
Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

1

 1Pudumalar S, 2Parkavi R
1,2Department of Information Technology, Thiagarajar College of Engineering, Madurai

1spmit@tce.edu, 2rpit@tce.edu

Abstract—Traditional lecture-based approaches in software

engineering education often fall short in providing the

experiential depth required to understand stakeholder needs,

foster effective team collaboration, and develop essential

documentation skills. This study introduces and implements the

CKIL (CDIO–Kolb Integrated Learning) framework in a mini-

project assignment designed for third-semester undergraduate

software engineering students (n = 180). The CKIL framework

integrates engineering lifecycle principles from the CDIO model

with Kolb’s experiential learning cycle, enabling students to

engage in structured phases of problem identification,

requirement elicitation, and system modelling through iterative

reflection, active prototyping and testing. Team-based reflections,

peer reviews, and exploratory use of digital tools—were

embedded throughout the assignment. Implementation outcomes

indicate enhanced student engagement, improved teamwork

dynamics, and stronger attainment of course learning objectives.

The study further explores the framework’s influence on skill

development, critical thinking, and the cultivation of lifelong

learning competencies. findings underscore the value of blending

traditional academic content with contemporary pedagogical

practices, demonstrating that the CKIL framework offers a

scalable and effective model for preparing engineering graduates

to meet the complex demands of real-world software

development environments.

Keywords— CDIO, Kolb’s Experiential Learning, Software

Engineering Education, Active Learning strategies, CKIL

Framework.

ICTIEE Track: Innovative Pedagogies and Active Learning

ICTIEE Sub-Track: Choose one from the list of sub-tracks

mentioned in the Website

(Refer to the Paper Submission and Review Guidelines for more

details.)

I. INTRODUCTION

In engineering instruction, specifically in fields like

software engineering, the dominant pedagogical model is still

primarily didactic—oriented toward lectures, slides, and static

evaluations. Although this approach effectively conveys

theoretical underpinnings, it tends to fail in developing the

dynamic skills needed for actual software production,

including collaboration, problem-solving, iterative thinking,

and tool facility. Students often experience a gap between

what they learn in the classroom and the dynamic, nimble, and

tool-centric reality of industry practices. While curriculum

structure and content coverage have improved, the absence of

experiential

depth gets in the way of learners to absorb and translate ideas

throughout the software development lifecycle.

Modern efforts to close this gap involve flipped classrooms,

project-based education, and gamified testing. These

interventions tend to be discrete, though, without a unified

pedagogical design that progressively scaffolds learning from

grasping theoretical models to practicing design principles,

working in teams, employing software tools, and reflecting on

practice. Moreover, although active learning approaches are

increasingly promoted, they are not necessarily systematically

connected to frameworks of cognitive development or

engineering project workflows, so resulting learning is

periodic.

To meet these challenges, this research introduces a

integrated pedagogical strategy: the CKIL (CDIO–Kolb

Integrated Learning) framework. CKIL combines the ordered,

lifecycle-foundation engineering pedagogy of CDIO

(Conceive–Design–Implement–Operate) with Kolb's cycle of

experiential learning (Concrete Experience, Reflective

Observation, Abstract Conceptualization, and Active

Experimentation). This combination creates both a project-

based and cognitively founded learning pathway, allowing

students to apply software engineering principles in an

iterative, reflective, and real-world context.

This study aims to change an otherwise passive content

delivery during a software engineering course by embedding

the CKIL framework into its instructional design. Mini-

projects inspired by real-world contexts engaged in by the

students would require requirement analysis, modeling, design

thinking, and collaboration—guided by iterative cycles of

doing, reflecting, and improving. This approach not only

closes the theory-practice gap but also gives learners lifelong

learning skills, deeper conceptual understanding, and

readiness for professional roles in software engineering.

The study assesses CKIL efficacy in an undergraduate

software engineering course with 180 students across the

principal software development stages. The results are

measured using measures of student interaction, effectiveness

of learning, skill acquisition, and outcome achievement—

providing a scalable and flexible model for the engineering

education of the 21st century.

To guide the analysis, the following research questions were

framed:

RQ1: How does the integration of the CKIL (CDIO–Kolb

Integrated Learning) framework impact student engagement,

collaboration, and conceptual understanding in undergraduate

software engineering education?

