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Abstract—Traditional lecture-based approaches in software 

engineering education often fall short in providing the 

experiential depth required to understand stakeholder needs, 

foster effective team collaboration, and develop essential 

documentation skills. This study introduces and implements the 

CKIL (CDIO–Kolb Integrated Learning) framework in a mini-

project assignment designed for third-semester undergraduate 

software engineering students (n = 180). The CKIL framework 

integrates engineering lifecycle principles from the CDIO model 

with Kolb’s experiential learning cycle, enabling students to 

engage in structured phases of problem identification, 

requirement elicitation, and system modelling through iterative 

reflection, active prototyping and testing. Team-based reflections, 

peer reviews, and exploratory use of digital tools—were 

embedded throughout the assignment. Implementation outcomes 

indicate enhanced student engagement, improved teamwork 

dynamics, and stronger attainment of course learning objectives. 

The study further explores the framework’s influence on skill 

development, critical thinking, and the cultivation of lifelong 

learning competencies. findings underscore the value of blending 

traditional academic content with contemporary pedagogical 

practices, demonstrating that the CKIL framework offers a 

scalable and effective model for preparing engineering graduates 

to meet the complex demands of real-world software 

development environments. 
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I. INTRODUCTION 

In engineering instruction, specifically in fields like 

software engineering, the dominant pedagogical model is still 

primarily didactic—oriented toward lectures, slides, and static 

evaluations. Although this approach effectively conveys 

theoretical underpinnings, it tends to fail in developing the 

dynamic skills needed for actual software production, 

including collaboration, problem-solving, iterative thinking, 

and tool facility. Students often experience a gap between 

what they learn in the classroom and the dynamic, nimble, and 

tool-centric reality of industry practices. While curriculum 

structure and content coverage have improved, the absence of 

experiential  

 

depth gets in the way of learners to absorb and translate ideas 

throughout the software development lifecycle. 

Modern efforts to close this gap involve flipped classrooms, 

project-based education, and gamified testing. These 

interventions tend to be discrete, though, without a unified 

pedagogical design that progressively scaffolds learning from 

grasping theoretical models to practicing design principles, 

working in teams, employing software tools, and reflecting on 

practice. Moreover, although active learning approaches are 

increasingly promoted, they are not necessarily systematically 

connected to frameworks of cognitive development or 

engineering project workflows, so resulting learning is 

periodic. 

To meet these challenges, this research introduces a 

integrated pedagogical strategy: the CKIL (CDIO–Kolb 

Integrated Learning) framework. CKIL combines the ordered, 

lifecycle-foundation engineering pedagogy of CDIO 

(Conceive–Design–Implement–Operate) with Kolb's cycle of 

experiential learning (Concrete Experience, Reflective 

Observation, Abstract Conceptualization, and Active 

Experimentation). This combination creates both a project-

based and cognitively founded learning pathway, allowing 

students to apply software engineering principles in an 

iterative, reflective, and real-world context. 

This study aims to change an otherwise passive content 

delivery during a software engineering course by embedding 

the CKIL framework into its instructional design. Mini-

projects inspired by real-world contexts engaged in by the 

students would require requirement analysis, modeling, design 

thinking, and collaboration—guided by iterative cycles of 

doing, reflecting, and improving. This approach not only 

closes the theory-practice gap but also gives learners lifelong 

learning skills, deeper conceptual understanding, and 

readiness for professional roles in software engineering. 

The study assesses CKIL efficacy in an undergraduate 

software engineering course with 180 students across the 

principal software development stages. The results are 

measured using measures of student interaction, effectiveness 

of learning, skill acquisition, and outcome achievement—

providing a scalable and flexible model for the engineering 

education of the 21st century. 

To guide the analysis, the following research questions were 

framed: 

RQ1: How does the integration of the CKIL (CDIO–Kolb 

Integrated Learning) framework impact student engagement, 

collaboration, and conceptual understanding in undergraduate 

software engineering education?  

