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Abstract—In the contemporary landscape of Indian higher
education, the incorporation of Artificial Intelligence (Al) of- fers
both unparalleled possibilities and considerable educational
challenges. A principal concern is the potential diminution of the
essential ‘human touch’ which is foundational to effective teach-
ing. This study addresses this issue by proposing a data-driven
framework to identify distinct student archetypes within an Al-
augmented learning environment. We leverage a comprehensive
dataset comprising 638 undergraduate engineering students,
which includes prior academic records, weekly performance
metrics, and system interaction logs, upon which the K-Means
clustering algorithm is applied. Our analysis successfully delin-
eates four distinct student archetypes: the ‘High-Achieving and
Consistent’, the ‘Diligent but Struggling’, the ‘Disengaged and At-
Risk’, and the ‘Erratic Performer’. By characterizing these
cohorts based on their academic, behavioral, and engagement
patterns, we provide educators with actionable insights. These
insights empower instructors to transcend monolithic teaching
strategies and implement targeted, personalised interventions.
Such a strategy ensures that while Al manages scalability, the
educator’s role is amplified, enabling them to provide a more
nuanced, empathetic, and effective human touch where it is most
critically needed. This work proposes a symbiotic model wherein
Al-driven analytics and human pedagogy converge to foster a
more supportive and effective learning ecosystem.

Index Terms—Al in education; educational data mining; K-
Means clustering; learning analytics; student archetypes; student-
centric learning.

ICTIEE Track—Innovations in Engineering Education for the
Future.

ICTIEE Sub-Track— Avrtificial Intelligence in Education.

l. INTRODUCTION

HE Indian higher education system is navigating a period of

profound transformation, shaped by the dual impera-

tives of expanding access to a growing student population and
upholding rigorous standards of instructional quality. In this
context, the Incorporation of Artificial Intelligence (Al) into
educational practices has been widely regarded as a paradigm-
shifting development, offering the potential for personalised

learning pathways and efficient feedback mechanisms at a
massive scale Wang et al. (2024). Al-driven platforms possess
the capability to meticulously track student progress, recom-
mend bespoke learning resources, and automate evaluative
tasks, thereby mitigating the substantial administrative work-
load faced by educators in typically large and heterogeneous
classrooms.

This technological advancement, however, is not without its
apprehensions. A significant concern articulated by ped-
agogues and policymakers alike is the potential dilution of
the ’human touch’—the empathetic, mentor-driven interaction
that constitutes the bedrock of meaningful education Bedenlier
et al. (2020). An educational paradigm reliant solely on
automation risks insensitivity to the subtle indicators of student
disengagement, confusion, or personal challenges that an ex-
perienced human instructor can adeptly perceive and address.
The quintessential challenge, therefore, lies not in replacing
educators with Al, but in augmenting their innate capabilities,
empowering them to apply their pedagogical expertise with
greater precision and impact.

This paper proposes that a synergy between Al and hu- man
instruction can be achieved by employing Al-driven analytics
to provide educators with a deeper, more structured
understanding of their student body. Rather than perceiving the
classroom as a homogeneous collective, it is possible to
utilize data analytics to unearth latent patterns of student
behavior and academic performance. This process facilitates
the identification of distinct ’student archetypes’—recurrent
profiles of learners who exhibit analogous academic histories,
engagement patterns, and learning trajectories.

The central research question guiding this investigation is
formulated as follows: Is it possible to identify statistically
significant and pedagogically meaningful student archetypes
from multifaceted educational data, and how can such knowl-
edge empower educators to refine and enhance their inter-
vention strategies? To address this question, we present a
framework that utilizes established Educational Data Mining
(EDM) techniques, specifically K-Means clustering, on a rich,
real-world dataset sourced from an undergraduate engineering
course. This dataset is notable for its comprehensiveness,
integrating not only conventional academic metrics but also
granular, temporal data on weekly performance, task-relat
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time expenditure, and system-level engagement traces.

The principal contributions of this study are enumerated as
follows:

1) We demonstrate the efficacy of an unsupervised machine
learning model in identifying four distinct and inter-
pretable student archetypes from a complex, multimodal
educational dataset.

2) We provide a detailed characterisation of these
archetypes, constructing a data-supported narrative for
each group that elucidates the interplay between their
prior academic standing, in-course behaviour, and even-
tual academic outcomes.

3) We propose a set of concrete, archetype-specific inter-
vention strategies, thereby illustrating a practical path-
way for educators to leverage this data-driven under-
standing for providing targeted, human-centric support
within an Al-augmented pedagogical framework.

