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Abstract—Traditional lecture-based approaches in software
engineering education often fall short in providing the
experiential depth required to understand stakeholder needs,
foster effective team collaboration, and develop essential
documentation skills. This study introduces and implements the
CKIL (CDIO—Kolb Integrated Learning) framework in a mini-
project assignment designed for third-semester undergraduate
software engineering students (n = 180). The CKIL framework
integrates engineering lifecycle principles from the CDIO model
with Kolb’s experiential learning cycle, enabling students to
engage in structured phases of problem identification,
requirement elicitation, and system modelling through iterative
reflection, active prototyping and testing. Team-based reflections,
peer reviews, and exploratory use of digital tools—were
embedded throughout the assignment. Implementation outcomes
indicate enhanced student engagement, improved teamwork
dynamics, and stronger attainment of course learning objectives.
The study further explores the framework’s influence on skill
development, critical thinking, and the cultivation of lifelong
learning competencies. findings underscore the value of blending
traditional academic content with contemporary pedagogical
practices, demonstrating that the CKIL framework offers a
scalable and effective model for preparing engineering graduates
to meet the complex demands of real-world software
development environments.
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I. INTRODUCTION

In engineering instruction, specifically in fields like
software engineering, the dominant pedagogical model is still
primarily didactic—oriented toward lectures, slides, and static
evaluations. Although this approach effectively conveys
theoretical underpinnings, it tends to fail in developing the
dynamic skills needed for actual software production,
including collaboration, problem-solving, iterative thinking,
and tool facility. Students often experience a gap between
what they learn in the classroom and the dynamic, nimble, and
tool-centric reality of industry practices. While curriculum
structure and content coverage have improved, the absence of
experiential

depth gets in the way of learners to absorb and translate ideas
throughout the software development lifecycle.

Modern efforts to close this gap involve flipped classrooms,
project-based education, and gamified testing. These
interventions tend to be discrete, though, without a unified
pedagogical design that progressively scaffolds learning from
grasping theoretical models to practicing design principles,
working in teams, employing software tools, and reflecting on
practice. Moreover, although active learning approaches are
increasingly promoted, they are not necessarily systematically
connected to frameworks of cognitive development or
engineering project workflows, so resulting learning is
periodic.

To meet these challenges, this research introduces a
integrated pedagogical strategy: the CKIL (CDIO-Kolb
Integrated Learning) framework. CKIL combines the ordered,
lifecycle-foundation  engineering pedagogy of CDIO
(Conceive—Design—Implement—Operate) with Kolb's cycle of
experiential learning (Concrete Experience, Reflective
Observation, Abstract Conceptualization, and Active
Experimentation). This combination creates both a project-
based and cognitively founded learning pathway, allowing
students to apply software engineering principles in an
iterative, reflective, and real-world context.

This study aims to change an otherwise passive content
delivery during a software engineering course by embedding
the CKIL framework into its instructional design. Mini-
projects inspired by real-world contexts engaged in by the
students would require requirement analysis, modeling, design
thinking, and collaboration—guided by iterative cycles of
doing, reflecting, and improving. This approach not only
closes the theory-practice gap but also gives learners lifelong
learning skills, deeper conceptual understanding, and
readiness for professional roles in software engineering.

The study assesses CKIL efficacy in an undergraduate
software engineering course with 180 students across the
principal software development stages. The results are
measured using measures of student interaction, effectiveness
of learning, skill acquisition, and outcome achievement—
providing a scalable and flexible model for the engineering
education of the 21% century.

To guide the analysis, the following research questions were
framed:

RQ1: How does the integration of the CKIL (CDIO-Kolb
Integrated Learning) framework impact student engagement,
collaboration, and conceptual understanding in undergraduate
software engineering education?

RQ2: To what extent does the CKIL framework support
the development of applied software engineering skills—such
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as requirement analysis, modeling, and design thinking—
compared to traditional lecture-based instruction?

II. LITERATURE REVIEW

Traditional  lecture-based instruction in  software
engineering has long been critiqued for failing to provide the
experiential depth required to develop essential engineering
competencies. Several studies underscore that while lectures
are effective for conveying theoretical knowledge, they are
insufficient for cultivating collaborative problem-solving,
iterative thinking, and stakeholder communication skills—
capabilities essential for real-world software development
(Bonetti et al.2025 and Zowghi 2011).