     RQ2: To what extent does the CKIL framework support 

the development of applied software engineering skills—such 
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as requirement analysis, modeling, and design thinking—

compared to traditional lecture-based instruction? 

II. LITERATURE REVIEW 

Traditional lecture-based instruction in software 

engineering has long been critiqued for failing to provide the 

experiential depth required to develop essential engineering 

competencies. Several studies underscore that while lectures 

are effective for conveying theoretical knowledge, they are 

insufficient for cultivating collaborative problem-solving, 

iterative thinking, and stakeholder communication skills—

capabilities essential for real-world software development 

(Bonetti et al.2025 and Zowghi 2011). 

In their systematic mapping study, Bonetti et al. (2025) 

found that lecture-based models often lead to surface-level 

understanding, with limited opportunities for students to apply 

knowledge contextually. Ebadi et al. (2020) further highlight 

that requirement engineering (RE) education often lacks real-

world simulation, resulting in a gap between classroom 

learning and industry expectations.  

Responding to the limitations of lecture-centric pedagogy, 

many researchers have explored active and experiential 

learning models that foster deeper engagement, HOTS, and 

real-world skill acquisition among students. Konak et al. 

(2014) applied “Kolb’s experiential learning cycle”—

comprising Concrete Experience, Reflective Observation, 

Abstract Conceptualization and Active Experimentation—in 

the context of virtual computer laboratories. Their findings 

demonstrated that embedding learning activities within this 

structured cycle led to notable improvements in both learner 

performance and metacognitive awareness. Students not only 

performed better on assessments but also reflected more 

meaningfully on the learning process, allowing for iterative 

refinement of their skills. 

Building on this, Devi and Thendral (2025) implemented 

Kolb’s model in a theory-intensive engineering course, 

revealing that even in non-practical, concept-heavy subjects, 

experiential learning could significantly improve conceptual 

clarity and long-term retention. This reinforces the idea that 

experiential strategies are not confined to lab-based settings 

but can be applied across a spectrum of content types to 

stimulate meaningful learning. 

The support for experiential learning's transformative 

potential is offered by the WIETE Transformative Learning 

Team (2023) and Albertini et al. (2024), who emphasize the 

synergistic effect of “reflection and iteration” in engineering 

education. These studies highlight that when students are 

given opportunities to engage in cyclic learning—where they 

actively participate, reflect, reframe understanding, and 

reapply knowledge—their critical thinking, problem-solving 

abilities, and intrinsic motivation improve. Importantly, 

students begin to assume greater ownership of their learning 

journey, becoming self-directed learners equipped for 

continuous growth. 

Silva et al. (2021) introduced a four-stage project-based 

learning (PBL) approach tailored to software engineering. 

This model, which closely mirrors Kolb’s learning cycle, 

structures student learning around real-world problem-solving, 

with an emphasis on stakeholder communication, team 

collaboration, and leadership development. Their results 

showed not only improved technical skills but also enhanced 

soft skills—an area often overlooked in traditional curricula. 

The iterative stages allowed students to apply theoretical ideas 

in real situations, promoting contextual learning and a deeper 

understanding of the software development process. 

The CDIO framework, introduced by Crawley et al. (2014), 

presents a lifecycle-based model that mirrors engineering 

practice—moving through Conceive, Design, Implement, and 

Operate stages. It has been widely adopted to support project-

based curricula and integrated assessment structures. Its 

relevance in software engineering education lies in providing 

students with a structured, authentic context to apply their 

knowledge. 

Garcia et al. (2023) emphasize that collaborative learning 

models are most effective when grounded in structured 

pedagogical approaches like CDIO. Their mapping study 

identified gaps in standalone active learning techniques, 

advocating for models that provide scaffolding across multiple 

stages of a project. 

Studies have also recognised the value of peer learning and 

stakeholder interaction in requirement engineering and design 

thinking. Connor et al. (2014) showed that peer-based review 

in RE projects helped students better internalise domain 

knowledge and client expectations. The use of pair learning 

and peer assessment in requirement elicitation (Jatit 

Engagement Team, 2025) revealed higher levels of 

participation and accuracy in requirement documentation. 

