

Learning through AI and Machine Learning: The Implications of Using Digital Tools in Modern Classrooms

Jaswanth V¹, Geethashree A², Nagaraja B G³, Chaithanya D J⁴, Chandrashekhar M Patil⁵, Amit Raikar⁶, Harshitha K⁷

¹²³⁴⁵⁶⁷Vidyavardhaka College of Engineering

¹jaswanthv@vvce.ac.in, ²geethashree.a@vvce.ac.in, ³nagarajbg@gmail.com, ⁴rcchaithudj@gmail.com
⁵patilcm@vvce.ac.in, ⁶amitanilraikar@gmail.com, ⁷harshithak@vvce.ac.in

Abstract—Artificial Intelligence & Machine Learning are rapidly developing along with the technologies mentioned above and having a tremendous impact on institutions of higher education by providing more enhanced, effective and data-driven learning experiences. This study reviews the use of AI and ML in the multimedia (digital) learning environment of modern education systems, including their applications, advantages, disadvantages and impact(s) on both educators and students. The results of this study also include the development of a method for determining how well adaptive learning platforms, predictive analytics and intelligent tutor systems have positively impacted or will positively impact student engagement and success through an extensive literature review and a mixed-methods research methodology (surveys and case studies). Although the results of the study indicate that AI will support better learning pathways and increased administrative automation, there are still very real concerns regarding privacy of data and the effects of algorithmic bias as well as issues of digital access inequality. 78% of teachers surveyed indicated that the use of AI-based tools helped them to reduce their administrative burden; 65% of students surveyed identified a positive increase in engagement when using adaptive and personalized learning systems. The paper concludes with recommendations for further research as well as recommendations for responsible and ethical integration of AI & ML into educational settings.

Keywords—AI - Artificial Intelligence; ML - Machine Learning, Tech-Education; Learning enhancement; Technical Systems; Critical Analytics; use of Digital Tools; Adaptive & Analytical Learning.

ICTIEE Track—Emerging Technologies and Future Skills
ICTIEE Sub-Track—AI, Machine learning and Digital tools in Education

I. INTRODUCTION

Artificial Intelligence, Machine Learning and Digital Tools are changing the way we understand and experience Knowledge and Assess Knowledge, as well as changing how we teach: Teaching Methods were always used with Teaching Methods, however now there are Intelligent Automation Systems available that enable businesses and educational institutions to analyze vast amounts of education-related

content and data and offer students Personalized Learning Experiences. This, in turn, gives teachers time to create Automatic Daily Routine Tasks for their students--and therefore better assist them in achieving their academic goals. The application of AI, ML and Digital Tools in Education is an integral part of will be Learning Management Systems (LMS), Virtual Learning Environments (VLE) and Conventional School Classrooms globally, as opposed to their previous state where they were used primarily for Simulation/Experimental Purposes and/or Theory Modelling.

Through AI and ML, educators have the ability to tailor students' Education based upon their individual needs and provide educators' responses to students relative to their learning rate, learning styles, and learning achievements over time on a case-by-case basis. Intelligent Tutoring Systems (ITS) can provide immediate feedback and support on an individual level. Data analytics, powered by ML, will provide educators with the ability to identify at-risk students before they disengage from their studies. Additionally, Digital Tools such as AI Chatbots, Virtual Reality (VR) Labs and Complex Simulations make Education More Engaging, More Dynamic, and Most Importantly, More Available to Students Living in Rural or Urban Areas with Limited Access to Educational Resources. Certainly, all these available technologies have greater potential for the educational space, they also impose critical challenges to educators and educational institutions.

Artificial Intelligence and Machine Learning features are not simply restricted to an experimental setup. They now belong to the core of educational professional practices. They are the reason for bringing the change in how instructions being arranged and delivered, how the community of students engage with their development, and how academic performance is monitored and improvised. Digital systems incorporated with AI now have the huge potential to provide personalized learning based on individual student perspectives in real time about their cognitive styles, pace of learning, and gaps in knowledge. Taking consideration with the educational content, residing within the parameters of Machine Learning, algorithms support

the early detection of at-risk students, learning trajectories and enhanced decision making for curriculum and academic design. There is a range of technologies, including tutoring intelligent systems, writing help with AI, automated grading or assessment platforms are all complementary in providing educators with various supports for managing their coursework and administrative responsibilities.

