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Abstract—In the contemporary landscape of Indian higher 
education, the incorporation of Artificial Intelligence (AI) of- fers 
both unparalleled possibilities and considerable educational 
challenges. A principal concern is the potential diminution of the 
essential ‘human touch’ which is foundational to effective teach- 
ing. This study addresses this issue by proposing a data-driven 
framework to identify distinct student archetypes within an AI- 
augmented learning environment. We leverage a comprehensive 
dataset comprising 638 undergraduate engineering students, 
which includes prior academic records, weekly performance 
metrics, and system interaction logs, upon which the K-Means 
clustering algorithm is applied. Our analysis successfully delin- 
eates four distinct student archetypes: the ‘High-Achieving and 
Consistent’, the ‘Diligent but Struggling’, the ‘Disengaged and At-
Risk’, and the ‘Erratic Performer’. By characterizing these 
cohorts based on their academic, behavioral, and engagement 
patterns, we provide educators with actionable insights. These 
insights empower instructors to transcend monolithic teaching 
strategies and implement targeted, personalised interventions. 
Such a strategy ensures that while AI manages scalability, the 
educator’s role is amplified, enabling them to provide a more 
nuanced, empathetic, and effective human touch where it is most 
critically needed. This work proposes a symbiotic model wherein 
AI-driven analytics and human pedagogy converge to foster a 
more supportive and effective learning ecosystem. 

Index Terms—AI in education; educational data mining; K-
Means clustering; learning analytics; student archetypes; student-
centric learning. 

ICTIEE Track—Innovations in Engineering Education for the 
Future. 

ICTIEE Sub-Track— Artificial Intelligence in Education. 

I. INTRODUCTION 

HE Indian higher education system is navigating a period of 

profound transformation, shaped by the dual impera- 

tives of expanding access to a growing student population and 

upholding rigorous standards of instructional quality. In this 

context, the Incorporation of Artificial Intelligence (AI) into 

educational practices has been widely regarded as a paradigm- 

shifting development, offering the potential for personalised 

learning pathways and efficient feedback mechanisms at a 

massive scale Wang et al. (2024). AI-driven platforms possess 

the capability to meticulously track student progress, recom- 

mend bespoke learning resources, and automate evaluative 

tasks, thereby mitigating the substantial administrative work- 

load faced by educators in typically large and heterogeneous 

classrooms. 

This technological advancement, however, is not without its 

apprehensions. A significant concern articulated by ped- 

agogues and policymakers alike is the potential dilution of 

the ’human touch’—the empathetic, mentor-driven interaction 

that constitutes the bedrock of meaningful education Bedenlier 

et al. (2020). An educational paradigm reliant solely on 

automation risks insensitivity to the subtle indicators of student 

disengagement, confusion, or personal challenges that an ex- 

perienced human instructor can adeptly perceive and address. 

The quintessential challenge, therefore, lies not in replacing 

educators with AI, but in augmenting their innate capabilities, 

empowering them to apply their pedagogical expertise with 

greater precision and impact. 

This paper proposes that a synergy between AI and hu- man 

instruction can be achieved by employing AI-driven analytics 

to provide educators with a deeper, more structured 

understanding of their student body. Rather than perceiving the 

classroom as a homogeneous collective, it is possible to 

utilize data analytics to unearth latent patterns of student 

behavior and academic performance. This process facilitates 

the identification of distinct ’student archetypes’—recurrent 

profiles of learners who exhibit analogous academic histories, 

engagement patterns, and learning trajectories. 