Ahmed et al. (2025) explored integrating AI tools to 

simulate stakeholder interviews for elicitation practice, 

highlighting that technology-supported, realistic interaction 

significantly strengthens learning in the early stages of SDLC. 

Collectively, these studies provide strong evidence that 

experiential and project-based learning, when systematically 

implemented through structured models like Kolb’s, 

significantly improves the quality and depth of student 

learning. By aligning Kolb’s cognitive model with CDIO’s 

engineering design structure, the CKIL framework offers a 

scalable solution to develop not only academic skills but also 

practical, team-based, and reflective abilities—bridging the 

ongoing theory–practice gap. They also indicate that such 

approaches are especially effective when combined with 

reflective and collaborative elements, providing the 

pedagogical foundation for frameworks like the CKIL model 

proposed in this study. 

III. RESEARCH METHODOLOGY 

The methodology aligns course design, Kolb’s Experiential 

Learning Theory delivery, and assessment practices with two 

frameworks, suggesting that effective learning is a continuous, 

experience-driven process. Rooted in constructivism, it 

proposes that learners create knowledge by transforming their 

experiences through a four-stage cycle: Concrete Experience, 

Reflective Observation, Abstract Conceptualization, and 

Active Experimentation. When applied systematically, this 
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cycle promotes deep understanding, fosters metacognitive 

skills, and effectively connects theoretical concepts with 

practical application.  
TABLE I 

 KOLB’S FOUR-STAGE CYCLE 

STAGE Description 

Concrete Experience  
(CE) 

Engaging in a specific, hands-on task 
or activity 

Reflective Observation 

 (RO) 

Reviewing and reflecting on the 

experience 
Abstract Conceptualization 

 (AC) 

Concluding and developing theories 

based on reflection 

Active Experimentation 
 (AE) 

Applying new knowledge to future 
tasks and contexts 

 

The CDIO (Conceive–Design–Implement–Operate) 

framework provides a structured, lifecycle-aligned approach to 

engineering education. It emphasizes: 

• Conceive: Defining the problem, needs, and constraints. 

• Design: Developing technical plans and models. 

• Implement: Building, coding, testing, and integrating 

solutions. 

• Operate: Deploying, maintaining, and reflecting on 

solutions in use. 

CDIO promotes project-based, team-driven learning 

grounded in real-world engineering challenges. It aligns 

educational practice with industry expectations, preparing 

students to become innovative and socially responsible 

engineers. The application of CKIL in Course Planning, 

Content Delivery and Assessment. 

    A. Course Planning 

1) Define learning outcomes using Bloom’s Taxonomy, 

integrated with reflective components. 

2) Structure the course plan around mini-projects aligned to 

SDLC phases. 

3) Design assignments and lab activities to match CDIO 

stages and Kolb cycles. 

B. Course Delivery 

1) Concrete Experience: Use role plays, stakeholder 

interviews, and tool exploration activity 

2) Reflective Observation: Encourage weekly team 

reflections, peer review, and group retrospectives. 

3) Abstract Conceptualization: Guide students in theory 

development via concept mapping, classroom discussions, and 

guided questioning. 

4) Active Experimentation: Engage students in sprint 

planning, design reviews, and test case generation. 

C. Assessment Alignment 

Assessment in a CKIL-based course is continuous, 

formative, and summative, aligning with each phase of Kolb’s 

cycle and CDIO stage.    

This alignment facilitates constructive alignment in course 

planning, ensuring that Intended Learning Outcomes (ILOs), 

Teaching-Learning Activities (TLAs), and Assessment Tasks 

(ATs) are coherently mapped and mutually reinforcing. 