The trend also invites higher education institutions and its researchers to engage in various ways to use these technologies in their own teaching and learning environments, and also in understanding the ethics and implications of each technology's role in educational domain. Research conversations related to AI's technical infrastructure and privacy of data around data privacy, biases of AI and ML algorithms, the affordance of digital inquiry, and teacher's agency are becoming topical. However, there is a lack of interdisciplinary approaches between the field of education, computer science, and cognitive knowledge in the transitioning of these technologies within educational practice.

Despite the positive excitement surrounding some of these technologies and advances, the transition to AI and ML within the educational will entail a number of challenges, including, changing perspectives on the practice of openness around content disclosures and algorithmic interpretations related to pedagogy. Additionally, the efficacy of AI and ML tools will depend on methodological practices, teacher/educator training, and the existing technological context.

This research article suggests ways to investigate how Artificial Intelligence (AI), Machine Learning (ML), and digital tools are being used in educational contexts today, investigates the influence of the pedagogical processes of teaching and learning, and reviews the advantages, opportunities, and limitations of AI, ML, and digital tools. This study looks at literature and empirical research to show what we know about effective practices and future possibilities for using intelligent technological systems in education.

II. LITERATURE REVIEW

The progress towards integrating AI and ML into educational sector over the past few decades has been driven by increasing pressure on universities and colleges. Research indicates that introducing both AI and ML into the educational process brings changes in how educational content is delivered and practiced. The focus has shifted towards an individual learning approach towards learning and the use of data analytics to enhance instructional and learning methods.

VanLehn (2011) describes the possibilities of AI and the individualized learning experience that it creates. As per (Holmes et al, 2019), AI systems can deliver content based on an analysis of student performance in real time, providing learning through self-paced and greater engagement. Carnegie Learning and ASSISTments, which are Intelligent Tutoring

Systems (ITS), adapt instructional strategies critically to support various learning needs and achieve outcomes comparable to human educators in controlled settings.

(You et al, 2017) presents studies on Machine Learning for Data Analytics in Educational domain. Machine-learning techniques are widely utilized for learning data analytics and data mining in the educational domain. These approaches offer the prediction of student outcomes, early identification of at-risk learners, and automation of feedback generation. For instance, experimented that training ML models on learning management system (LMS) data can predict student dropouts with higher accuracy, aiding institutions to take necessary actions. Similarly, machine-learning-based recommender systems are also integrated into LMS systems to enhance the adaptability of the curriculum (Kumar & Singh, 2020).

(Tamim et al. 2011) stressed the importance of Digital Tools in connection with the educational domain and its platforms used in the classroom. The application of digital tools, ranging from AI-powered grading assistants to mutual platforms such as Google Classroom, has proportionately influenced teaching in modern practice. Gradescope and Turnitin tools employ AI to assist teachers and academic researchers in assessing and detecting plagiarism, thereby reducing the administrative load. According to a meta-analysis by the utilization of such digital tools in traditional classrooms has a considerable but positive effect on students' achievements, especially when thoughtfully integrated into pedagogical processes.

The authors (Luckin et al. 2016) analyzed the many benefits that AI can provide to education. Their research identified many of the pedagogical benefits of using AI-based technologies, in conjunction with digital technology, to create personalized learning experiences; such as greater learner autonomy, better and more timely feedback, and improved classroom management. AI systems offer new ways of providing supports for learners with disabilities and will help promote more inclusive education (for example, AI-based systems for converting spoken language into text and AI systems for translating sign language).

Williamson and Eynon illustrate the many vital Ethical considerations and Critical Challenges presented in this paper. Despite these benefits, there are many concerns associated with this study there is a huge concern regarding Data Privacy, Biases within AI and ML Algorithms, and the opacity of AI's Decision Making capabilities (Williamson & Eynon 2020). There is also an increase in fear that a reliance on AI will De-Skill Teachers and Academic Researchers, reducing the amount of Human Interaction during learning and Research processes. (Selwyn 2019) also advocates for the development of Ethical Frameworks & Participatory Design Models that provide a more comprehensive lens on the use of AI Technologies within Education; the Researchers also outline the various Research Gaps that this study identified. Although there are discussions of AI and ML usage within this Paper and the theoretical

aspects, there are not many Longitudinal Studies or Longitudinal Research to document the Long-Term Effects of AI and ML on learning outcomes across Multiple Contexts. Finally, there is very little examination of Educational Practitioners' perspectives on the Real-World Issues of implementing AI Technologies within Developing Countries.