The central research question guiding this investigation is 

formulated as follows: Is it possible to identify statistically 

significant and pedagogically meaningful student archetypes 

from multifaceted educational data, and how can such knowl- 

edge empower educators to refine and enhance their inter- 

vention strategies? To address this question, we present a 

framework that utilizes established Educational Data Mining 

(EDM) techniques, specifically K-Means clustering, on a rich,  

real-world dataset sourced from an undergraduate engineering 

course. This dataset is notable for its comprehensiveness, 

integrating not only conventional academic metrics but also 

granular, temporal data on weekly performance, task-relat

T 

Avichandra Singh Ningthoujam 

Manipal University Jaipur, Jaipur Dehmi Kalan, Bagru, Rajasthan, 303007 

avichandra0420@gmail.com 

Enhancing the Human Touch: A Data-Driven 

Analysis of Student Archetypes in an 

AI-Augmented Classroom 

Gomathi Thiyagarajan1, Avishek Nandi2, and Avichandra Singh Ningthoujam3 

1Dept. of Computer Application, CMR Institute of Technology, Bengaluru , 
2Dept. of Computer Application, Manipal University Jaipur, Jaipur, 
3Dept. of Computer Application, Manipal University Jaipur, Jaipur 

1gomathi.t@cmrit.ac.in, 2avisheknandi10@gmail.com, 3avichandra0420@gmail.com 
 

244 

mailto:gomathi.t@cmrit.ac.in
mailto:avisheknandi10@gmail.com
mailto:avichandra0420@gmail.com


Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707 
 

 

 

time expenditure, and system-level engagement traces. 

The principal contributions of this study are enumerated as 

follows: 

1) We demonstrate the efficacy of an unsupervised machine 

learning model in identifying four distinct and inter- 

pretable student archetypes from a complex, multimodal 

educational dataset. 

2) We provide a detailed characterisation of these 

archetypes, constructing a data-supported narrative for 

each group that elucidates the interplay between their 

prior academic standing, in-course behaviour, and even- 

tual academic outcomes. 

3) We propose a set of concrete, archetype-specific inter- 

vention strategies, thereby illustrating a practical path- 

way for educators to leverage this data-driven under- 

standing for providing targeted, human-centric support 

within an AI-augmented pedagogical framework. 

By conceptualizing AI as a sophisticated tool for deepening 

student understanding rather than as a substitute for the 

instructor, this research charts a course for a more balanced, 

effective, and humanized future for engineering education. 

II. RELATED WORK 

The application of data mining and machine learning within 

the educational domain, a field often referred to as Learning 

Analytics (LA) and Educational Data Mining (EDM), has ex- 

perienced substantial growth over the last decade. A significant 

part of the literature has been dedicated to predicting student 

performance, frequently employing regression or classification 

models to identify learners vulnerable to academic failure 

Pallathadka et al. (2022). For instance, the contribution of 

Kruger et al. (2022) Kru¨ger et al. (2023) is notable for its use 

of eXplainable AI (XAI) to not only predict student dropout but 

also to provide transparent rationales for these predictions, 

thereby facilitating the design of targeted interventions. Con- 

currently, researchers have explored a diverse array of features, 

ranging from demographic and prior academic data to intricate 

behavioural indicators extracted from Learning Management 

System (LMS) logs Chen and Liu (2024). 

While predictive modelling is undoubtedly valuable, a more 

nuanced understanding of underlying student behaviours and 

learning patterns can offer deeper insights for pedagogical 

enhancement. This realisation has spurred a growing interest in 

clustering techniques to identify distinct student archetypes or 

profiles. Clustering, as an unsupervised learning method, 

groups students based on inherent similarities in their attributes 

without relying on a predefined outcome variable. The K- 

Means model remains one of the most prevalent methods in this 

area due to its computational efficiency and interpretability 

Zheng et al. (2015). Early work by Speily et al. (2016) Speily 

et al. (2020) utilised clustering to categorise students based on 

their interaction patterns in a social learning platform, 

identifying roles such as ’lurkers’ and ’leaders’. More recent 

investigations have applied K-Means to analyse engagement 

trends in Massive Open Online Courses (MOOCs) Edumadze 

and Govender (2024) and blended learning settings Quinn and 

Gray (2019), consistently reinforcing the notion that student 

populations are heterogeneous. 