 RQ2: To what extent does the CKIL framework support

the development of applied software engineering skills—such

An Integrated CDIO–Kolb Framework for

Experiential Learning in Software Engineering

Pudumalar S

 Assistant Professor

Department of Information Technology, Thiagarajar College of Engineering

Madurai.spmit@tce.edu

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

289

as requirement analysis, modeling, and design thinking—

compared to traditional lecture-based instruction?

II. LITERATURE REVIEW

Traditional lecture-based instruction in software

engineering has long been critiqued for failing to provide the

experiential depth required to develop essential engineering

competencies. Several studies underscore that while lectures

are effective for conveying theoretical knowledge, they are

insufficient for cultivating collaborative problem-solving,

iterative thinking, and stakeholder communication skills—

capabilities essential for real-world software development

(Bonetti et al.2025 and Zowghi 2011).

In their systematic mapping study, Bonetti et al. (2025)

found that lecture-based models often lead to surface-level

understanding, with limited opportunities for students to apply

knowledge contextually. Ebadi et al. (2020) further highlight

that requirement engineering (RE) education often lacks real-

world simulation, resulting in a gap between classroom

learning and industry expectations.

Responding to the limitations of lecture-centric pedagogy,

many researchers have explored active and experiential

learning models that foster deeper engagement, HOTS, and

real-world skill acquisition among students. Konak et al.

(2014) applied “Kolb’s experiential learning cycle”—

comprising Concrete Experience, Reflective Observation,

Abstract Conceptualization and Active Experimentation—in

the context of virtual computer laboratories. Their findings

demonstrated that embedding learning activities within this

structured cycle led to notable improvements in both learner

performance and metacognitive awareness. Students not only

performed better on assessments but also reflected more

meaningfully on the learning process, allowing for iterative

refinement of their skills.

Building on this, Devi and Thendral (2025) implemented

Kolb’s model in a theory-intensive engineering course,

revealing that even in non-practical, concept-heavy subjects,

experiential learning could significantly improve conceptual

clarity and long-term retention. This reinforces the idea that

experiential strategies are not confined to lab-based settings

but can be applied across a spectrum of content types to

stimulate meaningful learning.

The support for experiential learning's transformative

potential is offered by the WIETE Transformative Learning

Team (2023) and Albertini et al. (2024), who emphasize the

synergistic effect of “reflection and iteration” in engineering

education. These studies highlight that when students are

given opportunities to engage in cyclic learning—where they

actively participate, reflect, reframe understanding, and

reapply knowledge—their critical thinking, problem-solving

abilities, and intrinsic motivation improve. Importantly,

students begin to assume greater ownership of their learning

journey, becoming self-directed learners equipped for

continuous growth.

Silva et al. (2021) introduced a four-stage project-based

learning (PBL) approach tailored to software engineering.

This model, which closely mirrors Kolb’s learning cycle,

structures student learning around real-world problem-solving,

with an emphasis on stakeholder communication, team

collaboration, and leadership development. Their results

showed not only improved technical skills but also enhanced

soft skills—an area often overlooked in traditional curricula.

The iterative stages allowed students to apply theoretical ideas

in real situations, promoting contextual learning and a deeper

understanding of the software development process.

The CDIO framework, introduced by Crawley et al. (2014),

presents a lifecycle-based model that mirrors engineering

practice—moving through Conceive, Design, Implement, and

Operate stages. It has been widely adopted to support project-

based curricula and integrated assessment structures. Its

relevance in software engineering education lies in providing

students with a structured, authentic context to apply their

knowledge.

Garcia et al. (2023) emphasize that collaborative learning

models are most effective when grounded in structured

pedagogical approaches like CDIO. Their mapping study

identified gaps in standalone active learning techniques,

advocating for models that provide scaffolding across multiple

stages of a project.

Studies have also recognised the value of peer learning and

stakeholder interaction in requirement engineering and design

thinking. Connor et al. (2014) showed that peer-based review

in RE projects helped students better internalise domain

knowledge and client expectations. The use of pair learning

and peer assessment in requirement elicitation (Jatit

Engagement Team, 2025) revealed higher levels of

participation and accuracy in requirement documentation.

Ahmed et al. (2025) explored integrating AI tools to

simulate stakeholder interviews for elicitation practice,

highlighting that technology-supported, realistic interaction

significantly strengthens learning in the early stages of SDLC.