 
TABLE II  

CKIL-BASED COURSE ASSESSMENT STRUCTURE 

STAGE Description 
 

Concrete Experience  

(CE) 

Lab work, experiments, field visits, 

demonstrations, simulations, case 

encounters 
Reflective Observation 

 (RO) 

Reflective journals, lab reflections, 

observation reports, error analysis, 

self/peer review 
Abstract Conceptualization 

 (AC) 

Written exams, derivations, conceptual 

questions, analytical problem-solving, 
case analysis 

Active Experimentation 

 (AE) 

Projects, coding tasks, design/build 

tasks, simulation studies, prototype 
development 

 
TABLE III 

MAPPING CKIL FRAMEWORK TO SOFTWARE ENGINEERING COMPONENTS 

CDIO Phase Kolb Stage Course Component 

Conceive Concrete 

Experience 
(CE) 

Brainstorming project ideas, 

identifying problems, and 
stakeholder interviews 

Conceive→ Design Reflective 

Observation 
(RO) 

Team discussions on feasibility, 

requirements gathering review 

Design Abstract 

Conceptualiz
ation (AC) 

Creating SRS, user stories, 

modeling use cases and 
architecture 

Implement → 
Operate 

Active 
Experimentat

ion (AE) 

Coding, testing, peer reviews, 
client feedback integration 

 

TABLE IV 

 KOLB CYCLE STAGE ALIGNMENT FOR COURSE ACTIVITIES 

 

TOPIC - ACTIVITY Kolb Cycle Stage 

Assignment 1 – Requirement Engineering & 
Problem Definition (Stakeholder identification, 

requirement gathering, feasibility analysis, 

user stories, use-case diagram) 

CE, RO, AC, AE 

Assignment 2 – System Design & Tool 

Exploration (DFD, UML, DevOps mind map, 

test case writing, peer assessment, SRS 
compilation) 

CE, RO, AC, AE 

Joint Teaching -Testing and Automated testing 

tool usage Software Quality Models – SEI-
CMM 

AC/AE 

Final Review, Evaluation & Peer Feedback RO, AE 

IV.  IMPLEMENTATION 

The course was designed as a three-month program 

comprising 36 instructional hours, divided into six modules 

and aligned with six course outcomes. Each module was 

designed to progressively develop students’ understanding of 

core software engineering concepts through experiential 

learning activities and iterative feedback. For Requirement 

engineering module,students conduct user interviews (CE), 
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Fig. 1.  Sample of assignment 1 and assignment 2 submission showing requirement gathering, generating function and non-functional requirements, user stories, 

use case diagram, class diagram,data flow diagram, test case generation using various tools.

  

reflect on feedback (RO), document user stories and SRS (AC), and prototype wireframes or UML diagrams (AE).In the 
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design module, students begin by analyzing project goals and 

exploring system requirements to conceptualize the 

architecture (Concrete Experience). They then reflect on 

different design approaches and challenges faced during peer 

discussions and critiques (Reflective Observation). Based on 

this reflection, they develop design artifacts such as data flow 

diagrams, UML class diagrams, and interface layouts 

(Abstract Conceptualization). Finally, they apply this 

understanding by building detailed design documentation and 

refining their models through iterative feedback and tool-

based experimentation (Active Experimentation). These 

assessments were not just tools for engagement and immediate 

feedback but were also integrated into the formal evaluation 

process. The assignment plan for the course and its mapping 

with Kolb Cycle stage is given the table IV. 

V. RESULTS AND DISCUSSION 

The assessment outcomes from both Assignment 1 and 

Assignment 2 provide valuable insights into student 

engagement, understanding, and skill acquisition throughout 

the course. The highest score in Assignment 1 is 38 and lowest 

score is 8,similarly for assignment2 39 and 24. In Assignment 

1: Most students scored between 60–80, with a few outliers 

above 90. In Assignment 2: Scores shifted slightly higher, 

with a peak around 70–85. The course outcomes of the course 

are  
 

CO1 Compare traditional and agile software process models 

CO2 Identify user stories, Story map, functional and non-functional   

           requirements for any given problem 

CO3 Prepare design documents with standards for the given requirements 

CO4 Develop test cases using appropriate testing techniques for an  

           application 

CO5 Explain the scope of the software maintenance problem and   

          demonstrate the use of version controlling and tracking mechanisms. 