By conceptualizing Al as a sophisticated tool for deepening
student understanding rather than as a substitute for the
instructor, this research charts a course for a more balanced,
effective, and humanized future for engineering education.

1. RELATED WORK

The application of data mining and machine learning within
the educational domain, a field often referred to as Learning
Analytics (LA) and Educational Data Mining (EDM), has ex-
perienced substantial growth over the last decade. A significant
part of the literature has been dedicated to predicting student
performance, frequently employing regression or classification
models to identify learners vulnerable to academic failure
Pallathadka et al. (2022). For instance, the contribution of
Kruger et al. (2022) Kru“ger et al. (2023) is notable for its use
of eXplainable Al (XAl) to not only predict student dropout but
also to provide transparent rationales for these predictions,
thereby facilitating the design of targeted interventions. Con-
currently, researchers have explored a diverse array of features,
ranging from demographic and prior academic data to intricate
behavioural indicators extracted from Learning Management
System (LMS) logs Chen and Liu (2024).

While predictive modelling is undoubtedly valuable, a more
nuanced understanding of underlying student behaviours and
learning patterns can offer deeper insights for pedagogical
enhancement. This realisation has spurred a growing interest in
clustering techniques to identify distinct student archetypes or
profiles. Clustering, as an unsupervised learning method,
groups students based on inherent similarities in their attributes
without relying on a predefined outcome variable. The K-
Means model remains one of the most prevalent methods in this
area due to its computational efficiency and interpretability
Zheng et al. (2015). Early work by Speily et al. (2016) Speily
et al. (2020) utilised clustering to categorise students based on
their interaction patterns in a social learning platform,
identifying roles such as ’lurkers’ and ’leaders’. More recent
investigations have applied K-Means to analyse engagement
trends in Massive Open Online Courses (MOOCs) Edumadze
and Govender (2024) and blended learning settings Quinn and
Gray (2019), consistently reinforcing the notion that student
populations are heterogeneous.

Data Preprocessing K-Means
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Fig. 1. System architecture for identifying and utilising student archetypes.

A parallel trend in the field is the move toward integrating
multimodal data for a broader understanding of the student.
Multimodal Learning Analytics (MMLA) seeks to synthesise
data from disparate sources, including traditional log files,
video, audio, and physiological sensors Xiao et al. (2025).
Although our study does not incorporate physiological data, it
adheres to the multimodal philosophy by amalgamating static
academic records with dynamic, time-series data on weekly
performance and engagement. This approach is congruent with
recent scholarly calls for more comprehensive data collection
to unravel complex learning processes Cohn et al. (2024).

Crucially, recent scholarship has emphasized the impor-
tance of translating these data-driven insights into practical
pedagogical actions. It is insufficient to merely identify at- risk
students or behavioural clusters; the ultimate objective is to
furnish instructors with actionable feedback Susnjak et al.
(2022). A systematic review by Seufert et al. (2019) Seufert et
al. (2019) highlighted the critical need for LA initiatives to be
firmly grounded in pedagogical theory, ensuring that the
analytics directly inform and support teaching practices. Our
research builds directly upon this principle by defining student
archetypes in a manner that naturally suggests clear, targeted
intervention strategies for educators, thereby empowering their
pedagogical decision-making Alonso-Ferna'ndez et al. (2019).

Il. METHODOLOGY

The methodology employed in this research was designed to
systematically process and analyse the student dataset to
uncover meaningful learner archetypes. The overarching
architecture of our approach is illustrated in Fig. 1, com- prising
phases of data acquisition and preprocessing, feature
engineering, application of the K-Means clustering algorithm,
and subsequent archetype characterisation and interpretation.

A. Dataset Description

The empirical basis for this study is the DSWTC.csv dataset,
which contains anonymised records of 638 undergraduate
students. This is a rich, multifaceted dataset that comprises
several categories of variables:

- Demographics and Background  Attributes such as
gender, academic scores in 10th and 12th standards.

- Prior Academic Performance The Cumulative Point
Grade Average (CPGA) serves as an indicator of previous
academic standing.
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- Weekly Engagement and Performance For four con-
secutive weeks (W1-W4), the dataset captures granular
data on the time taken (in hours) and scores achieved for
various assessments.

- System-Level Engagement The
"TRACEAL:TraceFitness’ variable is a composite metric
that quantifies a student’s engagement fitness, derived
from system interaction logs.

