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Abstract—In engineering education, students often carry 

misconceptions that stay hidden during regular classroom 

teaching. These wrong ideas can stop them from fully 

understanding new concepts. This paper presents a simple, 

teacher-led method called in-class error analysis to help identify 

and correct such misconceptions. The method was used in a 

Computer Networks course, where students answered multiple-

choice questions (MCQs) after each lesson. The teacher studied the 

wrong answers to find patterns of misunderstanding and then 

adjusted the next class accordingly. Educational metrics like 

accuracy, difficulty index, discrimination index, and normalized 

learning gain were used to study student performance and the 

impact of re-teaching. The results showed clear improvements, 

especially in tricky topics like TCP vs UDP and OSI vs TCP/IP 

layer mapping. By treating mistakes as useful feedback instead of 

failures, this approach helps teachers improve their teaching and 

support better student learning. It also works well without needing 

any advanced technology, making it suitable for many classrooms. 

 

Keywords—Error-analysis, Classroom teaching, Learning 

analytics, Misconception, Formative Assessment. 

 

ICTIEE Track—Assessment, Feedback, and Learning 

Outcomes) 

ICTIEE Sub-Track—Learning Analytics for Evaluation and 

Improvement 

I. INTRODUCTION 

DAPTIVE teaching has emerged as a critical component 

in modern engineering education, where diverse learner 

backgrounds and varying levels of prior knowledge make 

uniform instructional strategies less effective. The dynamic 

nature of engineering subjects—particularly those involving 

abstract concepts, complex problem-solving, and layered 

prerequisite knowledge—demands teaching approaches that 

can respond to student understanding in real time. Traditional 

lecture-based instruction, though efficient for content delivery, 

often overlooks the individual learning needs of students and 

fails to promptly identify and address conceptual 

misunderstandings. 

One of the persistent challenges in undergraduate engineering 

education is the presence of misconceptions that students carry 

from earlier learning experiences or form during initial 

exposure to new concepts. These misconceptions, if 
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uncorrected, can hinder deeper learning and cause long-term 

difficulties in mastering more advanced topics. In standard 

classroom settings, such errors often go undetected, especially 

when students do not voluntarily express confusion or provide 

incorrect answers due to a lack of confidence or fear of 

judgment. Consequently, educators may proceed under the false 

assumption that all students have understood the material, 

leading to a widening gap between instruction and 

comprehension. To address this issue, this study proposes a 

teaching method centered on in-class error analysis. The 

approach involves posing diagnostic or conceptual questions 

during the lecture, actively engaging students to respond, and 

closely observing the incorrect responses. Rather than 

dismissing wrong answers, the instructor treats them as 

valuable insights into student thinking. Each incorrect response 

is analyzed to identify underlying causes—be it is a 

fundamental misunderstanding, a misapplied concept, or a gap 

in prerequisite knowledge. The insights gained from this 

analysis are then used to reflectively plan the subsequent class 

session, revisiting difficult topics, reinforcing key ideas, or 

modifying the instructional sequence to address observed 

learning gaps. 

This method transforms student mistakes from being merely 

signs of failure into meaningful data points for instructional 

refinement. By continuously adapting lessons based on real-

time feedback derived from student errors, educators can create 

a more responsive and personalized learning environment. 

The objective of this paper is to evaluate the effectiveness of 

this teaching method in improving classroom instruction and 

student learning outcomes. The study focuses on the practical 

implementation of in-class error analysis in an undergraduate 

engineering course, examining the types of errors encountered, 

how these informed instructional changes, and the impact of 

this reflective practice on student engagement and conceptual 

understanding. This study is guided by the following research 

questions: 

RQ1: What types of misconceptions are most common in 

foundational networking concepts? 

RQ2: How effectively does reflective error analysis improve 

conceptual understanding, based on metrics such as difficulty 

index, discrimination index, and normalized learning gain? 

RQ3: Can clusters of student errors reveal deeper conceptual 
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gaps? 

II. RELATED WORK 

Many studies have highlighted the importance of using student 

responses — especially wrong ones — to improve teaching. 

This approach is part of what’s called formative assessment, 

where teachers use feedback during the lesson to make teaching 

more effective. The foundational work by (Black & Wiliam, 

1998) showed that when teachers adjust instruction based on 

student understanding, learning improves. 