Research (Salas-Pilco et al., 2022) describes the AI being rapidly integrated into teacher-centric training programmes through various methodologies, specifically learning analytics and adaptive tools aiding educator professionals in instructional decision-making. Comprehensive systematic review publications have also revealed how AI is being leveraged for teacher professional development and not just for assessing students, as AI helps teachers identify students' needs for learning and adapt their instruction (Zhang & Huang, 2025). Additionally, AI has helped connect the dots between data derived from student performance and the real-time application of instructional techniques, making teaching/data informed. When AI is used in literacy lessons, there is increased student engagement, differentiated instructional approaches, and increased effectiveness of scaffolding for early learners (Kim et al., 2025). Research (Holstein & Aleven, 2021) indicates that human-AI collaboration (teacher and AI together) will foster improved k-12 student outcomes compared to AI-only solutions and demonstrates the need for educators to oversee the implementation of AI in their classes.

Several comprehensive studies show very few differences in measured outcomes when using AI/ML applications in areas of personalization, adaptive feedback, formative assessment, and learning support (Sharma et al., 2025; Zawacki-Richter et al., 2019). The reports point out that many persistent issues remain, such as ethics, teacher lack of preparedness, data privacy and the inconsistency of how AI/ML applications are implemented across school districts (Zawacki-Richter et al., 2019). There is still a significant gap between research and AI applications in the classroom; teachers still do not have sufficient training on how to utilize the technology effectively.

The existing literature showed a positive influence due to the many views surrounding artificial intelligence (AI), machine learning (ML), and the effects digital tools have on education and learning, including classroom settings, but substantial additional research continues to be necessary to guarantee that they will be effective over the long term. There is a need to conduct further in-depth investigation into pedagogical uses and real-life applications of intelligent educational technology as a means to create a broader base of current knowledge, as well as to ensure that they will be accessible to all teachers.

III. METHODOLOGY

To comprehensively explore how artificial intelligence and machine learning are being integrated into the educational environment, and what digital tools mean in regards to teacher usage, a mixed-methods research design was adopted in this study. This type of research utilizes both qualitative and

quantitative methods of data collection to examine the experiences of educators and students and allow for a more in-depth analysis of the results, as illustrated by Figure 1. This methodology is broken down into 5 distinct parts as follows:

1. Design Research
2. Sampling and Participants Data
3. Data Collection Strategies
4. Data Analytics
5. Ethical Information

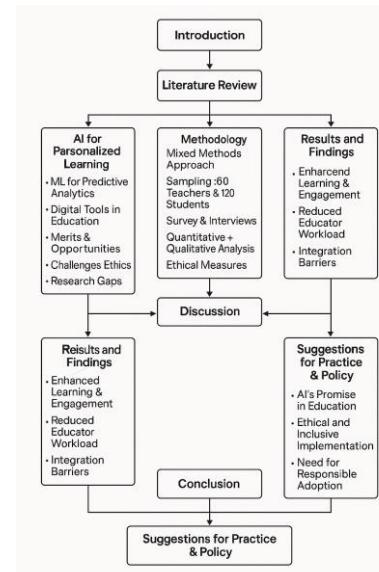


Fig. 1. Methodology

TABLE I
SUMMARY OF THE PAPER METHODOLOGY

Component	Details
Design Research	Approach using mixed methods (quantitative, qualitative)
Participants	60 Educators/Teachers (Higher education) and a total of 120 Students (Undergraduates)
Sampling Method	sampling across disciplines and institution types - Stratified
Data Analytics Tool	Survey (5-point Likert scale) - Semi-structured Interviews
Analysis of Quantitative Data	Statistics, Correlation, Regression
Analysis of Qualitative Data	Thematic analysis of interview transcripts (using NVivo/manual coding)
Key Themes Explored	Personalization, engagement, AI efficiency and moral concerns
Ethical Measures	Informed consent, anonymity, IRB approval, secured data storage

A. Design Research

The design of the mixed methods was as follows:

1. The first part will examine patterns between the use of AI and digital tools across different types of educational settings.
2. The second part will assess teachers individual perspectives; and the critical challenges they endure, generating potential solutions to aid their teaching practice, resulting in enhancing the validity and reliability of study findings.