- Final Outcome A binary ’Final Score’ (0 for Fail/Low, 1
for Pass/High) is provided, which we interpret as a
categorical indicator of overall course success.

B. Data Preprocessing and Feature Selection

The initial phase of our methodology involved rigorous data
preprocessing. To reduce dimensionality and capture overarch-
ing behavioural trends, we engineered summary features from
the weekly data. Specifically, we calculated the average score
and average time taken across all recorded weekly activities for
each student. We checked the raw data for errors; we removed
any student records that were missing a ’Final Score’ or had
incomplete logs (less than 75% attendance) to ensure accuracy.
This left us with 638 students. We also used the Interquartile
Range (IQR) method to find and fix *Time taken’ errors, such
as cases where the system was left idle for too long. To reduce
the number of variables and see general behavior trends. We
handle missing data by using the mean for continuous variables
and the mode for categorical variables A PyTorch-based
implementation was used for the clustering stage to leverage
potential GPU acceleration.

For the clustering model, we judiciously selected a set of five
key features designed to provide a holistic representation of a
student’s profile:

1) CPGA Represents a student’s academic history.

2) Avg_Score The arithmetic mean of all weekly scores,

capturing in-course academic performance.

3) Avg_Time The mean of all *Timetaken’ fields, a proxy
for effort.

4) TRACEAL A direct measure of student engagement with
the learning system.

5) Score_Zeros: A count of weekly activities for which a
student received a score of zero, a strong indicator of non-
submission or disengagement.

Following selection, these features were standardized using Z-
score normalization to ensure that every attribute had an equal
influence on the distance computations within the clustering
algorithm, regardless of its original scale.

C. K-Means Clustering

We employed the K-Means algorithm to group students into
distinct cohorts.

K-Means aims to divide n data points into k clusters, allotting
each data point to the group whose mean (centroid) is allocating
to it.

The algorithm repeatedly allocates data points to the closest
centroid and then updates the centroid’s position to the mean of
its assigned points, minimising the within-cluster sum of squares
(WCSS).

We chose the K-Means algorithm over other methods like

DBSCAN or Hierarchical Clustering for two practical reasons
Elbow Method for Optimal k

Squares (WCSS)

R
£
z

5 6
Number of Clusters (k)

Fig. 2. Elbow Method plot for finding the ideal number of clusters (k). The
“elbow” is visible at k=4.

1) we needed to make sure every student was included.
Some algorithms, like DBSCAN, treat unique or unusual
data points as ”noise” and don’t assign them to a group.
In a classroom, those “outliers” are often the students
who are struggling the most or behaving erratically. We
couldn’t risk leaving them out of the analysis, so we
needed a method that forces every data point into a clus-
ter.

2) K-Means is easier for teachers to understand. It works by
finding the “average” behavior for each group. This
creates clear, simple profiles (like high effort but low
scores”) that an instructor can instantly recognize. In
contrast, Hierarchical Clustering produces complex tree
diagrams that can be difficult to interpret quickly during
a busy semester. K-Means gave us the most straightfor-
ward and actionable results.

To ascertain the ideal number of clusters (k), we utilised the
elbow method. As shown in Fig. 2, the WCSS was plotted for
a range of k values. The “elbow” point, where the marginal
decrease in WCSS begins to diminish, was observed at k = 4.
This suggests that four clusters offer the best balance between
model complexity and the interpretability of the resulting
groups. The complete procedure is formalised in Algorithm
1
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TABLE |
DESCRIPTIVE STATISTICS OF KEY VARIABLES (N=638)

Variable mean  std min  max
10th Score 8.76 0.92 5.05 10.00
12th Score 8.44 1.06 526 10.04
CPGA 7.57 1.05 283 956
TRACEAL:TraceFitness  0.50 0.25 0.20 1.00
Final Score 0.43 050 0.00 1.00

Algorithm 1_Student Archetype Identification via K-Means_
1: Input: Student dataset D, number of clusters k=
feature set F

41

{CPGA, Avg-Score, Avg-Time, TRACEAL, Score-Zeros}
2: Output: Set of k student archetypes C = {Cy, ..., Gk}
3: Standardize the feature set F to obtain Fsa.
4: Randomly initialize k centroids i, o, ..., uk from Fs.
5: repeat

6:  // Assignment Step

7. for each student data point x; € Fsta do
8: Determine the nearest centroid .

9: Assign student i to cluster C,.

10:  end for

11:  // Update Step

12:  for each cluster C; do

13: Update centroid w; as the mean of all points within
G.