A key part of formative assessment is examining student 

mistakes. (Shute, 2008) emphasized that feedback should not 

only give correct answers but also help students understand why 

their thinking was wrong. (Chi, 2005) argued that when 

students hold strong but incorrect beliefs (called 

misconceptions), they need targeted teaching to change those 

ideas. 

Research consistently shows that examining student errors—

rather than just correct answers—can make teaching more 

effective. This idea fits under the umbrella of formative 

assessment, where instructors adapt teaching based on ongoing 

feedback. A comprehensive study by (Qadir et al., 2020) 

demonstrated how formative assessment and feedback in 

engineering classrooms helps both students and teachers focus 

on misunderstandings as they occur. In engineering 

mathematics(Sikurajapathi et al., 2020) used assessment, where 

student input was analyzed to detect common mathematical 

misconceptions. Their system then provided tailored feedback 

to address those errors promptly. In science 

education(Lichtenberger et al., 2025) conducted a controlled 

intervention in physics. They used concept questions during 

classes to surface and correct misconceptions, resulting in 

improved conceptual understanding compared to traditional 

instruction. 

(Roselli & Brophy, 2006) highlighted the effectiveness of 

immediate, in-class polling systems (Classroom 

Communication Systems) for identifying misconceptions. They 

found significant improvement in student retention when 

instructors responded right away to incorrect student answers. 

(Escalante, 2021) analyzed responses from hundreds of 

engineering students on the Force Concept Inventory to identify 

persistent Newtonian misconceptions. Although not directly 

linked to real-time classroom error analysis, it underscores how 

common and entrenched student misconceptions are in 

engineering education. Together, these studies support the idea 

that actively seeking out and addressing misconceptions can 

improve student learning. However, most work either relies on 

digital tools (e-assessments, polling clickers) or large-scale 

testing instruments. There is surprisingly little research on a 

simple, human-driven method where instructors collect wrong 

verbal answers during class, reflect on them, and modify the 

next lesson accordingly. 

In recent years, the integration of learning analytics (LA) into 

teaching practices has proven highly effective in identifying 

misconceptions and guiding adaptive instruction. (Elmoazen et 

al., 2023) demonstrated how error tracking and formative 

feedback in virtual engineering labs led to clearer concept 

retention and faster correction of student misunderstandings. 

Similarly, in a study focused on reducing conceptual learning 

gaps, Mitigating Conceptual Learning Gaps (Naseer & 

Khawaja, 2025) reported that students who received analytics-

informed feedback showed up to a 28% increase in 

understanding over those who did not receive targeted 

interventions. 

(Kohnke et al., 2022) emphasized the importance of combining 

formative assessment with LA to predict student performance 

and recommend real-time pedagogical actions, which aligns 

closely with the current study’s use of multiple-choice 

questions and distractor effectiveness metrics. (Sajja et al., 

2023) further contributed by using AI-enhanced analytics to 

identify confusion patterns and adapt teaching in real-time—a 

technique that mirrors the human-led classroom reflection cycle 

used in this work. Moreover, (Romero & Ventura, 2020) 

outlined a comprehensive review of educational data mining 

and LA techniques, reinforcing the role of metrics like 

normalized learning gain, discrimination index, and item 

difficulty in enhancing instruction across STEM disciplines. 

These contemporary studies support the present paper’s claim 

that real-time error analysis, when combined with robust 

analytics, serves as a powerful low-tech strategy to improve 

conceptual understanding in engineering education 

Theoretical Foundations of the Error-Analysis Approach: 

The use of error analysis in the classroom is strongly supported 

by contemporary research in metacognition and reflective 

learning. Recent studies show that when learners are 

encouraged to think about why they made an error, they develop 

stronger metacognitive awareness and deeper conceptual 

understanding. For example, Del Valle (2025) found that 

students in constructivist, reflection-based learning 

environments demonstrated significantly higher academic 

success and stronger metacognitive regulation. Similarly, 

 
Fig. 1. Instructional Cycle for In-Class Error Analysis-Based Teaching 

Methodology 
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reflective and metacognitive interventions in design and 

engineering-related courses have been shown to improve 

students’ awareness of their thinking processes and enhance 

overall performance (Ahmed & Hilal, 2025). 

These findings reinforce the idea that learning becomes more 

meaningful when students actively analyze and reconstruct 

their understanding rather than passively receiving information. 