 

 

Fig. 1. System architecture for identifying and utilising student archetypes. 

 

 

A parallel trend in the field is the move toward integrating 

multimodal data for a broader understanding of the student. 

Multimodal Learning Analytics (MMLA) seeks to synthesise 

data from disparate sources, including traditional log files, 

video, audio, and physiological sensors Xiao et al. (2025). 

Although our study does not incorporate physiological data, it 

adheres to the multimodal philosophy by amalgamating static 

academic records with dynamic, time-series data on weekly 

performance and engagement. This approach is congruent with 

recent scholarly calls for more comprehensive data collection 

to unravel complex learning processes Cohn et al. (2024). 

Crucially, recent scholarship has emphasized the impor- 

tance of translating these data-driven insights into practical 

pedagogical actions. It is insufficient to merely identify at- risk 

students or behavioural clusters; the ultimate objective is to 

furnish instructors with actionable feedback Susnjak et al. 

(2022). A systematic review by Seufert et al. (2019) Seufert et 

al. (2019) highlighted the critical need for LA initiatives to be 

firmly grounded in pedagogical theory, ensuring that the 

analytics directly inform and support teaching practices. Our 

research builds directly upon this principle by defining student 

archetypes in a manner that naturally suggests clear, targeted 

intervention strategies for educators, thereby empowering their 

pedagogical decision-making Alonso-Ferna´ndez et al. (2019). 

 

III. METHODOLOGY 

The methodology employed in this research was designed to 

systematically process and analyse the student dataset to 

uncover meaningful learner archetypes. The overarching 

architecture of our approach is illustrated in Fig. 1, com- prising 

phases of data acquisition and preprocessing, feature 

engineering, application of the K-Means clustering algorithm, 

and subsequent archetype characterisation and interpretation. 

 

A. Dataset Description 

The empirical basis for this study is the DSWTC.csv dataset, 

which contains anonymised records of 638 undergraduate 

students. This is a rich, multifaceted dataset that comprises 

several categories of variables: 

• Demographics and Background  Attributes such as 

gender, academic scores in 10th and 12th standards. 

• Prior Academic Performance The Cumulative Point 

Grade Average (CPGA) serves as an indicator of previous 

academic standing. 

Data Acquisition 
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• Weekly Engagement and Performance For four con- 

secutive weeks (W1-W4), the dataset captures granular 

data on the time taken (in hours) and scores achieved for 

various assessments. 

• System-Level Engagement The 

’TRACEAL:TraceFitness’ variable is a composite metric 

that quantifies a student’s engagement fitness, derived 

from system interaction logs. 

• Final Outcome A binary ’Final Score’ (0 for Fail/Low, 1 

for Pass/High) is provided, which we interpret as a 

categorical indicator of overall course success. 

 

B. Data Preprocessing and Feature Selection 

The initial phase of our methodology involved rigorous data 

preprocessing. To reduce dimensionality and capture overarch- 

ing behavioural trends, we engineered summary features from 

the weekly data. Specifically, we calculated the average score 

and average time taken across all recorded weekly activities for 

each student. We checked the raw data for errors; we removed 

any student records that were missing a ’Final Score’ or had 

incomplete logs (less than 75% attendance) to ensure accuracy. 

This left us with 638 students. We also used the Interquartile 

Range (IQR) method to find and fix ’Time taken’ errors, such 

as cases where the system was left idle for too long. To reduce 

the number of variables and see general behavior trends. We 

handle missing data by using the mean for continuous variables 

and the mode for categorical variables A PyTorch-based 

implementation was used for the clustering stage to leverage 

potential GPU acceleration. 

For the clustering model, we judiciously selected a set of five 

key features designed to provide a holistic representation of a 

student’s profile: 

1) CPGA  Represents a student’s academic history. 

2) Avg Score The arithmetic mean of all weekly scores, 

capturing in-course academic performance. 