In their systematic mapping study, Bonetti et al. (2025)
found that lecture-based models often lead to surface-level
understanding, with limited opportunities for students to apply
knowledge contextually. Ebadi et al. (2020) further highlight
that requirement engineering (RE) education often lacks real-
world simulation, resulting in a gap between classroom
learning and industry expectations.

Responding to the limitations of lecture-centric pedagogy,
many researchers have explored active and experiential
learning models that foster deeper engagement, HOTS, and
real-world skill acquisition among students. Konak et al.
(2014) applied “Kolb’s experiential learning cycle”—
comprising Concrete Experience, Reflective Observation,
Abstract Conceptualization and Active Experimentation—in
the context of virtual computer laboratories. Their findings
demonstrated that embedding learning activities within this
structured cycle led to notable improvements in both learner
performance and metacognitive awareness. Students not only
performed better on assessments but also reflected more
meaningfully on the learning process, allowing for iterative
refinement of their skills.

Building on this, Devi and Thendral (2025) implemented
Kolb’s model in a theory-intensive engineering course,
revealing that even in non-practical, concept-heavy subjects,
experiential learning could significantly improve conceptual
clarity and long-term retention. This reinforces the idea that
experiential strategies are not confined to lab-based settings
but can be applied across a spectrum of content types to
stimulate meaningful learning.

The support for experiential learning's transformative
potential is offered by the WIETE Transformative Learning
Team (2023) and Albertini et al. (2024), who emphasize the
synergistic effect of “reflection and iteration” in engineering
education. These studies highlight that when students are
given opportunities to engage in cyclic learning—where they
actively participate, reflect, reframe understanding, and
reapply knowledge—their critical thinking, problem-solving
abilities, and intrinsic motivation improve. Importantly,
students begin to assume greater ownership of their learning
journey, becoming self-directed learners equipped for
continuous growth.

Silva et al. (2021) introduced a four-stage project-based
learning (PBL) approach tailored to software engineering.
This model, which closely mirrors Kolb’s learning cycle,

structures student learning around real-world problem-solving,
with an emphasis on stakeholder communication, team
collaboration, and leadership development. Their results
showed not only improved technical skills but also enhanced
soft skills—an area often overlooked in traditional curricula.
The iterative stages allowed students to apply theoretical ideas
in real situations, promoting contextual learning and a deeper
understanding of the software development process.

The CDIO framework, introduced by Crawley et al. (2014),
presents a lifecycle-based model that mirrors engineering
practice—moving through Conceive, Design, Implement, and
Operate stages. It has been widely adopted to support project-
based curricula and integrated assessment structures. Its
relevance in software engineering education lies in providing
students with a structured, authentic context to apply their
knowledge.

Garcia et al. (2023) emphasize that collaborative learning
models are most effective when grounded in structured
pedagogical approaches like CDIO. Their mapping study
identified gaps in standalone active learning techniques,
advocating for models that provide scaffolding across multiple
stages of a project.

Studies have also recognised the value of peer learning and
stakeholder interaction in requirement engineering and design
thinking. Connor et al. (2014) showed that peer-based review
in RE projects helped students better internalise domain
knowledge and client expectations. The use of pair learning
and peer assessment in requirement elicitation (Jatit
Engagement Team, 2025) revealed higher Ilevels of
participation and accuracy in requirement documentation.

Ahmed et al. (2025) explored integrating Al tools to
simulate stakeholder interviews for elicitation practice,
highlighting that technology-supported, realistic interaction
significantly strengthens learning in the early stages of SDLC.

Collectively, these studies provide strong evidence that
experiential and project-based learning, when systematically
implemented through structured models like Kolb’s,
significantly improves the quality and depth of student
learning. By aligning Kolb’s cognitive model with CDIO’s
engineering design structure, the CKIL framework offers a
scalable solution to develop not only academic skills but also
practical, team-based, and reflective abilities—bridging the
ongoing theory—practice gap. They also indicate that such
approaches are especially effective when combined with
reflective and collaborative elements, providing the
pedagogical foundation for frameworks like the CKIL model
proposed in this study.