By prompting learners to revisit their misconceptions and 

compare them with correct reasoning, our error-analysis 

approach aligns with this modern, learner-centered pedagogical 

perspective. Furthermore, recent large-scale work on 

metacognition confirms that students who monitor and reflect 

on their learning are more engaged and demonstrate better long-

term retention (Zhang et al., 2024). Thus, the mechanism 

underlying our approach is grounded in strong theoretical and 

empirical support from contemporary education research. 

III. METHODOLOGY 

The process begins with the teacher delivering a topic from the 

Computer Networks curriculum. This can be through lectures, 

presentations, whiteboard discussions, or demonstrations. The 

objective is to cover the concept clearly and thoroughly so that 

all students have a fair chance of understanding the topic. After 

the topic delivery, the teacher engages students through oral 

questioning or live polls to check immediate understanding. 

This helps break the monotony and encourages attentiveness. 

Students respond verbally or by raising hands, and this quick 

check gives the teacher a sense of the class's grasp of the 

concept. The next step is to post 10 well-designed MCQ 

questions related to the topic. These questions are hosted 

digitally (via Google Forms). Each student submits their 

answers. The aim is to capture individual understanding 

anonymously and objectively. The system collects 60 

responses, 600 sample answers per session, giving a clear 

picture of student comprehension. The data includes 

right/wrong answers, option choices, and timestamps. Once the 

responses are in, error analysis is performed. The incorrect 

responses are examined for patterns — for example, are many 

students choosing the same wrong option? This might indicate 

a common misconception or a tricky distractor. Metrics like 

difficulty index, discrimination index, and option effectiveness 

are calculated. Based on the analysis, common student errors 

are grouped into misconception clusters. These clusters help the 

teacher understand why the errors occurred — e.g., conceptual 

confusion, misreading the question, or flawed logic. Clustering 

may also identify specific students who consistently show 

similar misunderstandings. 

To understand the nature of students’ errors more meaningfully, 

we categorized the misconceptions observed in their responses 

into four broad groups. This helped us interpret the patterns 

behind incorrect choices rather than treating them as isolated 

mistakes. 

1. Terminology-based misconceptions  These occurred 

when students misunderstood or confused 

fundamental definitions, such as the roles of OSI 

layers or basic networking terms. 

2. Conceptual-process misconceptions  These reflected 

gaps in understanding how a process unfolds, for 

example in connection establishment, flow control, or 

data transfer sequences. 

3. Application-level misconceptions  These appeared 

when students struggled to apply conceptual 

knowledge to situational or scenario-based questions, 

often leading to incorrect reasoning about what a 

protocol would do in each context. 

4. Distractor-driven misconceptions  These arose when 

students consistently selected distractors that seemed 

intuitively correct but were based on common 

misunderstandings. The patterns in these choices 

revealed deeper misconceptions that were not 

immediately visible through scores alone. 

By organizing misconceptions in this way, we were able to 

provide targeted feedback during classroom discussions and 

address not just what students got wrong, but why they were 

thinking in that direction. This structured approach made the 

error-analysis exercise more actionable and pedagogically 

meaningful. 

 The teacher then designs the targeted interventions such as: 

1. Clarifying concepts in the next class 

2. Revisiting foundational topics 

3. Providing analogies or visual aids 

4. Assigning personalized remedial work 

Ethical Considerations: The study was carried out in alignment 

with the institution’s ethical guidelines throughout the process 

of data collection and analysis. Students participated 

voluntarily, and their privacy was carefully protected by 

assigning unique anonymized codes known only to them. No 

marks, grades, or academic rewards were tied to their 

responses, ensuring that they could answer freely without any 

performance-related pressure. 

Since the activity formed part of regular classroom practice 

aimed at improving teaching and learning, it qualified for an 

exemption from formal institutional review. All collected data 

were used solely for educational improvement and research 

purposes and were handled responsibly to maintain 

confidentiality and uphold ethical standards. 

IV. LEARNING ANALYTICS FOR CONCEPTUAL IMPROVEMENT 

To assess student understanding and improve instruction in a 

Computer Networks class, we implemented a real-time error 

analysis framework using 10 multiple-choice questions 

(MCQs) based on the TCP/IP protocol suite (for Questionnaire 

visit the link given in APPENDIX). These questions were 

administered to 60 students, and their 600 responses were 

analyzed using key educational metrics. This classroom-driven 

analysis provides targeted feedback, highlights learning gaps, 

and supports evidence-based teaching improvement. 