B. Sampling and Participants Data

The study consists of two groups of participants as follows:

1. Educators & Teachers (Total Sample Size N = 60). In this instance Academic Faculty members of Post-Secondary Institutions (Higher Education) (Educators/Teachers).
2. Students (Total Sample Size N = 120). In this instance Undergraduate Students who are well-acquainted with AI-Enabled Learning Technologies.

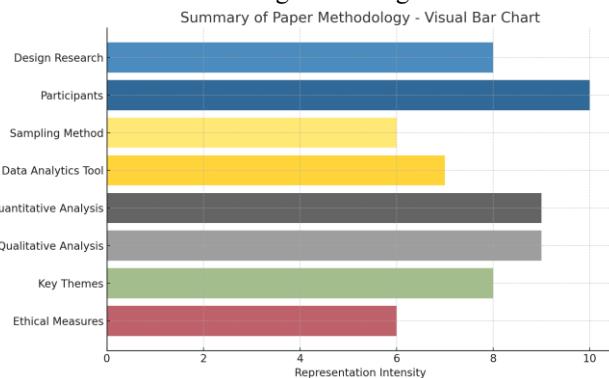


Fig. 2. Summary of paper methodology

C. Data Collection Strategies

1) Gathering data using a Survey Instrument

- a) A well-framed questionnaire was created to collect quantitative data from both the teachers and students. The survey included the following questions.
- b) Institutional and demographic background.
- c) The type and frequency of AI/digital tool usage, such as LMS, tutoring intelligent systems, and AI assessment grading systems.
- d) Ease of use and perceived effectiveness.
- e) Privacy concerns, usage fairness, and reliability.
- f) 5-point Likert scale was used to collect responses.

2) Interviews done using a semi-structured process

- a) Approximately 15 in-depth interviews were conducted with the educators selected from the initial survey pool. The interviews explored the following:
- b) Integration of AI experiences.
- c) Institutional assistance and training.
- d) Changes observed in student engagement and learning outcomes
- e) Pedagogical and ethical concerns.

- f) The interviews were recorded, transcribed, and thematically coded.

D. Data Analytics

1) Quantitative Analytics

- a) Descriptive and inferential statistics were used to analyze the survey data as follows:
- b) Concepts of statistics, such as mean, standard deviation, and frequency distributions.
- c) Correlation and regression analyses were conducted to examine the relationship between AI usage and perceived learning outcomes. The analysis was conducted using the SPSS software.

2) Qualitative Analytics

- a) Thematic analysis was used to analyze the interview transcripts.
- b) The codes were generated inductively.
- c) Emerging themes include personalization, workload of teachers, data privacy, and digital inequality. Ensuring trustworthiness was achieved through peer and member debriefing checks.

E. Ethical Information

This study adhered to ethical research standards and was conducted as follows.

- a) Informed consent was obtained from all participants.
- b) Anonymized Identities of Participants.
- c) Secured storage of data and used primarily for academic purposes.

IV. RESULTS

The findings obtained from the quantitative analysis and qualitative interviews are presented in this section, which were conducted and analyzed with educators and students in connection with their experiences of learning and perceptions of AI, machine learning (ML), and digital tools in educational environments.

