. Collaboration Measures 

To provide educators with further clarity about each of the 

analytic measures. Each Measure is presented in a conceptual 

way that is usable and understandable for the purpose of 

Educators. 

1) Participation Equity Index (PEI) 

Through the PEI, we can see how equally members of a team 

are participating in conversation and tasks (1.0 = Perfectly 

Equal participation from every member). 

i. On Pre-Intervention: PEI = 0.68  

ii. On Post-Intervention: PEI = 0.84  

iii. Change: Δ = +0.16 

iv. t(13)=4.27 

v. p < .001 

The increase of this PEI means that the scaffolding method used 

in CT processes (e.g., Structuring Roles, Explicit Planning) 

aided in reducing disparities of team member participation, and 

encouraged a much higher level of equitable participation 

among members of the team. 

2) Task Transition Rate (TTR) 

The TTR measurement depicts the average number of times a 

team switched from one task to another during the time they 

were working together. A lower number indicates that members 

of the team were focusing on the same single task for a longer 

period of time. 

On Pre-intervention the TTR was reported at 1.87 

transitions/hr. On Post-intervention, it was reported at 1.23 

transitions/hr. 

The data indicates that students are engaged in a more stable 

manner, working together more clearly, and setting a clearer 

direction as to where to take the group effort. 

3) Idea Contribution Ratio (ICR) 

The ICR is calculated as the number of new unique ideas 

relative to all interactions (i.e., new concepts added through the 

discussion), and therefore it should not be confused with the 

proportion of repeated or confirmed ideas. 

Overall, teams after CT scaffolding produced a greater density 

of unique ideas (0.47), which means that they were able to 

engage each other in more rich and engaging conversations, 

which in turn resulted in a stronger collaborative process. 

C. Process Efficiency 

This measure of process efficiency can be calculated as follows: 

                              𝐸 =
Value-Adding Actions

Total Actions
 

Prior to intervention, E = 0.54 

After intervention, E = 0.71 

The improvement of 31% between the two conditions indicates 

that team workflows were streamlined and included fewer 

actions that reflected confusion, redundancy, and instead 

included actions that contributed to constructive problem 

solving. Practitioners who wish to determine a similar 

efficiency metric can perform the same type of observation 

described above: coding of task-relevant vs. non-task-relevant 

actions without analytical tools. 

D. Metacognitive Engagement 

The qualitative coding of the reflective analyses of students' 

thoughts showed an increase across the three metacognitive 

dimensions, including: 

i. Planning statements (43% increase) 

ii. Monitoring statements (38% increase) 

iii. Evaluation statements (29% increase) 

The inter-rater agreement between researchers coding the data 

was very good (κ = 0.84; ICC = 0.88). 

Examples of representative excerpts illustrating these changes 

include: 

Planning - "To avoid redoing all of our work later, we should 

create a map to track all of our major decision points before we 

begin coding." 

Monitoring - "We need to verify that our algorithm continues 

to handle all of the edge cases after making this change." 

Evaluation - "Our model functions, but it is taking longer than 

we would like; can we streamline the decision tree and speed it 

up?" 

CT scaffolds encourage students to demonstrate more 

sophisticated self-regulated and strategic abilities at every stage 

of the project. 

E. Regression Analysis: Predicting CT Gains 

To investigate how collaboration &process indicators relate to 

CT development (or improvements) a multiple regression was 

conducted: 

𝐶𝑇gain = 𝛽0 + 𝛽1(PEI) + 𝛽2(ICR) + 𝛽3(𝐸) + 𝜖 

Regression results of predictors were statistically significant: 

i. Participation equity (β₁ = 5.21, p = .002) 

ii. Idea contribution ratio (β₂ = 3.87, p = .011) 

iii. Process efficiency (β₃ = 4.45, p = .006) 

The model accounted for 68% of the variance. (R^2 = 0.68) 

indicates that when combining these three factors together they 

are strong contributors to developing (or improvement) of CT. 

 

 
Fig. 1.  Pre/post CT scores with 95% CI bands 
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Fig. 2.  PEI vs. CT gains (scatterplot with regression line) 

 

 

 

 
Fig. 3. Process-mining overlays showing bottleneck reduction 

 

 
Fig. 4. Violin plots of metacognitive statement distributions 

 

F. Team-Level Differences in Performance 

To compare how improvement differed between teams based 

on how well they performed at the time of intervention as 

measured by CT scores, the teams were divided into three 

groups - high, medium, and low. 