14:  end for

15: until centroids have converged
16: return Final cluster assignments C.

D. Ethical Considerations

Using student data requires us to follow strict ethical rules.
All data in this study was anonymized before we used it; we hid
personal details like names and IDs to protect student pri- vacy.
Also, this system follows a human-in-the-loop approach. These
student profiles are tools to help instructors make de- cisions,
not labels used for automatic grading. The goal is to support
students who are struggling, not to punish them.

V. RESULTS AND ANALYSIS

The application of our proposed methodology yielded sub-
stantial insights into the underlying structure of the student
population. This section presents the descriptive statistics of the
dataset, a detailed characterization of the identified clusters, and
a visual analysis of their distinguishing features.

A. Descriptive Statistics and Correlations

A preliminary examination of the dataset was conducted with
N=638 students. Table | furnishes the descriptive statistics for
the principal parameters. The mean CPGA of the cohort was
7.57. The mean for the binary ‘Final Score‘ was 0.43, indicating
that 43% of the students achieved what was cate- gorised as a
successful outcome (Pass/High).

A correlation analysis, presented in Table II, revealed a
critical insight. The ‘TRACEAL® metric, which quantifies

TABLE Il
CORRELATION MATRIX FOR SELECT VARIABLES

CPGA  AvgScore  TRACEAL  Final Score
CPGA 1.00 0.21 -0.06 -0.03
Avg Score 0.21 1.00 0.09 0.11
TRACEAL -0.06 0.09 1.00 0.82
Final Score -0.03 0.11 0.82 1.00
Note: Avg Score is the calculated average of weekly scores.

system engagement, demonstrated a very strong positive cor-
relation with the ‘Final Score‘ (r = 0.82), powerfully un-
derscoring the importance of consistent student engagement

for academic success. In stark contrast, ‘CPGA°, representing
prior academic performance, showed a negligible correlation
with ‘Final Score‘ (r = -0.03). This finding suggests that a
student’s historical academic record is a poor predictor of their
performance in this specific course context compared to their
real-time engagement behaviour.

B. Student Archetype Characterisation

The K-Means algorithm partitioned the student population
into four distinct clusters. The standardised centroids of these
clusters, detailed in Table Ill, define the profile of each
archetype.

Archetype 1 The High-Achieving and Consistent (26% of
students). This group’s defining feature is an exception- ally
high TRACEAL score (1.51), indicating outstanding and
consistent engagement with the learning system. They also
have the lowest number of zero-score submissions. Interest-
ingly, their CPGA and average scores are close to the mean,
while their time spent is below average, suggesting they are
highly efficient learners who achieve success primarily through
consistent engagement rather than innate high aptitude or
excessive effort. Fig. 3 shows that this group is composed
almost entirely of passing students.

Archetype 2: The Diligent but Struggling (28% of students).
This cohort is characterised by the highest average time spent
on tasks (0.90) and the highest average weekly scores (0.91).
They also enter with a high CPGA (0.54). While the label
”Struggling” may seem counterintuitive given their high scores,
it reflects their high-effort learning style; they achieve good
results but require significantly more time than other groups.
Their TRACEAL score is below average, suggesting their
engagement, while time-consuming, might be less effective or
focused than that of the first archetype.

Archetype 3: The Disengaged and At-Risk (31% of students).
Comprising the largest segment, this group is characterised by
low values across the board: low CPGA, low average scores,
low time investment, and a low TRACEAL score. They
represent a classic profile of disengagement. As Fig. 3
confirms, this group has the highest number of failing students,
making them the primary cohort in need of proactive
intervention.

Archetype 4: The Erratic Performer (15% of students). This
archetype presents the most distinctive profile. Their most
prominent feature is an extremely high count of zero-score
submissions (1.79), indicating a pattern of missed assignments
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TABLE 11l
CLUSTER CENTROIDS AND ARCHETYPE DEFINITIONS (STANDARDISED VALUES)

Archetype CPGA  Avg Score  Avg Time  TRACEAL  Score Zeros | Students (%)
1: High-Achieving & Consistent -0.12 -0.04 -0.40 151 -0.48 26%
2: Diligent but Struggling 0.54 0.91 0.90 -0.42 -0.35 28%
3: Disengaged & At-Risk -0.39 -0.48 -0.60 -0.58 -0.14 31%
4: Erratic Performer -0.01 -0.66 0.21 -0.56 1.79 15%
Final Score Distribution by Archetype Box Plot of CPGA by Archetype
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or non-participation. Despite this, their CPGA and average time
spent are near the mean, and their average scores are only
moderately low. This suggests a capable but inconsistent
student who engages sporadically. Their outcomes are mixed,
as seen in Fig. 3, highlighting their unpredictable nature.