A. Findings from the Quantitative Survey

1) AI Usage and Digital Tools

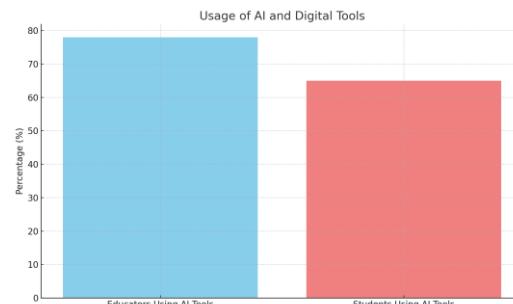


Fig. 3. Chart highlighting the usage of AI and Digital tools

TABLE II
USAGE OF AI AND DIGITAL TOOLS

User Type	AI Tools usage percentage (%)
Educators	78
Students	65

2) *Perceived Effectiveness/Efficiency*

a. On a 5-point Likert scale (i. Strongly agree, ii. Disagree, iii. Neither Agree nor Disagree, iv. Agree, V. Strongly agree): The effectiveness of AI tools as rated by educators in improving learning outcomes is 3.9 out of 5, with a Standard Deviation of 0.6.

b) 4.1/5 were rated by students concerning engagement and personalization, with a standard deviation of 0.5.

c) 58 per cent of teachers agreed that AI tools aided them in managing various learning requirements more effectively, as shown in Fig.4 and Table III.

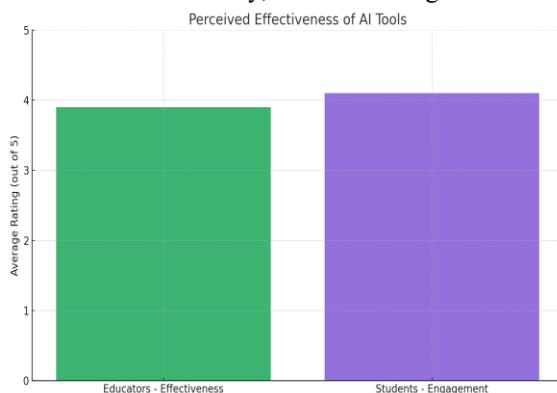


Fig. 4. Perceived Effectiveness of AI Tools

TABLE III

PERCEIVED EFFECTIVENESS RATINGS (OUT OF 5)

User Type	Criteria	Rating Average
Educators	Learning Outcomes enhancement and improvement	3.9
Students	Engagement & Personalization	4.1

3) *Concerns data and Barriers data*

a) From Fig.5 and Table IV, the report was obtained solely for privacy concerns by 61% of educators and 46% of students.

b) As shown in Fig. 6 and Table V, 42% of the teachers reported a lack of institutional training on the integration of the AI tool.

c) 34% of rural organizations or institutions with fewer resources reported limited access to AI tools.

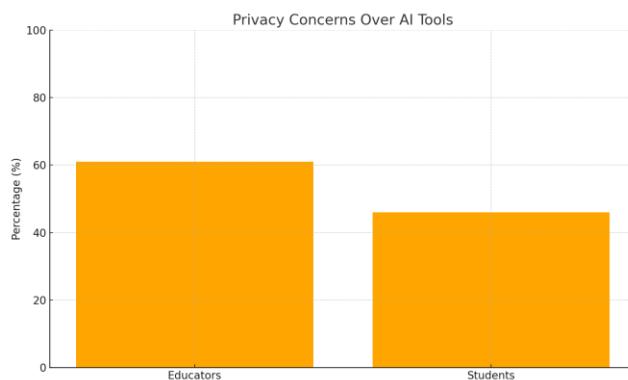


Fig. 5. Privacy concerns over AI tools

TABLE IV
PRIVACY CONCERN IN CONNECTION WITH PARTICIPANTS

User Type	Privacy Concern in percentage (%)
Educators	61
Students	46

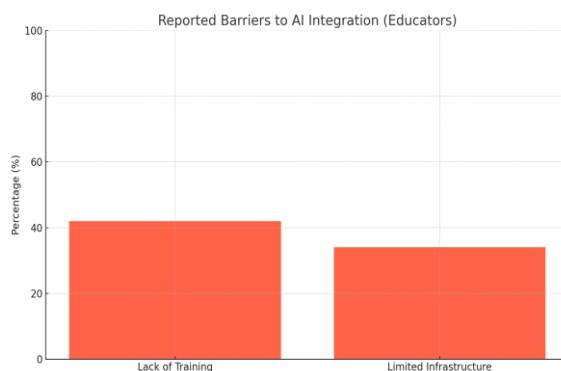


Fig. 6. AI Integration Chart of Reported Barriers

TABLE V
REPORTED BARRIERS TO AI INTEGRATION (EDUCATORS)

Barrier Criteria	Percentage (%)
Lack of Institutional Training	42
Limited Infrastructure (Rural Areas)	34

4) *Statistical Measures and Correlations*

a) A mid-level positive correlation of $r = 0.53$ and $p < 0.01$ was determined between the frequency of AI tool usage and improvement in the student learning outcomes.

b) Regression analysis indicated that the availability of training was a significant predictor with $\beta = 0.41$ and $p < 0.001$ for successful integration of AI.