3) Avg Time The mean of all ’Timetaken’ fields, a proxy 

for effort. 

4) TRACEAL  A direct measure of student engagement with 

the learning system. 

5) Score Zeros: A count of weekly activities for which a 

student received a score of zero, a strong indicator of non-

submission or disengagement. 

Following selection, these features were standardized using Z- 

score normalization to ensure that every attribute had an equal 

influence on the distance computations within the clustering 

algorithm, regardless of its original scale. 

 

C. K-Means Clustering 

We employed the K-Means algorithm to group students into 

distinct cohorts.  

 

 

 

 

 

 

 

K-Means aims to divide n data points into k clusters, allotting 

each data point to the group whose mean (centroid) is allocating 

to it.  

The algorithm repeatedly allocates data points to the closest 

centroid and then updates the centroid’s position to the mean of 

its assigned points, minimising the within-cluster sum of squares 

(WCSS). 

 

 

We chose the K-Means algorithm over other methods like 

DBSCAN or Hierarchical Clustering for two practical reasons  

 

 
Fig. 2. Elbow Method plot for finding the ideal number of clusters (k). The 
”elbow” is visible at k=4. 

 

1) we needed to make sure every student was included. 

Some algorithms, like DBSCAN, treat unique or unusual 

data points as ”noise” and don’t assign them to a group. 

In a classroom, those ”outliers” are often the students 

who are struggling the most or behaving erratically. We 

couldn’t risk leaving them out of the analysis, so we 

needed a method that forces every data point into a clus- 

ter. 

2) K-Means is easier for teachers to understand. It works by 

finding the ”average” behavior for each group. This 

creates clear, simple profiles (like ”high effort but low 

scores”) that an instructor can instantly recognize. In 

contrast, Hierarchical Clustering produces complex tree 

diagrams that can be difficult to interpret quickly during 

a busy semester. K-Means gave us the most straightfor- 

ward and actionable results. 

 

To ascertain the ideal number of clusters (k), we utilised the 

elbow method. As shown in Fig. 2, the WCSS was plotted for 

a range of k values. The ”elbow” point, where the marginal 

decrease in WCSS begins to diminish, was observed at k = 4. 

This suggests that four clusters offer the best balance between 

model complexity and the interpretability of the resulting 

groups. The complete procedure is formalised in Algorithm 

1. 
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TABLE I 

DESCRIPTIVE STATISTICS OF KEY VARIABLES (N=638) 

TABLE II 

CORRELATION MATRIX FOR SELECT VARIABLES 

 

Variable mean std min max   CPGA Avg Score TRACEAL Final Score 

10th Score 8.76 0.92 5.05 10.00  CPGA 1.00 0.21 -0.06 -0.03 

12th Score 8.44 1.06 5.26 10.04  Avg Score 0.21 1.00 0.09 0.11 

CPGA 7.57 1.05 2.83 9.56  TRACEAL -0.06 0.09 1.00 0.82 
TRACEAL:TraceFitness 0.50 0.25 0.20 1.00  Final Score -0.03 0.11 0.82 1.00 

Final Score 0.43 0.50 0.00 1.00  Note: Avg Score is the calculated average of weekly scores. 

 
 

 

Algorithm 1 Student Archetype Identification via K-Means  

1: Input: Student dataset D, number of clusters k = 4,

 feature set F  = 

system engagement, demonstrated a very strong positive cor- 

relation with the ‘Final Score‘ (r = 0.82), powerfully un- 

derscoring the importance of consistent student engagement 

{CPGA, Avg Score, Avg Time, TRACEAL, Score Zeros} for academic success. In stark contrast, ‘CPGA‘, representing 

2: Output: Set of k student archetypes C = {C1, ..., Ck} 
3: Standardize the feature set F to obtain Fstd. 

4: Randomly initialize k centroids µ1, µ2, ..., µk from Fstd. 

5: repeat 

6: // Assignment Step 

7: for each student data point xi ∈  Fstd do 

8: Determine the nearest centroid µj. 

