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Abstract—In engineering education, students often carry
misconceptions that stay hidden during regular classroom
teaching. These wrong ideas can stop them from fully
understanding new concepts. This paper presents a simple,
teacher-led method called in-class error analysis to help identify
and correct such misconceptions. The method was used in a
Computer Networks course, where students answered multiple-
choice questions (MCQs) after each lesson. The teacher studied the
wrong answers to find patterns of misunderstanding and then
adjusted the next class accordingly. Educational metrics like
accuracy, difficulty index, discrimination index, and normalized
learning gain were used to study student performance and the
impact of re-teaching. The results showed clear improvements,
especially in tricky topics like TCP vs UDP and OSI vs TCP/IP
layer mapping. By treating mistakes as useful feedback instead of
failures, this approach helps teachers improve their teaching and
support better student learning. It also works well without needing
any advanced technology, making it suitable for many classrooms.

Keywords—Error-analysis, Classroom teaching,
analytics, Misconception, Formative Assessment.
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[. INTRODUCTION

DAPTIVE teaching has emerged as a critical component

in modern engineering education, where diverse learner

backgrounds and varying levels of prior knowledge make
uniform instructional strategies less effective. The dynamic
nature of engineering subjects—particularly those involving
abstract concepts, complex problem-solving, and layered
prerequisite knowledge—demands teaching approaches that
can respond to student understanding in real time. Traditional
lecture-based instruction, though efficient for content delivery,
often overlooks the individual learning needs of students and
fails to promptly identify and address conceptual
misunderstandings.
One of the persistent challenges in undergraduate engineering
education is the presence of misconceptions that students carry
from earlier learning experiences or form during initial
exposure to mnew concepts. These misconceptions, if

uncorrected, can hinder deeper learning and cause long-term
difficulties in mastering more advanced topics. In standard
classroom settings, such errors often go undetected, especially
when students do not voluntarily express confusion or provide
incorrect answers due to a lack of confidence or fear of
judgment. Consequently, educators may proceed under the false
assumption that all students have understood the material,
leading to a widening gap between instruction and
comprehension. To address this issue, this study proposes a
teaching method centered on in-class error analysis. The
approach involves posing diagnostic or conceptual questions
during the lecture, actively engaging students to respond, and
closely observing the incorrect responses. Rather than
dismissing wrong answers, the instructor treats them as
valuable insights into student thinking. Each incorrect response
is analyzed to identify underlying causes—be it is a
fundamental misunderstanding, a misapplied concept, or a gap
in prerequisite knowledge. The insights gained from this
analysis are then used to reflectively plan the subsequent class
session, revisiting difficult topics, reinforcing key ideas, or
modifying the instructional sequence to address observed
learning gaps.

This method transforms student mistakes from being merely
signs of failure into meaningful data points for instructional
refinement. By continuously adapting lessons based on real-
time feedback derived from student errors, educators can create
a more responsive and personalized learning environment.

The objective of this paper is to evaluate the effectiveness of
this teaching method in improving classroom instruction and
student learning outcomes. The study focuses on the practical
implementation of in-class error analysis in an undergraduate
engineering course, examining the types of errors encountered,
how these informed instructional changes, and the impact of
this reflective practice on student engagement and conceptual
understanding. This study is guided by the following research
questions:

RQ1: What types of misconceptions are most common in
foundational networking concepts?

RQ2: How effectively does reflective error analysis improve
conceptual understanding, based on metrics such as difficulty
index, discrimination index, and normalized learning gain?
RQ3: Can clusters of student errors reveal deeper conceptual
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gaps?

II. RELATED WORK

Many studies have highlighted the importance of using student
responses — especially wrong ones — to improve teaching.
This approach is part of what’s called formative assessment,
where teachers use feedback during the lesson to make teaching
more effective. The foundational work by (Black & Wiliam,
1998) showed that when teachers adjust instruction based on
student understanding, learning improves.

A key part of formative assessment is examining student
mistakes. (Shute, 2008) emphasized that feedback should not
only give correct answers but also help students understand why
their thinking was wrong. (Chi, 2005) argued that when
students hold strong but incorrect Dbeliefs (called
misconceptions), they need targeted teaching to change those
ideas.