III. RESEARCH METHODOLOGY

The methodology aligns course design, Kolb’s Experiential
Learning Theory delivery, and assessment practices with two
frameworks, suggesting that effective learning is a continuous,
experience-driven process. Rooted in constructivism, it
proposes that learners create knowledge by transforming their
experiences through a four-stage cycle: Concrete Experience,
Reflective Observation, Abstract Conceptualization, and
Active Experimentation. When applied systematically, this
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cycle promotes deep understanding, fosters metacognitive
skills, and effectively connects theoretical concepts with

practical application.
TABLE I
KOLB’S FOUR-STAGE CYCLE

(ATs) are coherently mapped and mutually reinforcing.

TABLE II
CKIL-BASED COURSE ASSESSMENT STRUCTURE

STAGE Description

STAGE Description

Concrete Experience Engaging in a specific, hands-on task

(CE) or activity
Reflective Observation Reviewing and reflecting on the
(RO) experience
Abstract Conceptualization Concluding and developing theories
(AC) based on reflection
Active Experimentation Applying new knowledge to future
(AE) tasks and contexts

The CDIO (Conceive—Design—Implement—Operate)

framework provides a structured, lifecycle-aligned approach to
engineering education. It emphasizes:

» Conceive: Defining the problem, needs, and constraints.

* Design: Developing technical plans and models.

* Implement: Building, coding, testing, and integrating
solutions.

* Operate: Deploying, maintaining, and reflecting on
solutions in use.

CDIO promotes project-based, team-driven learning
grounded in real-world engineering challenges. It aligns
educational practice with industry expectations, preparing
students to become innovative and socially responsible
engineers. The application of CKIL in Course Planning,
Content Delivery and Assessment.

A. Course Planning

1) Define learning outcomes using Bloom’s Taxonomy,
integrated with reflective components.

2) Structure the course plan around mini-projects aligned to
SDLC phases.

3) Design assignments and lab activities to match CDIO
stages and Kolb cycles.

B. Course Delivery

1) Concrete Experience: Use role plays, stakeholder
interviews, and tool exploration activity
2)Reflective  Observation: Encourage weekly team

reflections, peer review, and group retrospectives.

3) Abstract Conceptualization: Guide students in theory
development via concept mapping, classroom discussions, and
guided questioning.

4) Active Experimentation: Engage students in
planning, design reviews, and test case generation.

C. Assessment Alignment

Assessment in a CKIL-based course is continuous,
formative, and summative, aligning with each phase of Kolb’s
cycle and CDIO stage.

This alignment facilitates constructive alignment in course
planning, ensuring that Intended Learning Outcomes (ILOs),
Teaching-Learning Activities (TLAs), and Assessment Tasks

sprint
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Concrete Experience
(CE)

Lab work, experiments, field visits,
demonstrations,  simulations, case
encounters

Reflective journals, lab reflections,
observation reports, error analysis,
self/peer review

Written exams, derivations, conceptual
questions, analytical problem-solving,
case analysis

Projects, coding tasks, design/build
tasks, simulation studies, prototype
development

Reflective Observation
(RO)

Abstract Conceptualization
(AC)

Active Experimentation
(AE)

TABLE IIT
MAPPING CKIL FRAMEWORK TO SOFTWARE ENGINEERING COMPONENTS

CDIO Phase Kolb Stage Course Component
Conceive Concrete Brainstorming project ideas,
Experience identifying problems, and
(CE) stakeholder interviews
Conceive— Design  Reflective Team discussions on feasibility,
Observation  requirements gathering review
(RO)
Design Abstract Creating SRS, user stories,
Conceptualiz  modeling use cases and
ation (AC) architecture
Implement — Active Coding, testing, peer reviews,
Operate Experimentat  client feedback integration
ion (AE)
TABLE IV

KOLB CYCLE STAGE ALIGNMENT FOR COURSE ACTIVITIES

TOPIC - ACTIVITY Kolb Cycle Stage

Assignment 1 — Requirement Engineering & CE, RO, AC, AE
Problem Definition (Stakeholder identification,
requirement gathering, feasibility analysis,
user stories, use-case diagram)

Assignment 2 — System Design & Tool
Exploration (DFD, UML, DevOps mind map,
test case writing, peer assessment, SRS
compilation)