C. Visual Analysis of Archetypes

To further elucidate these profiles, a series of visualisations
were generated, as presented in Fig. 3. Fig. 3 clearly shows the
pass/fail distribution, confirming that the ’High-Achieving’
group almost universally succeeds, while the ’Disengaged’
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group overwhelmingly fails. The other two groups show mixed
results. The scatter plot in Fig. 4 visually separates the "High-
Achieving’ group with its high TRACEAL scores, while the
other three archetypes cluster at lower engagement levels. The
CPGA shows less clear separation, reinforcing the correlation
analysis. The box plot in Fig. 5 illustrates the distribution
of prior academic performance (CPGA), showing significant
overlap between groups, with the ’Diligent’ group having a
slightly higher median. The time-series plot of weekly scores
(Fig. 6) reveals different trajectories: ’High-Achieving’ and
"Diligent’ students show a performance dip in Week 3
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before recovering, while ’Erratic Performers’ show a dramatic
drop. Finally, the bar charts starkly highlight the behavioural
differences. Fig. 7 shows that the Erratic Performer’ archetype
is defined by a high number of zero-score submissions, while
Fig. 8 confirms the ’Diligent but Struggling’ group spends the
most time on tasks.

D. Student Progress Parameters

We measured student progress by analyzing changes in their
weekly grades, the amount of time they invested in tasks, and
how consistently they submitted their assignments.

1) Tracking Progress Over Time: We didn’t just look at a
snapshot; we watched how scores changed week by week
in 3. This highlighted a key difference in resilience: the
’Diligent’ group managed to recover after a bad week,
whereas the "Erratic’ group’s performance remained low
and did not improve.

2) Time vs. Results We dug into the *Time Spent’ data to
see if effort matched the output. We found that putting in
more hours didn’t always lead to higher grades, which

is shown in Fig. 4. This was crucial for distinguishing
students who are trying hard but getting stuck from those
who simply aren’t engaging.

3) Reliability Check We looked at how often students re-
ceived a zero on a submission. This clarified that for the
’Erratic’ group, the main issue wasn’t a lack of skill, but
a lack of consistency they were simply missing too many
assignments to succeed.

V. DISCUSSION AND IMPLICATIONS

The delineation of these four student archetypes offers a
powerful analytical lens through which educators can bet- ter
comprehend the complex dynamics of their classrooms and,
consequently, tailor their pedagogical support. This data-
informed approach facilitates a strategic shift from reactive to
proactive teaching methodologies, thereby enhancing the
educator’s "human touch’ by directing it towards areas where it
can yield the most significant impact.

Fig. 4 visualizes the relationship between students’ overall
grades (CPGA) and their engagement levels (TraceFitness).
There is a clear engagement gap. The High-Achieving and
Diligent students cluster tightly at the top, showing that con-
sistent interaction with the learning platform correlates with
higher grades. Conversely, the Disengaged and At-Risk stu-
dents are scattered across the bottom, indicating that low en-
gagement is a strong predictor of lower academic outcomes.
Fig. 5 box plot reveals the spread of final grades for each group.
Interestingly, the Diligent but Struggling group per- formed
impressively well, with a median score rivaling the High-
Achievers, proving that their persistence paid off. The Erratic
Performers showed the most volatility their box is tall, meaning
their grades swung wildly from high to low. As ex- pected, the
Disengaged group consistently sat at the bottom of the grade
distribution. Fig. 6 shows the performance trends over time.
This line chart tracks average scores week by week. Everyone
started strong in Week 1, but the groups diverged as the
difficulty likely increased. The Diligent students (blue line)
showed resilience, bouncing back significantly in Week 4 after
a dip. In contrast, the Disengaged and Erratic groups (green
lines) flatlined; once their performance dropped in Week 2,
they failed to recover, highlighting a lack of resilience in their
study habits. Fig. 7 shows the chart measures the average hours
spent on tasks, serving as a proxy for effort. It highlights why
the Diligent group succeeds: they work the hardest, spending
an average of 22.7 hours on tasks to overcome their struggles.
Notably, the Erratic performers also spent a lot of time (20.5
hours), but their lower grades suggest this time wasn’t spent
efficiently. Fig. 8 shows the consistency and missed work; this
bar chart pinpoints exactly where the Erratic Performers fail:
reliability. While most groups rarely missed an assignment
(averaging below 0.7 zero scores), the Erratic group averaged
2.3 zero scores per student. This indicates that their primary
challenge isn’t necessarily a lack of skill, but rather a habit of
completely skipping assignments.