Collectively, these studies provide strong evidence that

experiential and project-based learning, when systematically

implemented through structured models like Kolb’s,

significantly improves the quality and depth of student

learning. By aligning Kolb’s cognitive model with CDIO’s

engineering design structure, the CKIL framework offers a

scalable solution to develop not only academic skills but also

practical, team-based, and reflective abilities—bridging the

ongoing theory–practice gap. They also indicate that such

approaches are especially effective when combined with

reflective and collaborative elements, providing the

pedagogical foundation for frameworks like the CKIL model

proposed in this study.

III. RESEARCH METHODOLOGY

The methodology aligns course design, Kolb’s Experiential

Learning Theory delivery, and assessment practices with two

frameworks, suggesting that effective learning is a continuous,

experience-driven process. Rooted in constructivism, it

proposes that learners create knowledge by transforming their

experiences through a four-stage cycle: Concrete Experience,

Reflective Observation, Abstract Conceptualization, and

Active Experimentation. When applied systematically, this

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

290

cycle promotes deep understanding, fosters metacognitive

skills, and effectively connects theoretical concepts with

practical application.
TABLE I

 KOLB’S FOUR-STAGE CYCLE

STAGE Description

Concrete Experience
(CE)

Engaging in a specific, hands-on task
or activity

Reflective Observation

 (RO)

Reviewing and reflecting on the

experience
Abstract Conceptualization

 (AC)

Concluding and developing theories

based on reflection

Active Experimentation
 (AE)

Applying new knowledge to future
tasks and contexts

The CDIO (Conceive–Design–Implement–Operate)

framework provides a structured, lifecycle-aligned approach to

engineering education. It emphasizes:

• Conceive: Defining the problem, needs, and constraints.

• Design: Developing technical plans and models.

• Implement: Building, coding, testing, and integrating

solutions.

• Operate: Deploying, maintaining, and reflecting on

solutions in use.

CDIO promotes project-based, team-driven learning

grounded in real-world engineering challenges. It aligns

educational practice with industry expectations, preparing

students to become innovative and socially responsible

engineers. The application of CKIL in Course Planning,

Content Delivery and Assessment.

 A. Course Planning

1) Define learning outcomes using Bloom’s Taxonomy,

integrated with reflective components.

2) Structure the course plan around mini-projects aligned to

SDLC phases.

3) Design assignments and lab activities to match CDIO

stages and Kolb cycles.

B. Course Delivery

1) Concrete Experience: Use role plays, stakeholder

interviews, and tool exploration activity

2) Reflective Observation: Encourage weekly team

reflections, peer review, and group retrospectives.

3) Abstract Conceptualization: Guide students in theory

development via concept mapping, classroom discussions, and

guided questioning.

4) Active Experimentation: Engage students in sprint

planning, design reviews, and test case generation.

C. Assessment Alignment

Assessment in a CKIL-based course is continuous,

formative, and summative, aligning with each phase of Kolb’s

cycle and CDIO stage.

This alignment facilitates constructive alignment in course

planning, ensuring that Intended Learning Outcomes (ILOs),

Teaching-Learning Activities (TLAs), and Assessment Tasks

(ATs) are coherently mapped and mutually reinforcing.

TABLE II

CKIL-BASED COURSE ASSESSMENT STRUCTURE

STAGE Description

Concrete Experience

(CE)

Lab work, experiments, field visits,

demonstrations, simulations, case

encounters
Reflective Observation

 (RO)

Reflective journals, lab reflections,

observation reports, error analysis,

self/peer review
Abstract Conceptualization

 (AC)

Written exams, derivations, conceptual

questions, analytical problem-solving,
case analysis

Active Experimentation

 (AE)

Projects, coding tasks, design/build

tasks, simulation studies, prototype
development

TABLE III

MAPPING CKIL FRAMEWORK TO SOFTWARE ENGINEERING COMPONENTS

CDIO Phase Kolb Stage Course Component

Conceive Concrete

Experience
(CE)

Brainstorming project ideas,

identifying problems, and
stakeholder interviews

Conceive→ Design Reflective

Observation
(RO)

Team discussions on feasibility,

requirements gathering review

Design Abstract

Conceptualiz
ation (AC)

Creating SRS, user stories,

modeling use cases and
architecture

Implement →
Operate

Active
Experimentat

ion (AE)