Research consistently shows that examining student errors—
rather than just correct answers—can make teaching more
effective. This idea fits under the umbrella of formative
assessment, where instructors adapt teaching based on ongoing
feedback. A comprehensive study by (Qadir et al., 2020)
demonstrated how formative assessment and feedback in
engineering classrooms helps both students and teachers focus
on misunderstandings as they occur. In engineering
mathematics(Sikurajapathi et al., 2020) used assessment, where
student input was analyzed to detect common mathematical
misconceptions. Their system then provided tailored feedback
to address those errors promptly. In  science
education(Lichtenberger et al., 2025) conducted a controlled
intervention in physics. They used concept questions during
classes to surface and correct misconceptions, resulting in
improved conceptual understanding compared to traditional
instruction.

(Roselli & Brophy, 2006) highlighted the effectiveness of
immediate, in-class  polling  systems (Classroom
Communication Systems) for identifying misconceptions. They
found significant improvement in student retention when
instructors responded right away to incorrect student answers.
(Escalante, 2021) analyzed responses from hundreds of
engineering students on the Force Concept Inventory to identify
persistent Newtonian misconceptions. Although not directly
linked to real-time classroom error analysis, it underscores how
common and entrenched student misconceptions are in
engineering education. Together, these studies support the idea
that actively seeking out and addressing misconceptions can
improve student learning. However, most work either relies on
digital tools (e-assessments, polling clickers) or large-scale
testing instruments. There is surprisingly little research on a
simple, human-driven method where instructors collect wrong
verbal answers during class, reflect on them, and modify the
next lesson accordingly.

In recent years, the integration of learning analytics (LA) into
teaching practices has proven highly effective in identifying
misconceptions and guiding adaptive instruction. (Elmoazen et
al., 2023) demonstrated how error tracking and formative
feedback in virtual engineering labs led to clearer concept
retention and faster correction of student misunderstandings.
Similarly, in a study focused on reducing conceptual learning

gaps, Mitigating Conceptual Learning Gaps (Naseer &
Khawaja, 2025) reported that students who received analytics-
informed feedback showed up to a 28% increase in
understanding over those who did not receive targeted
interventions.

(Kohnke et al., 2022) emphasized the importance of combining
formative assessment with LA to predict student performance
and recommend real-time pedagogical actions, which aligns
closely with the current study’s use of multiple-choice
questions and distractor effectiveness metrics. (Sajja et al.,
2023) further contributed by using Al-enhanced analytics to
identify confusion patterns and adapt teaching in real-time—a
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Fig. 1. Instructional Cycle for In-Class Error Analysis-Based Teaching

Methodology
technique that mirrors the human-led classroom reflection cycle
used in this work. Moreover, (Romero & Ventura, 2020)
outlined a comprehensive review of educational data mining
and LA techniques, reinforcing the role of metrics like
normalized learning gain, discrimination index, and item
difficulty in enhancing instruction across STEM disciplines.
These contemporary studies support the present paper’s claim
that real-time error analysis, when combined with robust
analytics, serves as a powerful low-tech strategy to improve
conceptual understanding in engineering education

Theoretical Foundations of the Error-Analysis Approach:

The use of error analysis in the classroom is strongly supported
by contemporary research in metacognition and reflective
learning. Recent studies show that when learners are
encouraged to think about w/y they made an error, they develop
stronger metacognitive awareness and deeper conceptual
understanding. For example, Del Valle (2025) found that
students in  constructivist, reflection-based learning
environments demonstrated significantly higher academic
success and stronger metacognitive regulation. Similarly,
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reflective and metacognitive interventions in design and
engineering-related courses have been shown to improve
students’ awareness of their thinking processes and enhance
overall performance (Ahmed & Hilal, 2025).