9: Assign student i to cluster Cj. 

10: end for 

11: // Update Step 

12: for each cluster Cj do 

13: Update centroid µj as the mean of all points within 

Cj. 

14: end for 

15: until centroids have converged 

16: return Final cluster assignments C. 
 

 

D. Ethical Considerations 

Using student data requires us to follow strict ethical rules. 

All data in this study was anonymized before we used it; we hid 

personal details like names and IDs to protect student pri- vacy. 

Also, this system follows a human-in-the-loop approach. These 

student profiles are tools to help instructors make de- cisions, 

not labels used for automatic grading. The goal is to support 

students who are struggling, not to punish them. 

 

IV. RESULTS AND ANALYSIS 

The application of our proposed methodology yielded sub- 

stantial insights into the underlying structure of the student 

population. This section presents the descriptive statistics of the 

dataset, a detailed characterization of the identified clusters, and 

a visual analysis of their distinguishing features. 

 

A. Descriptive Statistics and Correlations 

A preliminary examination of the dataset was conducted with 

N=638 students. Table I furnishes the descriptive statistics for 

the principal parameters. The mean CPGA of the cohort was 

7.57. The mean for the binary ‘Final Score‘ was 0.43, indicating 

that 43% of the students achieved what was cate- gorised as a 

successful outcome (Pass/High). 

A correlation analysis, presented in Table II, revealed a 

critical insight. The ‘TRACEAL‘ metric, which quantifies 

prior academic performance, showed a negligible correlation 

with ‘Final Score‘ (r = -0.03). This finding suggests that a 

student’s historical academic record is a poor predictor of their 

performance in this specific course context compared to their 

real-time engagement behaviour. 

 

B. Student Archetype Characterisation 

The K-Means algorithm partitioned the student population 

into four distinct clusters. The standardised centroids of these 

clusters, detailed in Table III, define the profile of each 

archetype. 

Archetype 1  The High-Achieving and Consistent (26% of 

students). This group’s defining feature is an exception- ally 

high TRACEAL score (1.51), indicating outstanding and 

consistent engagement with the learning system. They also 

have the lowest number of zero-score submissions. Interest- 

ingly, their CPGA and average scores are close to the mean, 

while their time spent is below average, suggesting they are 

highly efficient learners who achieve success primarily through 

consistent engagement rather than innate high aptitude or 

excessive effort. Fig. 3 shows that this group is composed 

almost entirely of passing students. 

Archetype 2: The Diligent but Struggling (28% of students). 

This cohort is characterised by the highest average time spent 

on tasks (0.90) and the highest average weekly scores (0.91). 

They also enter with a high CPGA (0.54). While the label 

”Struggling” may seem counterintuitive given their high scores, 

it reflects their high-effort learning style; they achieve good 

results but require significantly more time than other groups. 

Their TRACEAL score is below average, suggesting their 

engagement, while time-consuming, might be less effective or 

focused than that of the first archetype. 

Archetype 3: The Disengaged and At-Risk (31% of students). 

Comprising the largest segment, this group is characterised by 

low values across the board: low CPGA, low average scores, 

low time investment, and a low TRACEAL score. They 

represent a classic profile of disengagement. As Fig. 3 

confirms, this group has the highest number of failing students, 

making them the primary cohort in need of proactive 

intervention. 