Coding, testing, peer reviews,
client feedback integration

TABLE IV

 KOLB CYCLE STAGE ALIGNMENT FOR COURSE ACTIVITIES

TOPIC - ACTIVITY Kolb Cycle Stage

Assignment 1 – Requirement Engineering &
Problem Definition (Stakeholder identification,

requirement gathering, feasibility analysis,

user stories, use-case diagram)

CE, RO, AC, AE

Assignment 2 – System Design & Tool

Exploration (DFD, UML, DevOps mind map,

test case writing, peer assessment, SRS
compilation)

CE, RO, AC, AE

Joint Teaching -Testing and Automated testing

tool usage Software Quality Models – SEI-
CMM

AC/AE

Final Review, Evaluation & Peer Feedback RO, AE

IV. IMPLEMENTATION

The course was designed as a three-month program

comprising 36 instructional hours, divided into six modules

and aligned with six course outcomes. Each module was

designed to progressively develop students’ understanding of

core software engineering concepts through experiential

learning activities and iterative feedback. For Requirement

engineering module,students conduct user interviews (CE),

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

291

Fig. 1. Sample of assignment 1 and assignment 2 submission showing requirement gathering, generating function and non-functional requirements, user stories,

use case diagram, class diagram,data flow diagram, test case generation using various tools.

reflect on feedback (RO), document user stories and SRS (AC), and prototype wireframes or UML diagrams (AE).In the

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

292

design module, students begin by analyzing project goals and

exploring system requirements to conceptualize the

architecture (Concrete Experience). They then reflect on

different design approaches and challenges faced during peer

discussions and critiques (Reflective Observation). Based on

this reflection, they develop design artifacts such as data flow

diagrams, UML class diagrams, and interface layouts

(Abstract Conceptualization). Finally, they apply this

understanding by building detailed design documentation and

refining their models through iterative feedback and tool-

based experimentation (Active Experimentation). These

assessments were not just tools for engagement and immediate

feedback but were also integrated into the formal evaluation

process. The assignment plan for the course and its mapping

with Kolb Cycle stage is given the table IV.

V. RESULTS AND DISCUSSION

The assessment outcomes from both Assignment 1 and

Assignment 2 provide valuable insights into student

engagement, understanding, and skill acquisition throughout

the course. The highest score in Assignment 1 is 38 and lowest

score is 8,similarly for assignment2 39 and 24. In Assignment

1: Most students scored between 60–80, with a few outliers

above 90. In Assignment 2: Scores shifted slightly higher,

with a peak around 70–85. The course outcomes of the course

are

CO1 Compare traditional and agile software process models

CO2 Identify user stories, Story map, functional and non-functional

 requirements for any given problem

CO3 Prepare design documents with standards for the given requirements

CO4 Develop test cases using appropriate testing techniques for an

 application

CO5 Explain the scope of the software maintenance problem and

 demonstrate the use of version controlling and tracking mechanisms.

CO6 Demonstrate DEVOPS life cycle processes and introduce state of art

 tools used in large scale software systems.

The score of the students for Assignment 1 and Assignment 2
TABLE V

ASSIGNMENT 1 AND ASSIGNMENT 2 MARKS

Course Outcome

Average Score (A1) Average Score (A2)