These findings reinforce the idea that learning becomes more
meaningful when students actively analyze and reconstruct
their understanding rather than passively receiving information.
By prompting learners to revisit their misconceptions and
compare them with correct reasoning, our error-analysis
approach aligns with this modern, learner-centered pedagogical
perspective. Furthermore, recent large-scale work on
metacognition confirms that students who monitor and reflect
on their learning are more engaged and demonstrate better long-
term retention (Zhang et al., 2024). Thus, the mechanism
underlying our approach is grounded in strong theoretical and
empirical support from contemporary education research.

III. METHODOLOGY

The process begins with the teacher delivering a topic from the
Computer Networks curriculum. This can be through lectures,
presentations, whiteboard discussions, or demonstrations. The
objective is to cover the concept clearly and thoroughly so that
all students have a fair chance of understanding the topic. After
the topic delivery, the teacher engages students through oral
questioning or live polls to check immediate understanding.
This helps break the monotony and encourages attentiveness.
Students respond verbally or by raising hands, and this quick
check gives the teacher a sense of the class's grasp of the
concept. The next step is to post 10 well-designed MCQ
questions related to the topic. These questions are hosted
digitally (via Google Forms). Each student submits their
answers. The aim is to capture individual understanding
anonymously and objectively. The system collects 60
responses, 600 sample answers per session, giving a clear
picture of student comprehension. The data includes
right/wrong answers, option choices, and timestamps. Once the
responses are in, error analysis is performed. The incorrect
responses are examined for patterns — for example, are many
students choosing the same wrong option? This might indicate
a common misconception or a tricky distractor. Metrics like
difficulty index, discrimination index, and option effectiveness
are calculated. Based on the analysis, common student errors
are grouped into misconception clusters. These clusters help the
teacher understand why the errors occurred — e.g., conceptual
confusion, misreading the question, or flawed logic. Clustering
may also identify specific students who consistently show
similar misunderstandings.

To understand the nature of students’ errors more meaningfully,
we categorized the misconceptions observed in their responses
into four broad groups. This helped us interpret the patterns
behind incorrect choices rather than treating them as isolated
mistakes.

1. Terminology-based misconceptions These occurred
when  students misunderstood or confused
fundamental definitions, such as the roles of OSI
layers or basic networking terms.

2. Conceptual-process misconceptions These reflected
gaps in understanding how a process unfolds, for

example in connection establishment, flow control, or
data transfer sequences.

3. Application-level misconceptions These appeared
when students struggled to apply conceptual
knowledge to situational or scenario-based questions,
often leading to incorrect reasoning about what a
protocol would do in each context.

4. Distractor-driven misconceptions These arose when
students consistently selected distractors that seemed
intuitively correct but were based on common
misunderstandings. The patterns in these choices
revealed deeper misconceptions that were not
immediately visible through scores alone.

By organizing misconceptions in this way, we were able to
provide targeted feedback during classroom discussions and
address not just what students got wrong, but why they were
thinking in that direction. This structured approach made the
error-analysis exercise more actionable and pedagogically
meaningful.

The teacher then designs the targeted interventions such as:

1. Clarifying concepts in the next class

2. Revisiting foundational topics

3. Providing analogies or visual aids

4. Assigning personalized remedial work

Ethical Considerations: The study was carried out in alignment
with the institution’s ethical guidelines throughout the process
of data collection and analysis. Students participated
voluntarily, and their privacy was carefully protected by
assigning unique anonymized codes known only to them. No
marks, grades, or academic rewards were tied to their
responses, ensuring that they could answer freely without any
performance-related pressure.

Since the activity formed part of regular classroom practice
aimed at improving teaching and learning, it qualified for an
exemption from formal institutional review. All collected data
were used solely for educational improvement and research
purposes and were handled responsibly to maintain
confidentiality and uphold ethical standards.

IV. LEARNING ANALYTICS FOR CONCEPTUAL IMPROVEMENT

To assess student understanding and improve instruction in a
Computer Networks class, we implemented a real-time error
analysis framework using 10 multiple-choice questions
(MCQs) based on the TCP/IP protocol suite (for Questionnaire
visit the link given in APPENDIX). These questions were
administered to 60 students, and their 600 responses were
analyzed using key educational metrics. This classroom-driven
analysis provides targeted feedback, highlights learning gaps,
and supports evidence-based teaching improvement.