Archetype 4: The Erratic Performer (15% of students). This 

archetype presents the most distinctive profile. Their most 

prominent feature is an extremely high count of zero-score 

submissions (1.79), indicating a pattern of missed assignments
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TABLE III 

CLUSTER CENTROIDS AND ARCHETYPE DEFINITIONS (STANDARDISED VALUES) 

 

Archetype CPGA Avg Score Avg Time TRACEAL Score Zeros Students (%) 

1: High-Achieving & Consistent -0.12 -0.04 -0.40 1.51 -0.48 26% 
2: Diligent but Struggling 0.54 0.91 0.90 -0.42 -0.35 28% 
3: Disengaged & At-Risk -0.39 -0.48 -0.60 -0.58 -0.14 31% 

4: Erratic Performer -0.01 -0.66 0.21 -0.56 1.79 15% 

 

 

 

Fig. 3. Final Score Distribution by Archetype 

 

 
Fig. 4. CPGA vs. TRACEAL Engagement 

 

 

or non-participation. Despite this, their CPGA and average time 

spent are near the mean, and their average scores are only 

moderately low. This suggests a capable but inconsistent 

student who engages sporadically. Their outcomes are mixed, 

as seen in Fig. 3, highlighting their unpredictable nature. 

 

C. Visual Analysis of Archetypes 

To further elucidate these profiles, a series of visualisations 

were generated, as presented in Fig. 3. Fig. 3 clearly shows the 

pass/fail distribution, confirming that the ’High-Achieving’ 

group almost universally succeeds, while the ’Disengaged’ 

Fig. 5. Box Plot of CPGA by Archetype 

 

 

Fig. 6. Average Weekly Scores Across Weeks 

 

 

group overwhelmingly fails. The other two groups show mixed 

results. The scatter plot in Fig. 4 visually separates the ’High- 

Achieving’ group with its high TRACEAL scores, while the 

other three archetypes cluster at lower engagement levels. The 

CPGA shows less clear separation, reinforcing the correlation 

analysis. The box plot in Fig. 5 illustrates the distribution 

of prior academic performance (CPGA), showing significant 

overlap between groups, with the ’Diligent’ group having a 

slightly higher median. The time-series plot of weekly scores 

(Fig. 6) reveals different trajectories: ’High-Achieving’ and 

’Diligent’ students show a performance dip in Week 3 
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Fig. 7. Average Count of Zero-Score Submissions 

 

 

Fig. 8. Average Time Spent on Tasks 
 

 

before recovering, while ’Erratic Performers’ show a dramatic 

drop. Finally, the bar charts starkly highlight the behavioural 

differences. Fig. 7 shows that the ’Erratic Performer’ archetype 

is defined by a high number of zero-score submissions, while 

Fig. 8 confirms the ’Diligent but Struggling’ group spends the 

most time on tasks. 

 

D. Student Progress Parameters 

We measured student progress by analyzing changes in their 

weekly grades, the amount of time they invested in tasks, and 

how consistently they submitted their assignments. 

1) Tracking Progress Over Time: We didn’t just look at a 

snapshot; we watched how scores changed week by week 

in 3. This highlighted a key difference in resilience: the 

’Diligent’ group managed to recover after a bad week, 

whereas the ’Erratic’ group’s performance remained low 

and did not improve. 

2) Time vs. Results We dug into the ’Time Spent’ data to 

see if effort matched the output. We found that putting in 

more hours didn’t always lead to higher grades, which 

is shown in Fig. 4. This was crucial for distinguishing 

students who are trying hard but getting stuck from those 

who simply aren’t engaging. 

3) Reliability Check We looked at how often students re- 

ceived a zero on a submission. This clarified that for the 

’Erratic’ group, the main issue wasn’t a lack of skill, but 

a lack of consistency they were simply missing too many 

assignments to succeed. 

V. DISCUSSION AND IMPLICATIONS 

The delineation of these four student archetypes offers a 

powerful analytical lens through which educators can bet- ter 

comprehend the complex dynamics of their classrooms and, 

consequently, tailor their pedagogical support. This data- 

informed approach facilitates a strategic shift from reactive to 

proactive teaching methodologies, thereby enhancing the 

educator’s ’human touch’ by directing it towards areas where it 

can yield the most significant impact. 

Fig. 4 visualizes the relationship between students’ overall 

grades (CPGA) and their engagement levels (TraceFitness). 