 

1) Benefits from Using CT Grains 

High-performing Teams: There were moderate benefits from 

using CT (made "moderate" improvements between 4-12 points 

with a overall of about 12 points) therefore these teams would 

benefit from refining these CT practices over time, but were 

likely working on CT to keep building their foundational CT 

hisory.  

Medium-performing Teams: There were the greatest benefits 

from using CT to develop ideas with a total of 20 points average 

increase on CT scores meaning these teams responded really 

well to scaffolded activities and collaboration building CT. 

Low-performing Teams: Team gained a total of 13 points 

because of improvements in their structure and strategies to 

support collaboration among their team members.  

 

2) Collaborative Indicators 

PEI: All teams showed improvement on their PEI scores and 

low-performing teams showed the highest percentage of 

improvement on PEI therefore the scaffolding helped to balance 

out the team members and minimize the imbalance of 

participation. 

ICR: Medium-performing teams showed the highest 

improvement in idea generation. 

Efficiency(E): All teams showed improvements on their 

efficiency scores although high-performing teams started out 

with a slightly higher baseline.  

The major findings from this analysis indicate that all teams 

will experience improvements in CT through scaffolding, 

developing much more significant improvements for mid-range 

performing teams and more balance in collaboration for the 

low-performing teams. 

G. Interpretation 

The combined outcomes demonstrate that including PBL 

elements in conjunction with Extended CT have produced 

considerable benefits in the areas of technology, teamwork & 

collaboration as well as on the metacognitive level. These 

combined outcomes displayed a large effect size indicating a 

large impact in terms of increased equity of participation; 

increased number of ideas generated; and improved 

processes/operations within the classroom. In addition to 

improvements in collaboration, even greater than those 

achieved using PBL, collaboration was found to be a powerful 

predictor of increased CT score improvements. This outcome 

highlights that organized group routines play an essential role 

in learning environments that rely heavily on computational 

work. Since the study was carried out at a single institution and 

relied on digital log data to capture collaborative activity, the 

results should be applied cautiously to settings that lack 

comparable technological systems or instructor preparation. 

Table III summarizes students’ views prior to starting the case 

study. The responses indicate that most participants felt 

prepared for both the technical and teamwork demands of the 

project, although a smaller portion reported uncertainty about 

planning, using the required tools, and making sense of 

complex information. In general, the table shows varied but 

mostly positive levels of initial confidence. 

 

H. Limitations 

The work has several constraints that should be recognised. 

Since it draws on data from a single institution, the findings may 

not translate neatly to programmes with different resources or 

teaching practices. Much of the analysis also depends on digital 

records of student activity, meaning that settings without 

similar tools may find it difficult to apply the same approach. 
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In addition, the framework relies on instructors being 

comfortable interpreting workflow patterns and collaboration 

evidence, which may require more training than is typically 

available. 
TABLE III  

PRE-CASE STUDY QUESTIONS 

Pre-Case Study Question 5 4 3 2 1 

I feel ready to break large, 

open-ended engineering 

problems into smaller tasks. 

1 5 11 24 59 

I am comfortable using 

abstraction to make complex 

design work easier to handle. 

3 5 10 27 55 

I can recognise the different 

roles each person might take 

on in group work. 

2 6 8 24 60 

I expect to take part actively 

and offer ideas during team 

discussions. 

3 5 9 25 58 

I feel sure of my ability to read 

and understand technical 

materials like schematics and 

code. 

2 7 13 22 56 

I am able to map out the early 

stages of a project before we 

begin building or testing. 

3 7 17 26 47 

I believe I can keep track of 

my own progress during multi-

step engineering tasks. 

3 5 13 21 58 

I can describe the thinking 

behind the choices I make in 

my engineering work. 

1 9 15 26 49 

I know how to use tools such 

as Teams or Miro to help plan 

with my group. 

3 8 17 27 45 

I am confident that my team 

will work well together 

throughout the project. 

3 7 14 23 53 

 
 

Table IV shows the responses gathered after the case study. 

Overall, the scores are higher on almost every point. Students 

noted that they had become better at separating complex tasks 

into smaller parts, improving their ideas through repeated 

adjustments, and maintaining focus during team work. The 

results indicate that the project supported growth in both their 

technical decision-making and their capacity to collaborate 

effectively with others. 
 