Overall Accuracy

Overall accuracy (from Eq.1) measures the fraction of correct
answers across all questions and all students.
z:§V=1 Z;-z:l Correct ;5

Overall Accuracy = o

(1)

127 JEET



Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

Where, N = Number of students (60), Q = Number of questions
(10) and Correct;=1 if student i's answer to question j is correct,
else 0.

TABLE
OVERALL ACCURACY
Metric Value
Overall Accuracy 71.83%

The overall accuracy of the class was found to be 71.83%
(shown in table I), which means that, on average, students
answered about 7 out of 10 questions correctly. This indicates
a moderate level of understanding of the TCP/IP protocol
concepts among the students. While the average performance is
acceptable, it also suggests there is room for improvement.
Ideally, a well-learned concept should lead to accuracy above
80%. Therefore, this number serves as a baseline for deciding
whether to adjust the teaching strategy or reinforce certain
topics.

Topic-wise Accuracy

Topic-wise accuracy calculates (from Eq.2) the average
correctness for questions belonging to the same topic.

N
Yiz1 Zje—pk Correct
NX|T|

Topic Accuracy |, = 2)

Where, T,= Set of question indices for topic k and |Tj|=
Number of questions in topic k. The topic-wise accuracy metric
breaks down the student performance according to specific
subtopics like TCP/IP model, Transport layer, Internet layer,
and Application layer. As shown in table II, if the Transport
layer questions had an average accuracy of 68%, while the
Internet layer had 75%, it suggests that students are more
comfortable with the Internet layer concepts.

TABLE II
TOPIC-WISE ACCURACY
Topic Accuracy (%)
TCP/IP Model 72
Transport 68
Internet 75
Application 70

On the other hand, lower scores in the Transport layer could
mean students are unclear about topics like TCP vs. UDP or
port addressing. This type of analysis helps pinpoint weak
areas, so instructors can plan targeted revision sessions or
explanatory examples for those specific topics.

Difficulty Index (Per Question)

The difficulty index (from Eq.3) measures the proportion of
students who answered a question correctly (Jaleel, 2012).

N orrect i
Difficulty Index ; = # ?3)
Table III shows the obtained difficulty index. The difficulty
index tells us how easy or hard each question was for the
students. For instance, Q6 and Q8 had high scores (above 80%),

meaning most students got this right. These questions were
considered easy. In contrast, Q1 and Q2 had scores closer to
65%, suggesting they were moderately difficult. This kind of
analysis is useful because it tells instructors which questions
challenged students the most and might represent concepts that
need to be re-explained. Importantly, none of the questions had
very low scores (e.g., below 40%), which means that the test
design was reasonably balanced.

TABLE III
DIFFICULTY INDEX (PER QUESTION)

Question Difficulty Index Interpretation

Ql 65.00% Moderate difficulty
Q2 66.67% Moderate difficulty
Q3 78.33% Easy

Q4 66.67% Moderate difficulty
Q5 73.33% Moderate difficulty
Q6 81.67% Easy

Q7 66.67% Moderate difficulty
Q8 80.00% Easy

Q9 68.33% Moderate difficulty
Q10 71.67% Moderate difficulty

Discrimination Index (Per Question)

The discrimination index (from Eq.4) measures how well a
question differentiates between high-performing and low-
performing students (Jaleel, 2012).

Discrimination Index j = Py, j — Pootiom ,j 4

Where, Py, ;= Proportion of correct answers in the top 27% of
students for question j and Py ,; = Proportion of correct
answers in the bottom 27% of students for question j.