There is a clear engagement gap. The High-Achieving and 

Diligent students cluster tightly at the top, showing that con- 

sistent interaction with the learning platform correlates with 

higher grades. Conversely, the Disengaged and At-Risk stu- 

dents are scattered across the bottom, indicating that low en- 

gagement is a strong predictor of lower academic outcomes. 

Fig. 5 box plot reveals the spread of final grades for each group. 

Interestingly, the Diligent but Struggling group per- formed 

impressively well, with a median score rivaling the High-

Achievers, proving that their persistence paid off. The Erratic 

Performers showed the most volatility their box is tall, meaning 

their grades swung wildly from high to low. As ex- pected, the 

Disengaged group consistently sat at the bottom of the grade 

distribution. Fig. 6 shows the performance trends over time. 

This line chart tracks average scores week by week. Everyone 

started strong in Week 1, but the groups diverged as the 

difficulty likely increased. The Diligent students (blue line) 

showed resilience, bouncing back significantly in Week 4 after 

a dip. In contrast, the Disengaged and Erratic groups (green 

lines) flatlined; once their performance dropped in Week 2, 

they failed to recover, highlighting a lack of resilience in their 

study habits. Fig. 7 shows the chart measures the average hours 

spent on tasks, serving as a proxy for effort. It highlights why 

the Diligent group succeeds: they work the hardest, spending 

an average of 22.7 hours on tasks to overcome their struggles. 

Notably, the Erratic performers also spent a lot of time (20.5 

hours), but their lower grades suggest this time wasn’t spent 

efficiently. Fig. 8 shows the consistency and missed work; this 

bar chart pinpoints exactly where the Erratic Performers fail: 

reliability. While most groups rarely missed an assignment 

(averaging below 0.7 zero scores), the Erratic group averaged 

2.3 zero scores per student. This indicates that their primary 

challenge isn’t necessarily a lack of skill, but rather a habit of 

completely skipping assignments. 

A. Pedagogical Interventions 

The distinct profiles of the identified archetypes suggest the 

need for differentiated intervention strategies. We propose the
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TABLE IV 
COMPARISON WITH STATE-OF-THE-ART (SOTA) WORKS IN STUDENT ANALYSIS 

Study   Methodology Dataset Focus Key Contribution Our Approach Alignment 

Kruger et al. Gradient Boosting, SHAP E-learning  platform  data Provides explainable predictions Aligned in using 
(2023) Krü  ger (XAI) (clicks, quizzes) for student dropout. behavioural data but 

et al. (2023) 

 
Edumadze et al. 
(2024) Edumadze 
and Govender 
(2024) 

Quinn (2019) 
Quinn and Gray 
(2019) 

 

 
K-Means, Sequential Pat- 
tern Mining 

 

 
SVM, Decision Tree, Naive 
Bayes 

 

 
MOOC data (video interac- 
tions, forum posts) 

 

 
Moodle quiz logs, demo- 
graphics 

 

 
Identified engagement patterns in 
MOOCs (e.g., ’auditing’). 

 

 
Performance prediction in a 
blended learning environment. 

we focus on clustering for 
profiles. 

Similar methodology, but 
our dataset includes formal 
grades and is not MOOC. 

 
Complements classification 
by providing unsupervised 
profiles. 

This Study K-Means Clustering Prior academics, weekly 
scores/time, system trace 

Identifies four interpretable 
archetypes for targeted 
intervention. 

Integrates prediction- 
relevant features into a 
profiling framework. 

 
 

 

following targeted approaches: 

• For the High-Achieving & Consistent: This cohort is 

highly engaged and efficient. Intervention should fo- cus 

on enrichment and challenge. Educators can pro- vide 

advanced material, research opportunities, or peer- 

mentoring roles to foster leadership and deeper learning, 

acknowledging their exemplary engagement. 