Overall Accuracy  

Overall accuracy (from Eq.1) measures the fraction of correct 

answers across all questions and all students.  

Overall Accuracy =
∑  𝑁
𝑖=1 ∑  

𝑄
𝑗=1  Correct 𝑖𝑗

𝑁×𝑄
      (1) 
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Where, N = Number of students (60), Q = Number of questions 

(10) and Correctij=1 if student i's answer to question j is correct, 

else 0. 
TABLE I 

OVERALL ACCURACY  

Metric Value 

Overall Accuracy 71.83% 

 

The overall accuracy of the class was found to be 71.83% 

(shown in table I), which means that, on average, students 

answered about 7 out of 10 questions correctly. This indicates 

a moderate level of understanding of the TCP/IP protocol 

concepts among the students. While the average performance is 

acceptable, it also suggests there is room for improvement. 

Ideally, a well-learned concept should lead to accuracy above 

80%. Therefore, this number serves as a baseline for deciding 

whether to adjust the teaching strategy or reinforce certain 

topics. 

Topic-wise Accuracy 

Topic-wise accuracy calculates (from Eq.2) the average 

correctness for questions belonging to the same topic. 

 Topic Accuracy 𝑘 =
∑  𝑁
𝑖=1 ∑  𝑗∈𝑇𝑘

 Correct 𝑖𝑗

𝑁×|𝑇𝑘|
    (2) 

Where, 𝑇𝑘= Set of question indices for topic k and |𝑇𝑘|= 

Number of questions in topic k. The topic-wise accuracy metric 

breaks down the student performance according to specific 

subtopics like TCP/IP model, Transport layer, Internet layer, 

and Application layer. As shown in table II, if the Transport 

layer questions had an average accuracy of 68%, while the 

Internet layer had 75%, it suggests that students are more 

comfortable with the Internet layer concepts. 

TABLE II 

TOPIC-WISE ACCURACY 

Topic Accuracy (%) 

TCP/IP Model 72 
Transport 68 

Internet 75 

Application 70 

 

On the other hand, lower scores in the Transport layer could 

mean students are unclear about topics like TCP vs. UDP or 

port addressing. This type of analysis helps pinpoint weak 

areas, so instructors can plan targeted revision sessions or 

explanatory examples for those specific topics. 

Difficulty Index (Per Question) 

The difficulty index (from Eq.3) measures the proportion of 

students who answered a question correctly (Jaleel, 2012). 

 Difficulty Index 
𝑗
=

∑  𝑁
𝑖=1  Correct 𝑖𝑗

𝑁
        (3) 

 

Table III shows the obtained difficulty index. The difficulty 

index tells us how easy or hard each question was for the 

students. For instance, Q6 and Q8 had high scores (above 80%), 

meaning most students got this right. These questions were 

considered easy. In contrast, Q1 and Q2 had scores closer to 

65%, suggesting they were moderately difficult. This kind of 

analysis is useful because it tells instructors which questions 

challenged students the most and might represent concepts that 

need to be re-explained. Importantly, none of the questions had 

very low scores (e.g., below 40%), which means that the test 

design was reasonably balanced. 
TABLE III 

DIFFICULTY INDEX (PER QUESTION) 

Question Difficulty Index Interpretation 

Q1 65.00% Moderate difficulty 

Q2 66.67% Moderate difficulty 

Q3 78.33% Easy 
Q4 66.67% Moderate difficulty 

Q5 73.33% Moderate difficulty 

Q6 81.67% Easy 
Q7 66.67% Moderate difficulty 

Q8 80.00% Easy 

Q9 68.33% Moderate difficulty 
Q10 71.67% Moderate difficulty 

 

Discrimination Index (Per Question) 

The discrimination index (from Eq.4) measures how well a 

question differentiates between high-performing and low-

performing students (Jaleel, 2012). 

 Discrimination Index 𝑗 = 𝑃top ,𝑗 − 𝑃bottom ,𝑗    (4) 

Where, 𝑃top ,𝑗= Proportion of correct answers in the top 27% of 

students for question j and 𝑃bottom ,𝑗 = Proportion of correct 

answers in the bottom 27% of students for question j. 