Joint Teaching -Testing and Automated testing
tool usage Software Quality Models — SEI-
CMM

Final Review, Evaluation & Peer Feedback

CE, RO, AC, AE

AC/AE

RO, AE

IV. IMPLEMENTATION

The course was designed as a three-month program
comprising 36 instructional hours, divided into six modules
and aligned with six course outcomes. Each module was
designed to progressively develop students’ understanding of
core software engineering concepts through experiential
learning activities and iterative feedback. For Requirement
engineering module,students conduct user interviews (CE),
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Ueer story L 1 1 | R
|
Titie: Diverting spam calls to 100 ‘ priority: 1 ‘ Estimate: e USERSTORIES
User story
e werte D Comet e

As a user gl

I want to divert all the spam calls and fake calls to police(100)

so that | can able to avoid unnecessary calls and fraud calls and protect me from any fraud

activities.

As a Control Room Communication officer L e — b Lo

Acceptance criteria

1 Given that the fake and fraud calls have been diverted to 100
when the user faces any doubts regarding the call o
then user would be free from fraud activities
1. User Registration and Login | Allow donors and reclplents to create accounts and log in Non-Functional Requirements
2. Food Donation Posting Enable donors to create posts with food details (type, quantity, location, (NFR) Description
time).
3. Recipient Notification Notify nearby recipients of new food donations. 1. Performance Support at least 1000 simultaneous users without degradation.
4. Recipient Acceptance Allow recipients to accept or decline donation requests.
5. Nearest Recipient Selection Automatically select the nearest recipient if multiple accept 2. Security Encrypt and securely store all user data.
6. Apology Notification send apologies to recipients not selected for a donation. - 3 o
3. Usability Ensure a simple and intuitive interface for users.
7. NGO Coordinator Notify local NGO coordinator if no recipient accepts.
Notification
4. Reliability Maintain 99.9% uptime for availability.
8. Donation Tracking Track donation status from posting to delivery
:dn.-u.,.(..\. ;:.a,m.. Allow recipients to manage thelir profiles and delivery preferences 5. scalability Scale to accommodate a growing number of users and donations.
anagemen

EV Range Predicror

System

irctude

Userl

RANGE CHARGING_STATIONS
soc
Rated power -attribute2
traffic type
road_cd availability
predictQ g
add_to_DB() add_chrgst()
report() statusQ

service provider details
Customer

STEP 2 : CONTROL FLOW
DIAGRAM

STEP 1: NUMBERING

public class main{

public static void main(String[] argsK{

1. Scanner reader = new Scanner(System.in);
2. System.out.print("Enter a number: ");

3. int year = reader.nextint();

4. if(year % 4== O){ / AN

S. System.out.printIn(year + " is leap year");} @ @
6. else{ System.out.printin(num + " is not a leap year"); \\ //
7} STy

8.System.out.printin(“end”);}}

CALCULATION :
Cyclomatic complexity V(G)=Number of closed paths + 1 =1+1=2
V(G)=1.
Thus, there are two linear independent paths in the graph.
i) 1,345,728
i) 1,2,34,6,7,8
TEST CASES :
For i - the number divided by four ie) 2000, 2020, 2024 ..

For ii - the number dosen't divided by four ie)2006 , 2022, 2027....

Fig. 1. Sample of assignment 1 and assignment 2 submission showing requirement gathering, generating function and non-functional requirements, user stories,

use case diagram, class diagram,data flow

reflect on feedback (RO), document user stories and SRS

diagram,
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test case generation using various tools.

(AC), and prototype wireframes or UML diagrams (AE).In the
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design module, students begin by analyzing project goals and
exploring system requirements to conceptualize the
architecture (Concrete Experience). They then reflect on
different design approaches and challenges faced during peer
discussions and critiques (Reflective Observation). Based on
this reflection, they develop design artifacts such as data flow
diagrams, UML class diagrams, and interface layouts
(Abstract Conceptualization). Finally, they apply this
understanding by building detailed design documentation and
refining their models through iterative feedback and tool-
based experimentation (Active Experimentation). These
assessments were not just tools for engagement and immediate
feedback but were also integrated into the formal evaluation
process. The assignment plan for the course and its mapping
with Kolb Cycle stage is given the table I'V.