CO6 Demonstrate DEVOPS life cycle processes and introduce state of art  

          tools used in large scale software systems. 

The score of the students for Assignment 1 and Assignment 2  
TABLE V 

ASSIGNMENT 1 AND ASSIGNMENT 2 MARKS 

Course Outcome 
 

Average Score (A1) Average Score (A2) 

CO1 72 76 

CO2 68 74 

CO3 71 77 
CO4 69 73 

CO5 70 80 

CO6 75 82 

CO1 registered the highest average in both assignments, 

with 72% in Assignment 1 (A1) and a further improvement to 

76% in Assignment 2(A2). This indicates that students have a 

firm grasp of the fundamental concepts and can apply them 

effectively across different problem contexts. The 

improvement between assignments suggests that students 

benefited from the iterative learning process, incorporating 

feedback from A1 to enhance their performance in A2. CO2 

scores started at a slightly lower 68% in A1 but rose to 74% in 

A2, reflecting a substantial improvement. The initial lower 

performance could be attributed to the relatively higher 

cognitive demand of the CO2 aligned tasks in A1, possibly 

requiring deeper analytical reasoning. The marked 

improvement in A2 suggests that targeted interventions—such 

as additional problem-solving exercises, peer discussions, and 

instructor feedback—helped bridge the initial gap. CO3 

demonstrated stable and strong attainment, improving from 

71% in A1 to 77% in A2. The high scores across both 

assessments highlight students’ ability to consistently apply 

learned concepts, especially in application- and synthesis-

oriented tasks. This sustained high performance may be linked 

to the experiential learning components embedded in the 

course, enabling students to connect theory with practice 

effectively. CO4 attained 69% in A1 and 73% in A2, showing 

only modest improvement. While the upward trend indicates 

some learning progression, the scores remain below those of 

CO1 and CO3. This suggests that the skill areas associated 

with CO4likely involving higher-order problem solving, 

integration of multiple concepts, or creative design—require 

more reinforcement. CO5 jumped from 70% in A1 to 80% in 

A2, representing one of the largest gains among all COs. This 

suggests that the second assignment effectively reinforced 

skills in this outcome, possibly due to practical, hands-on 

components that improved student engagement and 

application accuracy. CO6 started strong at 75% in A1 and 

reached 82% in A2, the highest among all COs. This indicates 

exceptional mastery in the skills targeted by CO6, which may 

involve capstone-level tasks integrating knowledge from 

multiple course areas. It is observed that all COs showed 

positive progression from A1 to A2.The largest improvements 

were observed in CO5 (+10%) and CO6 (+7%).CO2 and CO4 

show moderate attainment but present opportunities for 

targeted pedagogical interventions. 

 
     Fig. 2.  Course outcome wise average Scores for Assignment 1 and      

                  Assignment 2  

 
        Fig. 3.  Overall performance distribution of the students  

VI. Conclusion
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The analysis of CO-wise attainment across two sequential 

assignments demonstrates a positive trajectory in student 

performance for all six Course Outcomes. The data shows that 

CO1, CO3, CO5, and CO6 are strong, with consistently high 

scores and significant improvements, particularly in CO5 

(+10%) and CO6 (+7%). This suggests that practical, hands-

on components and iterative feedback mechanisms in the 

second assignment were highly effective in reinforcing 

learning. While  

CO2 and CO4 showed improvement, their attainment levels 

remained comparatively moderate, indicating the need for 

targeted interventions such as additional practice sessions, 

focused tutorials, and peer-assisted learning. The overall trend 

reflects successful engagement with the course content, 

effective application of the Kolb experiential learning cycle, 

and a high degree of adaptability among students in applying 

conceptual knowledge to practical tasks
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