TABLE IV 

MOST COMMON MISCONCEPTIONS (PER QUESTION) 

Question Correct 

Answer 

Most Common 

Wrong Answer 

Insight 

Q1 C A 
Students confuse the correct 

layer or protocol 

Q2 B D 
Misunderstanding of transport 
layer responsibilities 

Q3 D B 
Confusion between TCP and 

UDP 

Q4 D C 
IP addressing or routing 

concepts unclear 

Q5 C B 
Internet layer protocols 
mixing 

 
Fig. 2. Discrimination Index (Per Question) 
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Q6 B A 
Network addressing 
misconceptions 

Q7 B C 
Application layer roles 

misunderstood 

Q8 B D 
UDP vs TCP distinctions 

unclear 

Q9 B A Email protocol confusion 

Q10 D A 
TCP/IP model layers not well 

differentiated 

The discrimination index (shown in figure 2) is a very important 

metric for evaluating the quality of the question itself. It tells us 

how well a question distinguishes between strong and weak 

students. A higher positive value (e.g., 0.56 for Q9 and Q10) 

means that high-performing students consistently got it right, 

and low-performing students got it wrong, which is ideal. 

However, Q4 had a negative value, which is a red flag. This 

suggests that low-scoring students got Q4 right more often than 

high-scoring students, possibly due to guessing, poor question 

phrasing, or a misunderstanding. Questions like Q4 should be 

reviewed and possibly rewritten or removed in future tests. 

The table IV looks at the most frequent wrong answer chosen 

for each question. For example, for Q1, the correct answer was 

C, but many students chose A. This implies that students have 

a specific misunderstanding, not just a random error. These 

kinds of patterns help instructors understand exactly what 

students are confusing. For instance, if a majority selected “A” 

thinking it was the correct layer in the TCP/IP model, that tells 

the teacher where the misconception lies and allows them to 

clarify that specific point in the next class. This form of analysis 

goes beyond just right or wrong and gets into the reason behind 

the wrong answers, making it highly useful for instructional 

improvement. A detailed analysis is given in table V. Following 

the detailed analysis of misconceptions (as shown in Tables IV 

and 5), we carefully planned targeted instructional interventions 

aimed at correcting these specific misunderstandings. Rather 

than repeating the same content, the focus was on conceptual 

clarification, alternative representations, and active 

engagement strategies that directly addressed the root causes of 

the errors. Once the misconception clusters were identified 

from the MCQ responses, each was reviewed to determine: 

1. Whether the confusion was terminological, structural, 

or functional 

2. What prior knowledge was missing or misapplied 

3. Whether the error was widespread (high-frequency 

wrong choice) or isolated 

These interventions were implemented during the next class 

session, typically within 1 or 2 days of the error analysis. This 

timing ensured that: 

TABLE V 

DETAILED ANALYSIS OF THE MOST COMMON MISCONCEPTIONS 

Q# Correct Answer Most Common 

Wrong Answer 

Technical Interpretation 

Q1 
C (Session is not in 

TCP/IP model) 
A 

Many students mistakenly selected A (Application), perhaps due to confusion with the OSI model. The 

TCP/IP model merges the session, presentation, and application layers into a single application layer, 

whereas the OSI model treats them separately. Students may not have internalized this abstraction, leading 

to confusion. 

Q2 

B (Transport layer 

provides reliable 

delivery) 

D 

The choice of D (Addressing packets with IP addresses) suggests confusion between transport and network 

layers. IP addressing is the responsibility of the Internet layer, not transport. Students selecting D likely 

equate "data delivery" with "addressing," showing a partial understanding of protocol responsibilities. 

Q3 

D (TCP is 

connection-

oriented) 

B 

Selecting B (ICMP) indicates confusion between control and transport protocols. ICMP is used for 

diagnostics and error messages, not for data transport. The confusion may stem from the misconception 

that ICMP somehow establishes connections because it's involved in “testing” (e.g., ping). 

Q4 
D (IP is unreliable 

and connectionless) 
C 

Students choosing C (Reliable and connectionless) misunderstand what "reliability" means in networking. 

IP is connectionless and does not guarantee delivery, which is the job of TCP. The confusion here may arise 

from assuming IP being widely used means it must be reliable. 

Q5 

C (Internet layer 

handles logical 

addressing) 

B 

Selecting B (Transport layer) shows confusion about the layer responsibilities. The transport layer uses 

port numbers for addressing within a host, not between hosts. Logical IP addressing is solely handled by 

the Internet layer. This suggests a mix-up between host-level and network-level addressing. 

Q6 
B (IP protocol is in 

Internet layer) 
A 

Students choosing A (FTP) may be categorizing protocols based on familiarity, not layer responsibility. 