TABLE [V
MosT COMMON MISCONCEPTIONS (PER QUESTION)
Question  Correct Most Common Insight
Answer  Wrong Answer

Students confuse the correct

Ql c A layer or protocol

Q2 B D Misunderstanding of transport
layer responsibilities
Confusion between TCP and

Q3 D B UDP
IP addressing or routing

Q4 b ¢ concepts unclear

Qs C B Internet layer protocols
mixing

Discrimination Index per Question

Interpretation
= Foor

= Fair

0.5 Moderate
E Good
. Excellent

Discrimination Index

Q1 a2 a o4 Q5 Q6 a7 Q8 5} Qlo
Question

Fig. 2. Discrimination Index (Per Question)
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Network addressing
Q6 B A misconceptions
Application layer roles
Q7 B ¢ misunderstood
UDP vs TCP distinctions
Q8 B b unclear
Q9 B A Email protocol confusion
Q10 D A TCP/IP model layers not well

differentiated

The discrimination index (shown in figure 2) is a very important
metric for evaluating the quality of the question itself. It tells us
how well a question distinguishes between strong and weak
students. A higher positive value (e.g., 0.56 for Q9 and Q10)
means that high-performing students consistently got it right,
and low-performing students got it wrong, which is ideal.
However, Q4 had a negative value, which is a red flag. This
suggests that low-scoring students got Q4 right more often than
high-scoring students, possibly due to guessing, poor question
phrasing, or a misunderstanding. Questions like Q4 should be
reviewed and possibly rewritten or removed in future tests.
The table IV looks at the most frequent wrong answer chosen
for each question. For example, for Q1, the correct answer was
C, but many students chose A. This implies that students have
a specific misunderstanding, not just a random error. These
kinds of patterns help instructors understand exactly what
students are confusing. For instance, if a majority selected “A”

thinking it was the correct layer in the TCP/IP model, that tells
the teacher where the misconception lies and allows them to
clarify that specific point in the next class. This form of analysis
goes beyond just right or wrong and gets into the reason behind
the wrong answers, making it highly useful for instructional
improvement. A detailed analysis is given in table V. Following
the detailed analysis of misconceptions (as shown in Tables IV
and 5), we carefully planned targeted instructional interventions
aimed at correcting these specific misunderstandings. Rather
than repeating the same content, the focus was on conceptual
clarification, alternative  representations, and active
engagement strategies that directly addressed the root causes of
the errors. Once the misconception clusters were identified
from the MCQ responses, each was reviewed to determine:

1. Whether the confusion was terminological, structural,
or functional
2. What prior knowledge was missing or misapplied

3. Whether the error was widespread (high-frequency
wrong choice) or isolated

These interventions were implemented during the next class
session, typically within 1 or 2 days of the error analysis. This
timing ensured that:

TABLE V

DETAILED ANALYSIS OF THE MOST COMMON MISCONCEPTIONS

Many students mistakenly selected A (Application), perhaps due to confusion with the OSI model. The
TCP/IP model merges the session, presentation, and application layers into a single application layer,
whereas the OSI model treats them separately. Students may not have internalized this abstraction, leading

The choice of D (Addressing packets with IP addresses) suggests confusion between transport and network
layers. IP addressing is the responsibility of the Internet layer, not transport. Students selecting D likely
equate "data delivery" with "addressing," showing a partial understanding of protocol responsibilities.
Selecting B (ICMP) indicates confusion between control and transport protocols. ICMP is used for
diagnostics and error messages, not for data transport. The confusion may stem from the misconception
that ICMP somehow establishes connections because it's involved in “testing” (e.g., ping).

Students choosing C (Reliable and connectionless) misunderstand what "reliability" means in networking.
IP is connectionless and does not guarantee delivery, which is the job of TCP. The confusion here may arise

Selecting B (Transport layer) shows confusion about the layer responsibilities. The transport layer uses
port numbers for addressing within a host, not between hosts. Logical IP addressing is solely handled by
the Internet layer. This suggests a mix-up between host-level and network-level addressing.

Students choosing A (FTP) may be categorizing protocols based on familiarity, not layer responsibility.
FTP is an application layer protocol and operates on top of TCP/IP. The error suggests the need to reinforce

C (HTTP) is a web application protocol and doesn't resolve domain names. Students may wrongly associate
HTTP with DNS because both involve the internet. The misconception may stem from observing domain
names in browser URLs and assuming HTTP handles that directly.

Choosing D (TCP does not use port numbers) is technically incorrect, as both TCP and UDP use ports. The
error reveals a lack of clarity in understanding how transport protocols identify applications. Students likely
confuse TCP’s features (reliability, handshaking) with addressing mechanisms.