A. Pedagogical Interventions

The distinct profiles of the identified archetypes suggest the
need for differentiated intervention strategies. We propose the
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TABLE IV
COMPARISON WITH STATE-OF-THE-ART (SOTA) WORKS IN STUDENT ANALYSIS

Study Methodology Dataset Focus Key Contribution Our Approach Alignment

Kruger et al. Gradient Boosting, SHAP  E-learning platform data  Provides explainable predictions  Aligned in using
(2023) Kni'ger  (XAl) (clicks, quizzes) for student dropout. behavioural data but
et al. (2023) we focus on clustering for

Edumadze et al.
(2024) Edumadze

K-Means, Sequential Pat-

tern Mining tions, forum posts)

MOOC data (video interac-

profiles.

Similar methodology, but
our dataset includes formal

Identified engagement patterns in
MOOC:s (e.g., "auditing’).

and Govender grades and is not MOOC.
(2024)
Quinn (2019)  SVM, Decision Tree, Naive ~ Moodle quiz logs, demo- Performance  prediction in a  Complements classification
Quinn and Gray Bayes graphics blended learning environment. by providing unsupervised
(2019) profiles.

This Study K-Means Clustering Prior academics, weekly Identifies four interpretable  Integrates prediction-

scores/time, system trace archetypes for targeted  relevant features into a
intervention. profiling framework.

following targeted approaches:

- For the High-Achieving & Consistent: This cohort is
highly engaged and efficient. Intervention should fo- cus
on enrichment and challenge. Educators can pro- vide
advanced material, research opportunities, or peer-
mentoring roles to foster leadership and deeper learning,
acknowledging their exemplary engagement.

- Forthe Diligent but Struggling: This group achieves good
results but invests significant time. They could benefit
from guidance on study efficiency and time man-
agement. One-on-one consultations could help identify
conceptual bottlenecks that consume excessive time. Ac-
knowledging their hard work while offering strategies to
work smarter, not just harder, is key.

- For the Disengaged & At-Risk: This group requires
immediate and proactive human intervention. Automated
alerts are insufficient. A personal outreach from the
instructor is crucial to understanding the root causes of
disengagement (which could be academic, personal, or
motivational) and to building a supportive connection.

- For the Erratic Performer: The high number of non-
submissions is the critical red flag. Interventions should
focus on consistency, accountability, and time man-
agement. Breaking down large assignments and setting
smaller, regular deadlines could help. The goal is to guide
them towards sustained effort rather than sporadic bursts
of activity.

B. Comparison with State-of-the-Art

Our research advances the existing body of literature on
student profiling. Table IV provides a comparative analysis
of our approach against other contemporary studies. A key
differentiator of our work is the use of a multifaceted dataset
that reveals the paramount importance of a dynamic engage-
ment metric (TRACEAL) over static academic history (CPGA)
in a formal undergraduate engineering course. We frame our
findings explicitly serving to enhance, not substitute for, the
educator’s role. Limitations and Future Work

The dataset was sourced from a single course within one
institution, which may circumscribe the generalizability of the
specific archetypes identified. Using this in other schools faces
practical challenges. To work, schools need a modern Learning
Management System (LMS) that can track detailed logs, which
older systems might not do. There is also a data literacy’ gap;
for these tools to work, schools must train faculty so they
understand the data and don’t rely too much on what the
computer says. While our data is specific to one field, the
student habits we analyzed often called *digital body language’
are universal. Every student leaves a digital footprint through
their login frequency, time management, and adherence to
deadlines. Because nearly all modern university courses rely on
digital platforms to track progress, this framework can be easily
adapted by educators in any discipline to better understand and
support their own students. Future research should apply this
framework across diverse courses and insti- tutional contexts.
Additionally, the "TRACEAL’ feature, while powerful, was
treated as an atomic input; deconstructing its constituent
components could yield further insights.

The logical progression of this work involves implementing
this framework within a live classroom environment. The
development of an instructor-facing dashboard that provides
real-time updates on student archetype classifications would be
a significant step, enabling timely and data-informed inter-
ventions. Subsequently, a controlled study could be designed to
quantitatively assess the outcomes of these archetype-driven
interventions on learner engagement and academic achieve-
ments.

It is pertinent to recognise the constraints of this study. 250
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