FTP is an application layer protocol and operates on top of TCP/IP. The error suggests the need to reinforce 

the protocol stack layering. 

Q7 
B (DNS resolves 

domain names) 
C 

C (HTTP) is a web application protocol and doesn't resolve domain names. Students may wrongly associate 

HTTP with DNS because both involve the internet. The misconception may stem from observing domain 

names in browser URLs and assuming HTTP handles that directly. 

Q8 

B (TCP provides 

error recovery, 

UDP does not) 

D 

Choosing D (TCP does not use port numbers) is technically incorrect, as both TCP and UDP use ports. The 

error reveals a lack of clarity in understanding how transport protocols identify applications. Students likely 

confuse TCP’s features (reliability, handshaking) with addressing mechanisms. 

Q9 
B (SMTP sends 

email) 
A 

A (FTP) is commonly known for transferring files, and students may incorrectly associate file attachments 

with FTP instead of SMTP. The confusion may also be due to SMTP being less familiar or not clearly 

distinguished from POP/IMAP in instruction. 

Q10 

D (Network Access 

= Data Link + 

Physical) 

A 

Students choosing A (Network Layer) might be mapping OSI layer concepts directly onto the TCP/IP 

model. In the TCP/IP model, data link and physical layers are collapsed into the Network Access Layer, 

not the Network Layer. This reveals confusion in layer mapping between the two models. 
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1. The misconceptions were still cognitively active in 

students’ minds 

2. The intervention could serve as an immediate 

conceptual correction 

Each intervention session included: 

1. A brief recap of the key concept 

2. A corrective explanation using the new representation 

3. A follow-up example or MCQ to apply the corrected 

understanding 

V.  EVALUATING INSTRUCTIONAL IMPACT 

To further substantiate the instructional value of the in-class 

error analysis approach, we extended our investigation to 

include additional learning analytics. These metrics provide 

richer insights into student progress, question design quality, 

and the effectiveness of targeted interventions. Specifically, we 

examined three key dimensions: Normalized Learning Gain, 

Distractor Effectiveness, and Error Persistence. These analytics 

collectively enhance the robustness of our methodology by 

moving beyond performance snapshots to a more dynamic 

understanding of how learning evolves over time. 

E. Normalized Learning Gain 

The overall and topic-wise accuracy provide a static view of 

student performance; Normalized Learning Gain (from Eq.5) 

offers a dynamic measure of how much conceptual 

understanding has improved because of instructional 

intervention. This metric is particularly effective in quantifying 

the impact of re-teaching strategies that were informed by prior 

error analysis. 

The gain is calculated using Hake’s normalized formula: 

𝑔 =
 Post-test Score − Pre-test Score 

100− Pre-test Score 
        (5) 

In our study, the Transport Layer was identified as a relatively 

weak area, with an average accuracy of 68% during the initial 

assessment. Based on the detailed misconception analysis 

(Table VII), a follow-up session was designed with emphasis 

on clarifying distinctions between TCP and UDP, reliability, 

and port addressing. A fresh set of MCQs, aligned with the 

same conceptual objectives, was administered immediately 

after the re-teaching. 

The average score in this follow-up assessment increased to 

81%, leading to a calculated normalized gain: 

𝑔 =
81 − 65

100 − 65
=
16

35
≈ 0.46 

A gain value of 0.46 corresponds to moderate conceptual 

improvement (as per Hake’s scale: low < 0.3, medium 0.3–0.7, 

high > 0.7). This demonstrates that instructional changes, 

informed by in-class error data, significantly improved student 

learning. This evidence supports the use of real-time error 

feedback as a catalyst for pedagogical refinement. 

F. Distractor Effectiveness 

The correct answers are an important indicator of 

understanding, analyzing the behavior of distractors (incorrect 

options) can provide crucial insights into both student thinking 

and question quality. A distractor is effective when it 

successfully attracts students who lack conceptual clarity, but is 

typically avoided by well-prepared students. This aligns with 

the pedagogical goal of using multiple-choice questions not just 

for grading, but as diagnostic tools. 

We analyzed distractor effectiveness by comparing the 

selection rates of wrong options among the top 27% (high 

performers) and bottom 27% (low performers) of the cohort. 

Table VI presents a representative sample of this analysis. 