B. *Qualitative Interview Insights*

A total of 15 semi-structured interviews with educators and the

following themes were identified:

1) Theme 1: Student and faculty Personalization and Engagement

Several Participants highlighted the importance of how AI-enabled systems aided them in tailoring instructions to diverse student capabilities. One academic faculty member noted: "The adaptive quiz platform helped his slow learning students to gain confidence as they get different feedback, and it's immediate."

2) Theme 2: Workload of the teacher

The automation of grading and feedback generation was appreciated by many educators, as stated here: "AI saved hours of assessment time during online remote exams. That provided the teachers with more time to focus on the educational content."

3) Theme 3: Ethical behaviour and Pedagogical Concerns

Concerns about the use of the data, algorithmic opacity, and over-dependence on the AI were common, and one of the educators stated: "Sometimes not knowing how the AI recommends the education content will be so troublesome if not sure on how to explain it to students."

4) Theme 4: Training and Support of Educators

Unavailability of the structured training emerged as a critical barrier to the effective AI adoption and Utilization, one comment stated by one of the teaching faculty: few were told to use the AI tools and platforms but not shown how to implement them, and so most of them just learnt by trial and error."

C. Cross Analysis

Cross-analysis of quantitative and qualitative data was performed.

- Effective AI adoption was reported in educational institutions that provided hands-on training to educators in real time and maintained educator autonomy.
- In order to include representations from all disciplines (STEM & Humanities) as well as from both Urban and Rural Settings and Public & Private Higher Education Institutions; Sampling Methodology such as stratified sampling was implemented.

D. Mathematical representation

1) The average Mean ratings obtained from Likert Scale Surveys

Let:

- R_e = mean rating by educators = 3.9
- R_s = mean rating by students = 4.1
- $SD_e = 0.6, SD_s = 0.5$

Mathematical expressions for the mean rating are:

$$\bar{R} = \frac{1}{N} \sum_{i=1}^N r_i \quad (2)$$

Where:

- r_i = individual rating
- N = total number of educators or students

2) Correlation Between AI Usage Frequency and Learning Outcomes

Given:

- Correlation coefficient $r = 0.53$
- $p < 0.01$

Mathematical form:

$$r = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum (X_i - \bar{X})^2} \cdot \sqrt{\sum (Y_i - \bar{Y})^2}} \quad (3)$$

Where:

- X = AI tool usage frequency
- Y = learning outcome score

3) Regression Equation for Predicting AI Integration Success

Given:

- Regression coefficient $\beta = 0.41$
- Predictor: training availability
- Significance: $p < 0.001$

Model:

$$Y = \beta_0 + \beta_1 X + \epsilon$$

$$\text{AI Integration Success} = \beta_0 + 0.41 \times (\text{Training Availability}) + \epsilon$$

Where:

- Y = outcome (successful integration)
- X = training availability variable (binary or scaled)
- ϵ = error term

4) Percentage Calculations for AI Usage and Privacy Concerns

For example:

Educators using AI: 78%

- Educators using AI: 78%

$$2. P_e = \frac{N_{\text{AI-using Educators}}}{N_{\text{Total Educators}}} \times 100 = \frac{47}{60} \times 100 = 78\% \quad (4)$$

- Privacy concerns (Educators) 61%

$$PC_e = \frac{N_{\text{Concerned Educators}}}{N_{\text{Total Educators}}} \times 100 = \frac{37}{60} \times 100 = 61\% \quad (5)$$

E. Formula of Standard Deviation (used in survey stats)

The SD equation is given below for student or educator responses:

$$SD = \sqrt{\frac{1}{N} \sum_{i=1}^N (x_i - \bar{x})^2} \quad (6)$$

V. DISCUSSION

The results of this study emphasizes both the wide array of benefits and critical challenges employing the use of AI/ML in educational environments, as well as the provides the impact of utilizing various digital technologies in Educational Space. With the findings data, it shows clearly that there is an

incremental increase in the utilization of AI-Enabled Learning Platforms as well as achieving positive student outcomes with respect to both student engagement and educator instructional efficiency. However, the study findings also revealed concerns regarding issues with respect to Infrastructural resources, Educators willingness and their privacy concerns, along with Ethical Considerations that will need to be addressed in order for responsible implementation to be developed.