A (FTP) is commonly known for transferring files, and students may incorrectly associate file attachments
with FTP instead of SMTP. The confusion may also be due to SMTP being less familiar or not clearly

Students choosing A (Network Layer) might be mapping OSI layer concepts directly onto the TCP/IP
model. In the TCP/IP model, data link and physical layers are collapsed into the Network Access Layer,

Q# Correct Answer Most  Common  Technical Interpretation
Wrong Answer
C (Session is not in
Q TCP/IP model) A
to confusion.
B (Transport layer
Q2 provides reliable D
delivery)
D (TCPis
Q3 connection- B
oriented)
o Do
from assuming IP being widely used means it must be reliable.
C (Internet layer
Q5 handles logical B
addressing)
Q6 B (IP protocol is in A
Internet layer) .
the protocol stack layering.
Q7 B (DNS resolves c
domain names)
B (TCP provides
Q8 €ITOT recovery, D
UDP does not)
Qo eB HE::]\;[TP sends A
distinguished from POP/IMAP in instruction.
D (Network Access
Q10 = Data Link + A
Physical)

not the Network Layer. This reveals confusion in layer mapping between the two models.
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1. The misconceptions were still cognitively active in
students’ minds

2. The intervention could serve as an
conceptual correction

Each intervention session included:
1. A brief recap of the key concept

2. A corrective explanation using the new representation
3. A follow-up example or MCQ to apply the corrected
understanding

immediate

V. EVALUATING INSTRUCTIONAL IMPACT

To further substantiate the instructional value of the in-class
error analysis approach, we extended our investigation to
include additional learning analytics. These metrics provide
richer insights into student progress, question design quality,
and the effectiveness of targeted interventions. Specifically, we
examined three key dimensions: Normalized Learning Gain,
Distractor Effectiveness, and Error Persistence. These analytics
collectively enhance the robustness of our methodology by
moving beyond performance snapshots to a more dynamic
understanding of how learning evolves over time.

E. Normalized Learning Gain

The overall and topic-wise accuracy provide a static view of
student performance; Normalized Learning Gain (from Eq.5)
offers a dynamic measure of how much -conceptual
understanding has improved because of instructional
intervention. This metric is particularly effective in quantifying
the impact of re-teaching strategies that were informed by prior
error analysis.

The gain is calculated using Hake’s normalized formula:

__ Post-test Score — Pre-test Score
100— Pre-test Score

(&)

In our study, the Transport Layer was identified as a relatively
weak area, with an average accuracy of 68% during the initial
assessment. Based on the detailed misconception analysis
(Table VII), a follow-up session was designed with emphasis
on clarifying distinctions between TCP and UDP, reliability,
and port addressing. A fresh set of MCQs, aligned with the
same conceptual objectives, was administered immediately
after the re-teaching.

The average score in this follow-up assessment increased to
81%, leading to a calculated normalized gain:

_81-65 16 _
9=To0—65 35 0
A gain value of 0.46 corresponds to moderate conceptual
improvement (as per Hake’s scale: low < 0.3, medium 0.3-0.7,
high > 0.7). This demonstrates that instructional changes,
informed by in-class error data, significantly improved student
learning. This evidence supports the use of real-time error
feedback as a catalyst for pedagogical refinement.

F. Distractor Effectiveness

The correct answers are an important indicator of
understanding, analyzing the behavior of distractors (incorrect
options) can provide crucial insights into both student thinking
and question quality. A distractor is effective when it
successfully attracts students who lack conceptual clarity, but is
typically avoided by well-prepared students. This aligns with
the pedagogical goal of using multiple-choice questions not just
for grading, but as diagnostic tools.

We analyzed distractor effectiveness by comparing the
selection rates of wrong options among the top 27% (high
performers) and bottom 27% (low performers) of the cohort.
Table VI presents a representative sample of this analysis.