TABLE VI 
DISTRACTOR EFFECTIVENESS IN SELECTED QUESTIONS 

Question Distractor 

(Wrong 

Option) 

% Low 

Performers 

Selecting 

% High 

Performers 

Selecting 

Effectiveness 

Q1 A 48% 8% High 

Q3 B 35% 20% Moderate 

Q4 C 40% 42% Poor 

Q8 D 30% 12% Moderate 

 

In Q1, the distractor A ("Application") was selected by nearly 

half of the low performers but was largely ignored by high 

performers. This indicates that the distractor is functioning 

well—it identifies conceptual confusion between the OSI and 

TCP/IP models. In contrast, Q4 presents a concern. The 

distractor C ("Reliable and connectionless") was chosen almost 

equally by both groups. This lack of discrimination, along with 

Q4's negative discrimination index reported earlier, suggests 

that the option may be misleading or the question poorly 

phrased. In such cases, the item should be reviewed and 

possibly rewritten for clarity. 

G. Error Persistence 

A critical measure of instructional success is whether 

previously identified misconceptions are resolved over time. To 

assess this, we tracked specific error patterns across multiple 

sessions and analyzed how students responded to similar 

concepts after intervention. This form of longitudinal error 

tracking, or error persistence analysis, helps in evaluating the 

depth and durability of conceptual change. We re-administered 

questions in later sessions following targeted re-teaching. Fig. 

3 summarizes the change in performance for selected 

misconceptions. 

These improvements clearly demonstrate that misconceptions 

identified via error analysis can be effectively remediated. For 

example, confusion between TCP and UDP functions was 

significantly reduced following analogies and visual 

explanations of reliable vs. unreliable protocols. Similarly, 

clarification around the OSI and TCP/IP layer mapping helped 

students overcome persistent structural misunderstandings. The 

post-intervention gains validate that the method not only detects 

conceptual gaps but also closes them when followed by 

deliberate, responsive instruction. 
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H. Discussion 

Learning analytics played a key role in this study by turning 

student answers into valuable insights for better teaching. After 

each class, the teacher used tools like Google Forms to collect 

multiple-choice answers from students. These responses were 

then analyzed using learning analytics techniques such as 

overall accuracy, topic-wise accuracy, difficulty index, 

discrimination index, and distractor analysis. These metrics 

helped the teacher understand not just which questions were 

difficult, but why students were making mistakes. For example, 

the discrimination index showed which questions were good at 

separating strong students from weak ones, and the distractor 

analysis revealed which wrong options were tricking confused 

students. This information helped the teacher identify common 

misconceptions and redesign the next lesson to directly target 

those issues. The use of analytics also allowed tracking 

improvement over time, showing that students scored better 

after re-teaching, especially in topics like the Transport Layer. 

Overall, learning analytics made the teaching process more 

data-driven, responsive, and effective. 

I. Limitations of this study 

a) The study focused on a single subject with 60 students. 

Broader application across subjects can further validate the 

method. Future work will expand the analysis across 

multiple courses, semesters, and institutions to enhance 

generalizability. 

b) The current approach relies on manual analysis by the 

teacher. To scale this benefit, integrating digital tools or 

semi-automated systems in the future could make the 

process more efficient while preserving its diagnostic 

value. 

c) Learning gains were measured shortly after intervention. 

Long-term impact remains a promising area for future 

exploration. 

CONCLUSION 

This study shows that in-class error analysis is a helpful and 

easy way to improve learning in engineering courses. Instead of 

just teaching and moving on, the teacher looks at where students 

are going wrong and uses that information to make the next 

class better. This makes learning more focused and personal for 

the students. With the help of learning analytics like accuracy 

rates, misconception patterns, and normalized learning gain, the 

teacher can clearly see what’s working and what needs to 

change. The method led to better understanding and fewer 

repeated mistakes, even in difficult topics. The best part is that 

it does not require any special tools, just careful observation and 

thoughtful planning by the teacher. This strategy not only helps 

students learn better but also encourages teachers to keep 

improving their teaching methods. In the future, this approach 

can be tried in other engineering subjects or expanded using 

simple digital tools. 

 Future Work 

This method can be applied to other engineering or technical 

subjects to test its effectiveness in different areas. Future work 

could also explore using simple digital tools to help teachers 

quickly identify common student errors. Additionally, training 

programs can be developed to help educators use this approach 

effectively in regular classroom teaching. 

APPENDIX 

A Sample Survey Questionnaire used is available at: 

https://tinyurl.com/2cwda2k9  
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