1) Enhanced Engagement and Learning Results

The teachers/educators ($M = 3.9/5$) and student learners ($M = 4.1/5$) provide more value to this innovative technology indicating that they now have depend more and trust in using artificial intelligence (AI) applications for their teachings, learning and providing more flexible and innovative educational experience (VanLehn, 2011; Holmes, Bialik, & Fadel, 2019). The previous research highlighted that tutoring systems and AI-based education technologies improves student learning outcomes through feedback generation (Holmes, Bialik, & Fadel, 2019). The statistical correlation between the repetitive AI usage and perceived learning improvement reinforces the AI when used thoughtfully and creatively, it aids in enhancing the academic success.

2) Reducing the Workload of the Educators

This study emphasized that educators feel more positive about using an AI tool into their teaching curriculum because of reduction in the administrative tasks, grading and providing feedback. This study is presented by (Luckin et al. 2016), who noted AI could reduce the burden of doing repetitive tasks and allows teachers to give priority to student-centric practices. Yet according to participants, there is also a concern of losing control over the instruction process, which is confirmed with (Selwyn's 2019) warning that over automation could reduce the teacher's working ability when implemented without transparency and collaboration.

3) Challenges to AI Integration and Adoption

Despite the opportunities for AI, there are considerable concerns in adopting technology in the educational sector. Usually because of a lack of use, 42% of educators noted a lack of educational training, while many educators have worries about limitations or barriers of AI integration into their practice, especially educators working in rural communities, with technological infrastructure challenges. The results fit with (Tamim et al. 2011), who found technology does not improve learning without comprehensive support and training for teachers. In order for AI advancement and use to be widely adopted, it may require an institutional investment of an educator's professional development.

4) Ethical Apprehensions and Privacy of the Data

The views of students and educationalists had strong complexities in relation to student data privacy and how algorithms use this data. The views matched those in (Williamson and Eynon, 2020), who outlined the degree of complexity that many of the AI systems operate under and that a great deal of things could be biased or used against the welfare of students. This paper highlights a demand for the development of AI tools in responsible practices that meet

ethical and legal obligations with respect to protecting use of students data in an education context.

5) Fairness and Inclusion

Rural and urban educational institutions' difference in AI adoption run the risk of creating a new digital divide. Those able to get the newest advanced tools and updated working AI capabilities are running ahead of others that have limited access due to their infrastructure or financial limitations. This study is the work of (Holmes et al. 2019), describing that usage of AI has been the potential to deepen existing inequalities when access is not built-in to the specific application regardless the features and system capabilities. It's a relevant area for all learners, regardless of their background, to have the ability to access an AI experience.

6) Suggestions for the Practice and Policy

1. Instructors should be authorized as co-designers in the execution of AI platforms and systems to ensure the alignment of pedagogical processes and ethical awareness.
2. Obligations of institutions for ongoing training and technical support for AI tools.
3. Policymakers must continue to develop their infrastructure and take bold steps to develop ethical use of AI and guidelines for education

CONCLUSION

This research study results mention that the integration of AI and ML will generate considerable benefits for both the educators and the students in the educational space. As per the findings, approximately 78% of teachers or educators agree that using AI tools resulted in reduced administrative workloads, assessments and increased productivity, 65% of students expressed higher interest in engaging with personalized learning systems and models. Considering measurably perspective of students and educators, these results describe the potential of AI and ML in improving learning opportunities enhancing abilities to provide personalized instructions, and provides increased motivation to learn, as well as more efficient teaching techniques.