TABLE IV 

POST-CASE STUDY QUESTIONS 

Post-Case Study Question 5 4 3 2 1 

I am now better at breaking 

down engineering problems 

into clear parts. 

60 23 9 5 3 

I strengthened my skill in 

improving algorithms or 
58 25 10 4 3 

design ideas through repeated 

revisions. 

I shared ideas more often and 

in a more useful way than I did 

previously. 

57 26 11 3 3 

Our team worked together 

more evenly throughout the 

project. 

59 24 10 4 3 

I was able to stay on task with 

fewer unnecessary shifts 

between activities. 

56 27 10 5 2 

I improved at recognising 

when a method needed to be 

changed. 

61 22 10 4 3 

I kept track of my own 

progress more deliberately 

during the project. 

58 25 9 5 3 

I became more confident using 

tools like MATLAB, 

Simulink, Python, and Miro. 

57 24 12 4 3 

I can describe how our 

workflow developed from the 

beginning to the end. 

55 28 10 4 3 

I can carry the abilities gained 

from this project into future 

engineering work. 

59 23 11 4 3 

 

Table V outlines students’ comments on their experience with 

the case study. Many noted that the overall setup, guidance, and 

support built into the tasks were useful. They also reported that 

the digital platforms helped them organize their group 

activities. The responses show that students felt the setting 

encouraged balanced involvement, careful handling of shared 

project information, and steady improvement in working 

through engineering challenges together. 

 
TABLE V 

FEEDBACK QUESTIONNAIRE  

Feedback Question 5 4 3 2 1 

The case study guidelines 

made the steps of the PBL 

process clear. 

58 24 11 4 3 

The CT approaches—

abstraction, decomposition, 

and iteration—helped me 

learn. 

57 26 10 4 3 

Platform like Teams helped us 

manage our group work well. 
56 27 10 5 2 

The open-ended format pushed 

me to think more deeply and 

be more creative. 

59 24 9 5 3 

The feedback I received 

showed me how to strengthen 

my CT abilities. 

58 23 12 4 3 

The amount of time given for 

each phase of the work felt 

appropriate. 

55 29 10 4 2 
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The CT measures (PEI, TTR, 

ICR, Efficiency) represented 

our workflow well. 

60 23 9 5 3 

The setting supported fair 

involvement from everyone on 

the team. 

57 25 11 4 3 

The digital records collected 

during the project were 

handled responsibly. 

56 26 10 5 3 

The case study helped me 

improve how I approach 

engineering problems with 

others. 

58 25 9 5 3 

CONCLUSION 

The results of this research indicate that the use of a broader 

scaffolding of CT extended over an entire semester has a 

positive effect on student learning in PBL contexts. Substantial 

gains were evident in CT skills for participants, collaboration 

was more evenly distributed and the rate of ideas generated 

increased significantly. Students’ metacognitive reflections 

demonstrated improvement in planning, monitoring and 

evaluating the concepts of their groups through collaboration 

on PBL projects. The study indicates that collaboration quality 

and strategic regulation support the development of CT in 

addition to a student’s cognitive abilities. The research was 

conducted within a single institution; however, the majority of 

the indicators could have been assessed through classroom 

observation, allowing for more flexibility in application of the 

framework. The extended CT framework provides educators 

with an excellent way for capturing hidden reasoning processes 

of students, which facilitates higher-level strategies in solving 

complex problems. Future research should focus on broader 

uses of the framework and future technological automation of 

the key analytic components of the framework. 

REFERENCES  

Catasús, M. G., Cukurova, M., Maldonado-Mahauad, J., 

Prieto, L. P., Pérez-Sanagustín, M., & Sua, E. (2025). 

Collaborative learning analytics: A systematic 

review. Journal of Learning Analytics, 12(1), 1–30. 

https://doi.org/10.18608/jla.2025.8489 

Esterházy, R., Rodriguez-Triana, M. J., Echeverría, V., Prieto, 

L. P., & Martinez-Maldonado, R. (2025). Advancing 

multimodal collaboration analytics: A scoping 

review. Journal of Learning Analytics, 12(1), 67–

102. https://doi.org/10.18608/jla.2025.8625 

Gamby, S., Kersaint, G., & Waters, T. (2022). Beyond “study 

skills”: A curriculum-embedded framework for 

metacognitive development in a college chemistry 

course. International Journal of STEM Education, 9, 

61. https://doi.org/10.1186/s40594-022-00376-6 

Halmo, S. M., Eddy, S. L., & Brownell, S. E. (2024). 