• For the Diligent but Struggling:  This group achieves good 

results but invests significant time. They could benefit 

from guidance on study efficiency and time man- 

agement. One-on-one consultations could help identify 

conceptual bottlenecks that consume excessive time. Ac- 

knowledging their hard work while offering strategies to 

work smarter, not just harder, is key. 

• For the Disengaged & At-Risk: This group requires 

immediate and proactive human intervention. Automated 

alerts are insufficient. A personal outreach from the 

instructor is crucial to understanding the root causes of 

disengagement (which could be academic, personal, or 

motivational) and to building a supportive connection. 

• For the Erratic Performer: The high number of non- 

submissions is the critical red flag. Interventions should 

focus on consistency, accountability, and time man- 

agement. Breaking down large assignments and setting 

smaller, regular deadlines could help. The goal is to guide 

them towards sustained effort rather than sporadic bursts 

of activity. 

 

B. Comparison with State-of-the-Art 

Our research advances the existing body of literature on 

student profiling. Table IV provides a comparative analysis 

of our approach against other contemporary studies. A key 

differentiator of our work is the use of a multifaceted dataset 

that reveals the paramount importance of a dynamic engage- 

ment metric (TRACEAL) over static academic history (CPGA) 

in a formal undergraduate engineering course. We frame our 

findings explicitly serving to enhance, not substitute for, the 

educator’s role. Limitations and Future Work 

 

It is pertinent to recognise the constraints of this study. 

The dataset was sourced from a single course within one 

institution, which may circumscribe the generalizability of the 

specific archetypes identified. Using this in other schools faces 

practical challenges. To work, schools need a modern Learning 

Management System (LMS) that can track detailed logs, which 

older systems might not do. There is also a data literacy’ gap; 

for these tools to work, schools must train faculty so they 

understand the data and don’t rely too much on what the 

computer says. While our data is specific to one field, the 

student habits we analyzed often called ’digital body language’ 

are universal. Every student leaves a digital footprint through 

their login frequency, time management, and adherence to 

deadlines. Because nearly all modern university courses rely on 

digital platforms to track progress, this framework can be easily 

adapted by educators in any discipline to better understand and 

support their own students. Future research should apply this 

framework across diverse courses and insti- tutional contexts. 

Additionally, the ’TRACEAL’ feature, while powerful, was 

treated as an atomic input; deconstructing its constituent 

components could yield further insights. 

The logical progression of this work involves implementing 

this framework within a live classroom environment. The 

development of an instructor-facing dashboard that provides 

real-time updates on student archetype classifications would be 

a significant step, enabling timely and data-informed inter- 

ventions. Subsequently, a controlled study could be designed to 

quantitatively assess the outcomes of these archetype-driven 

interventions on learner engagement and academic achieve- 

ments. 
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CONCLUSION 

In an educational era increasingly defined by 

technological integration, the role of the human educator is 

not being diminished but rather fundamentally transformed. 

This study has presented a practical, data-driven 

framework designed to enhance and strategically focus the 

educator’s ”human touch”. Through the application of K-

Means clustering on a multimodal dataset of 638 students, 

we have identified four distinct and pedagogically relevant 

student archetypes: the ‘High-Achieving & Consistent’, the 

‘Diligent but Struggling’, the ‘Disengaged & At-Risk’, and 

the ‘Erratic Performer’. 

A key finding of this work is that real-time student engage- 

ment is a far more potent indicator of success than historical 

academic performance. This underscores the value of observ- 

ing and responding to current student behaviour. The data- 

derived profiles provide educators with a structured, nuanced 

understanding of their students, allowing for the deployment of 

their pedagogical expertise where it is most needed. We 

advocate for a symbiotic model of AI-educator collaboration, 

where AI performs complex analytics to unearth deep insights, 

and educators leverage these insights to cultivate a more 

empathetic, supportive, and ultimately more human learning 

experience. As the Indian higher education sector continues its 

digital transformation, such human-centric applications of AI 

will be indispensable in ensuring that technology serves to 

enrich, rather than supplant, the core mission of education. 
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