There do exist some critical issues even when using AI and ML paves a way in providing the merits of integrating them with educational opportunities. 42% of educators highlighted that lack of training towards integrating AI and ML was the biggest hurdle to incorporate them. Also, 61% of those had issues with students privacy, 46% of students also had the same privacy concerns. 34% of institutions indicated that they have infrastructure resource problems that make them not implement AI technologies, taking sustainable point of view. In addition to those, ethical concerns in connection with bias in the algorithm, privacy of the data, and transparency were cited by participants as critical issues. Some of these challenges highlight the need for more robust approaches by educational organizations to support teachers and students to implement AI and ML in a responsible and reasonable manner.

As a result of these research findings, AI and ML provides a way to change how education content is delivered. Technology itself must be adopted in relevance to the current educational system and beyond. In order to effectively realize the complete benefits of AI and ML in educational space, there is a strong need for collaborations between the educators and the higher education.

REFERENCES

Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial intelligence in education: Promises and implications for teaching and learning. Centre for Curriculum Redesign.

Kumar, P., & Singh, V. (2020). Enhancing student learning through machine learning-based recommender systems in online education. *International Journal of Emerging Technologies in Learning*, 15(22), 150–159. <https://doi.org/10.3991/ijet.v15i22.15957>

Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2016). Intelligence unleashed: An argument for AI in education. Pearson Education.

Selwyn, N. (2019). Should robots replace teachers? AI and the future of education. Polity Press.

Tamim, R. M., Bernard, R. M., Borokhovski, E., Abrami, P. C., & Schmid, R. F. (2011). What forty years of research says about the impact of technology on learning. *Review of Educational Research*, 81(1), 4–28. <https://doi.org/10.3102/0034654310393361>

VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems. *Educational Psychologist*, 46(4), 197–221. <https://doi.org/10.1080/00461520.2011.611369>

Williamson, B., & Eynon, R. (2020). Historical threads, missing links, and future directions in AI in education. *Learning, Media and Technology*, 45(3), 223–235. <https://doi.org/10.1080/17439884.2020.1798995>

You, J. W., Kim, J., & Lyu, M. (2017). Predicting dropout using clickstream data in online learning platforms. *Computers in Human Behavior*, 73, 94–104. <https://doi.org/10.1016/j.chb.2017.03.006>

Salas-Pilco, S. Z., Xiao, K., & Hu, X. (2022). Artificial intelligence and learning analytics in teacher education: A systematic review. *Education Sciences*, 12(8), 569. <https://doi.org/10.3390/educsci12080569>

Sharma, A., Gupta, R., & Patel, V. (2025). Integration of artificial intelligence and machine learning in education: A systematic review. *International Journal of Educational Management*, 11(2), 203–216.

Zhang, L., & Huang, P. (2025). Artificial intelligence in teaching and teacher professional development: A systematic review. *Computers & Education: Artificial Intelligence*, 6, 100208. <https://doi.org/10.1016/j.caenai.2024.100208>

Kim, Y., Tan, M., & Lee, H. (2025). Integrating artificial intelligence in literacy lessons for elementary classrooms: A co-design approach. *Educational Technology Research and Development*. <https://doi.org/10.1007/s11423-025-10492-z>

Holstein, K., & Aleven, V. (2021). Designing for human–AI complementarity in K–12 education. *Computers & Education*, 179, 104406. <https://doi.org/10.1016/j.compedu.2021.104406>

Tan, K., Pang, T., Fan, C., & Yu, S. (2023). Towards applying powerful large AI models in classroom teaching: Opportunities, challenges, and prospects. *ArXiv*. <https://doi.org/10.48550/arXiv.2305.03433>

Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education. *International Journal of Educational Technology in Higher Education*, 16(1), 39. <https://doi.org/10.1186/s41239-019-0171-0>

Zheng, L., Wang, L., & Wang, W. (2024). Artificial intelligence for teaching and learning in schools: The need for pedagogical intelligence. *Computers & Education*, 217, 105071. <https://doi.org/10.1016/j.compedu.2024.105071>

Aliabadi, R., Singh, A., & Wilson, E. (2023). Transdisciplinary AI education: The confluence of curricular and community needs in the instruction of artificial intelligence. *ArXiv*. <https://doi.org/10.48550/arXiv.2311.14702>