Metacognition and self-efficacy in action: How first-

year life science students reflect while solving 

problems. CBE—Life Sciences Education, 23(4), 

ar45. https://doi.org/10.1187/cbe.23-08-0158 

Hartmann, C., Rummel, N., & Bannert, M. (2022). Using 

HeuristicsMiner to analyze problem-solving 

processes: Exemplary use case of a productive-failure 

study. Journal of Learning Analytics, 9(2), 66–86. 

https://doi.org/10.18608/jla.2022.7363 

Liu, Z., Gearty, Z., Richard, E., Orrill, C. H., Kayumova, S., & 

Balasubramanian, R. (2024). Bringing computational 

thinking into classrooms: A systematic review on 

supporting teachers in integrating CT into K–12 

classrooms. International Journal of STEM 

Education, 11, 51. https://doi.org/10.1186/s40594-

024-00510-6 

López-Pernas, S., Saqr, M., Bustamante, R., & Klamma, R. 

(2022). A learning analytics perspective on 

educational escape rooms: Sequence mining and 

dashboards. Interactive Learning Environments, 

31(7), 4323–4342. 

https://doi.org/10.1080/10494820.2022.2041045 

Montuori, C., Gambarota, F., Altoé, G., & Arfé, B. (2024). 

The cognitive effects of computational thinking: A 

systematic review and meta-analytic study. 

Computers & Education, 210, 104961. 

https://doi.org/10.1016/j.compedu.2023.104961 

Pan, Z., Cui, Y., Leighton, J. P., & Cutumisu, M. (2023). 

Insights into computational thinking from think-aloud 

interviews: A systematic review. Applied Cognitive 

Psychology, 37(1), 71–95. 

https://doi.org/10.1002/acp.4029 

Wise, A. F., Schwarz, B., Kizilcec, R. F., Berland, M., 

Gašević, D., & Kizilcec, R. (2023). Nine elements for 

robust collaborative learning analytics: A research 

agenda. International Journal of Computer-Supported 

Collaborative Learning, 18(4), 539–563. 

https://doi.org/10.1007/s11412-023-09389-x 

Yang, Y., Yuan, J., & Chen, X. (2024). Effects and 

mechanisms of analytics-assisted reflective 

assessment in computer-supported collaborative 

inquiry. Journal of Computer Assisted Learning, 

40(5), 1440–1457. https://doi.org/10.1111/jcal.12915 

Yang, Y., Yuan, K., Zhu, G., & Jiao, L. (2024). Collaborative 

analytics-enhanced reflective assessment to foster 

conducive epistemic emotions in knowledge 

building. Computers & Education, 209, 104950. 

https://doi.org/10.1016/j.compedu.2023.104950 

Zhang, L., Zhou, Y., & Mustapha, A. (2023). A study of the 

impact of project-based learning on student academic 

achievement: A meta-analysis. Frontiers in 

Psychology, 14, 1202728. 

https://doi.org/10.3389/fpsyg.2023.1202728 

Zhang, W., Guan, Y., & Hu, Z. (2024). The efficacy of 

project-based learning in enhancing computational 

thinking among students: A meta-analysis of 31 

experiments and quasi-experiments. Education and 

Information Technologies, 29(5), 5897–5929. 

https://doi.org/10.1007/s10639-023-12392-2 

 

 

 

https://doi.org/10.18608/jla.2025.8489
https://doi.org/10.18608/jla.2025.8625
https://doi.org/10.1186/s40594-022-00376-6
https://doi.org/10.1187/cbe.23-08-0158
https://doi.org/10.1186/s40594-024-00510-6
https://doi.org/10.1186/s40594-024-00510-6
https://doi.org/10.1080/10494820.2022.2041045
https://doi.org/10.1016/j.compedu.2023.104961
https://doi.org/10.1002/acp.4029
https://doi.org/10.1007/s11412-023-09389-x
https://doi.org/10.1111/jcal.12915
https://doi.org/10.1016/j.compedu.2023.104950
https://doi.org/10.3389/fpsyg.2023.1202728