TABLE VI
DISTRACTOR EFFECTIVENESS IN SELECTED QUESTIONS

Question  Distractor % Low % High Effectiveness

(Wrong Performers Performers

Option) Selecting Selecting
Q1 A 48% 8% High
Q3 B 35% 20% Moderate
Q4 C 40% 42% Poor
Q8 D 30% 12% Moderate

In QI, the distractor A ("Application") was selected by nearly
half of the low performers but was largely ignored by high
performers. This indicates that the distractor is functioning
well—it identifies conceptual confusion between the OSI and
TCP/IP models. In contrast, Q4 presents a concern. The
distractor C ("Reliable and connectionless") was chosen almost
equally by both groups. This lack of discrimination, along with
Q4's negative discrimination index reported earlier, suggests
that the option may be misleading or the question poorly
phrased. In such cases, the item should be reviewed and
possibly rewritten for clarity.

G.Error Persistence

A critical measure of instructional success is whether
previously identified misconceptions are resolved over time. To
assess this, we tracked specific error patterns across multiple
sessions and analyzed how students responded to similar
concepts after intervention. This form of longitudinal error
tracking, or error persistence analysis, helps in evaluating the
depth and durability of conceptual change. We re-administered
questions in later sessions following targeted re-teaching. Fig.
3 summarizes the change in performance for selected
misconceptions.

These improvements clearly demonstrate that misconceptions
identified via error analysis can be effectively remediated. For
example, confusion between TCP and UDP functions was
significantly reduced following analogies and visual
explanations of reliable vs. unreliable protocols. Similarly,
clarification around the OSI and TCP/IP layer mapping helped
students overcome persistent structural misunderstandings. The
post-intervention gains validate that the method not only detects
conceptual gaps but also closes them when followed by
deliberate, responsive instruction.
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H.Discussion

Learning analytics played a key role in this study by turning
student answers into valuable insights for better teaching. After
each class, the teacher used tools like Google Forms to collect
multiple-choice answers from students. These responses were
then analyzed using learning analytics techniques such as
overall accuracy, topic-wise accuracy, difficulty index,
discrimination index, and distractor analysis. These metrics
helped the teacher understand not just which questions were
difficult, but why students were making mistakes. For example,
the discrimination index showed which questions were good at
separating strong students from weak ones, and the distractor
analysis revealed which wrong options were tricking confused
students. This information helped the teacher identify common
misconceptions and redesign the next lesson to directly target
those issues. The use of analytics also allowed tracking
improvement over time, showing that students scored better
after re-teaching, especially in topics like the Transport Layer.
Overall, learning analytics made the teaching process more
data-driven, responsive, and effective.

L Limitations of this study

a) The study focused on a single subject with 60 students.
Broader application across subjects can further validate the
method. Future work will expand the analysis across
multiple courses, semesters, and institutions to enhance
generalizability.

b)The current approach relies on manual analysis by the
teacher. To scale this benefit, integrating digital tools or
semi-automated systems in the future could make the
process more efficient while preserving its diagnostic
value.

c)Learning gains were measured shortly after intervention.
Long-term impact remains a promising area for future
exploration.

CONCLUSION

This study shows that in-class error analysis is a helpful and
easy way to improve learning in engineering courses. Instead of
just teaching and moving on, the teacher looks at where students
are going wrong and uses that information to make the next
class better. This makes learning more focused and personal for
the students. With the help of learning analytics like accuracy
rates, misconception patterns, and normalized learning gain, the
teacher can clearly see what’s working and what needs to
change. The method led to better understanding and fewer
repeated mistakes, even in difficult topics. The best part is that
it does not require any special tools, just careful observation and
thoughtful planning by the teacher. This strategy not only helps
students learn better but also encourages teachers to keep
improving their teaching methods. In the future, this approach
can be tried in other engineering subjects or expanded using
simple digital tools.

Future Work

This method can be applied to other engineering or technical
subjects to test its effectiveness in different areas. Future work
could also explore using simple digital tools to help teachers
quickly identify common student errors. Additionally, training

programs can be developed to help educators use this approach
effectively in regular classroom teaching.

APPENDIX

A Sample Survey Questionnaire used is available at:
https://tinyurl.com/2cwda2k9
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