CO1 72 76

CO2 68 74

CO3 71 77
CO4 69 73

CO5 70 80

CO6 75 82

CO1 registered the highest average in both assignments,

with 72% in Assignment 1 (A1) and a further improvement to

76% in Assignment 2(A2). This indicates that students have a

firm grasp of the fundamental concepts and can apply them

effectively across different problem contexts. The

improvement between assignments suggests that students

benefited from the iterative learning process, incorporating

feedback from A1 to enhance their performance in A2. CO2

scores started at a slightly lower 68% in A1 but rose to 74% in

A2, reflecting a substantial improvement. The initial lower

performance could be attributed to the relatively higher

cognitive demand of the CO2 aligned tasks in A1, possibly

requiring deeper analytical reasoning. The marked

improvement in A2 suggests that targeted interventions—such

as additional problem-solving exercises, peer discussions, and

instructor feedback—helped bridge the initial gap. CO3

demonstrated stable and strong attainment, improving from

71% in A1 to 77% in A2. The high scores across both

assessments highlight students’ ability to consistently apply

learned concepts, especially in application- and synthesis-

oriented tasks. This sustained high performance may be linked

to the experiential learning components embedded in the

course, enabling students to connect theory with practice

effectively. CO4 attained 69% in A1 and 73% in A2, showing

only modest improvement. While the upward trend indicates

some learning progression, the scores remain below those of

CO1 and CO3. This suggests that the skill areas associated

with CO4likely involving higher-order problem solving,

integration of multiple concepts, or creative design—require

more reinforcement. CO5 jumped from 70% in A1 to 80% in

A2, representing one of the largest gains among all COs. This

suggests that the second assignment effectively reinforced

skills in this outcome, possibly due to practical, hands-on

components that improved student engagement and

application accuracy. CO6 started strong at 75% in A1 and

reached 82% in A2, the highest among all COs. This indicates

exceptional mastery in the skills targeted by CO6, which may

involve capstone-level tasks integrating knowledge from

multiple course areas. It is observed that all COs showed

positive progression from A1 to A2.The largest improvements

were observed in CO5 (+10%) and CO6 (+7%).CO2 and CO4

show moderate attainment but present opportunities for

targeted pedagogical interventions.

 Fig. 2. Course outcome wise average Scores for Assignment 1 and

 Assignment 2

 Fig. 3. Overall performance distribution of the students

VI. Conclusion

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

293

The analysis of CO-wise attainment across two sequential

assignments demonstrates a positive trajectory in student

performance for all six Course Outcomes. The data shows that

CO1, CO3, CO5, and CO6 are strong, with consistently high

scores and significant improvements, particularly in CO5

(+10%) and CO6 (+7%). This suggests that practical, hands-

on components and iterative feedback mechanisms in the

second assignment were highly effective in reinforcing

learning. While

CO2 and CO4 showed improvement, their attainment levels

remained comparatively moderate, indicating the need for

targeted interventions such as additional practice sessions,

focused tutorials, and peer-assisted learning. The overall trend

reflects successful engagement with the course content,

effective application of the Kolb experiential learning cycle,

and a high degree of adaptability among students in applying

conceptual knowledge to practical tasks

REFERENCES

Ahmed, M., Patel, R., & Srinivasan, K. (2025). Enhancing

requirement elicitation skills through AI-supported

stakeholder simulations in software engineering

education. International Journal of Engineering

Education, 41(2), 245–260.

Albertini, S., Rossi, F., & Martelli, L. (2024). Reflection and

iteration as drivers of transformative learning in

engineering education. European Journal of

Engineering Education, 49(1), 85–102.

Bonetti, A., Johnson, P., & Clarke, M. (2025). A systematic

mapping study of experiential learning in software

engineering education. Journal of Systems and

Software, 204, 111784.

Connor, A., McCallum, A., & Dick, M. (2014). Peer review

and self-assessment in software engineering projects:

An experiential learning approach. Computer Science

Education, 24(3–4), 215–232.

Crawley, E. F., Malmqvist, J., Östlund, S., Brodeur, D. R., &

Edström, K. (2014). Rethinking engineering

education: The CDIO approach (2nd ed.). Cham,

Switzerland: Springer.

Devi, P., & Thendral, R. (2025). Applying Kolb’s experiential

learning cycle to concept-heavy engineering courses:

An empirical study. International Journal of

Engineering Pedagogy, 15(1), 45–58.

Ebadi, Y., Fernandes, M., & Mendes, A. J. (2020). Bridging

the gap between academia and industry: A case study

in teaching requirements engineering. IEEE

Transactions on Education, 63(4), 285–293.

Garcia, L., Martínez, J., & Paredes, H. (2023). Mapping

collaborative learning approaches in software

engineering education. Education and Information

Technologies, 28(9), 10345–10369.

Jatit Engagement Team. (2025). Improving requirement

elicitation through peer learning and assessment in

engineering education. Journal of Theoretical and

Applied Information Technology, 103(5), 912–924.

Konak, A., Clark, T. K., &Nasereddin, M. (2014). Using

Kolb’s experiential learning cycle to improve student

learning in virtual computer laboratories. Computers

& Education, 72, 11–22.

Silva, R., Costa, C., & Pinto, A. (2021). A four-stage project-

based learning model for software engineering

education. IEEE Revista Iberoamericana de

Tecnologias del Aprendizaje, 16(3), 192–200.

 WIETE Transformative Learning Team. (2023). The role of

reflection and iteration in engineering education: A

transformative learning perspective. Global Journal

of Engineering Education, 25(2), 123–131.

Zowghi, D. (2011). Teaching requirements engineering

through role playing: Lessons learnt. Requirements

Engineering, 16(2), 101–116.