V.RESULTS AND DISCUSSION

The assessment outcomes from both Assignment 1 and
Assignment 2 provide valuable insights into student
engagement, understanding, and skill acquisition throughout
the course. The highest score in Assignment 1 is 38 and lowest
score is 8,similarly for assignment2 39 and 24. In Assignment
1: Most students scored between 60—80, with a few outliers
above 90. In Assignment 2: Scores shifted slightly higher,
with a peak around 70-85. The course outcomes of the course
are

CO1 Compare traditional and agile software process models

CO2 Identify user stories, Story map, functional and non-functional
requirements for any given problem

CO3 Prepare design documents with standards for the given requirements

CO4 Develop test cases using appropriate testing techniques for an
application

COS5  Explain the scope of the software maintenance problem and
demonstrate the use of version controlling and tracking mechanisms.

CO6 Demonstrate DEVOPS life cycle processes and introduce state of art
tools used in large scale software systems.

The score of the students for Assignment 1 and Assignment 2

TABLE V
ASSIGNMENT 1 AND ASSIGNMENT 2 MARKS

Course Outcome Average Score (A1)  Average Score (A2)
COl 72 76
CcO2 68 74
COo3 71 77
CO4 69 73
COs5 70 80
CO6 75 82

requiring deeper analytical reasoning. The marked
improvement in A2 suggests that targeted interventions—such
as additional problem-solving exercises, peer discussions, and
instructor feedback—helped bridge the initial gap. CO3
demonstrated stable and strong attainment, improving from
71% in Al to 77% in A2. The high scores across both
assessments highlight students’ ability to consistently apply
learned concepts, especially in application- and synthesis-
oriented tasks. This sustained high performance may be linked
to the experiential learning components embedded in the
course, enabling students to connect theory with practice
effectively. CO4 attained 69% in Al and 73% in A2, showing
only modest improvement. While the upward trend indicates
some learning progression, the scores remain below those of
COl and CO3. This suggests that the skill areas associated
with CO4likely involving higher-order problem solving,
integration of multiple concepts, or creative design—require
more reinforcement. CO5 jumped from 70% in Al to 80% in
A2, representing one of the largest gains among all COs. This
suggests that the second assignment effectively reinforced
skills in this outcome, possibly due to practical, hands-on
components that improved student engagement and
application accuracy. CO6 started strong at 75% in Al and
reached 82% in A2, the highest among all COs. This indicates
exceptional mastery in the skills targeted by CO6, which may
involve capstone-level tasks integrating knowledge from
multiple course areas. It is observed that all COs showed
positive progression from Al to A2.The largest improvements
were observed in CO5 (+10%) and CO6 (+7%).CO2 and CO4
show moderate attainment but present opportunities for
targeted pedagogical interventions.

CO-wise Average Scores: Assignment 1 vs Assignment 2

90
Assignment 1
Assignment 2

85

~ =]
ui =]

~
o

Average Score (%)

65

60

co1 co2 co3 Co4 COos Cos
Course Outcomes (COs)

COl1 registered the highest average in both assignments,
with 72% in Assignment 1 (Al) and a further improvement to
76% in Assignment 2(A2). This indicates that students have a
firm grasp of the fundamental concepts and can apply them
effectively across different problem contexts. The
improvement between assignments suggests that students
benefited from the iterative learning process, incorporating
feedback from Al to enhance their performance in A2. CO2
scores started at a slightly lower 68% in A1 but rose to 74% in
A2, reflecting a substantial improvement. The initial lower
performance could be attributed to the relatively higher
cognitive demand of the CO2 aligned tasks in Al, possibly

VI. Conclusion
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Fig. 2. Course outcome wise average Scores for Assignment 1 and
Assignment 2

Overall Performance Distribution

== s A R

mCO1 mCO2 CO3 mCO4 mCO5 COo6

Fig. 3. Overall performance distribution of the students
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The analysis of CO-wise attainment across two sequential
assignments demonstrates a positive trajectory in student
performance for all six Course Outcomes. The data shows that
COl, C0O3, COS, and CO6 are strong, with consistently high
scores and significant improvements, particularly in COS5
(+10%) and CO6 (+7%). This suggests that practical, hands-
on components and iterative feedback mechanisms in the
second assignment were highly effective in reinforcing
learning. While
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