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Abstract— This research examined the effectiveness of an AI-

enhanced tutoring system on teaching stochastic and deterministic 

algorithms by using QuickSelect and the Median-of-Medians 

method as our primary samples. A total of 60 college students were 

randomly assigned to either a control group, which did their 

assignments on paper, and an experimental group, which had access 

to an interactive computer-based tutoring system that included 

stepwise assistance, categorization of errors, and immediate 

feedback. Both groups completed assignments to learn how to select 

good pivots, what constitutes the average and worst case time 

complexity, and how to select the best pivot in a deterministic 

algorithm. The results revealed that the AI group achieved greater 

improvements in their ability to complete the assignments than did 

the control group with less variance in performance and significantly 

greater ability to resolve conceptual errors than did the control 

group. Student participants in the study reported that their 

experience using the AI tools improved their understanding of how 

to choose good pivots, they were aided in developing recursive 

thinking processes, and the abstract nature of time complexity made 

it easier to grasp. The overall findings of the study suggest that AI-

enabled tutoring provides a solid foundation for improving students' 

comprehension of stochastic QuickSelect and its deterministic no-

throw method. 

 

Keywords—Computational complexity; Derandomization; 

Intelligent tutoring systems; Real-time feedback; Student learning 
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I. INTRODUCTION 

ne of the toughest problems for students studying 

Computer Science is to deal with the study of the 

computational complexity of randomised computations and 

their deterministically implemented counterparts. Students 

often have difficulty with the abstractness of randomised 

computations through many concepts that involve the use of 

pseudorandom generators (PRGs), classes of complexity 

defined in terms of Probability Based Complexity Classes, and 

the rationale behind derandomizing an algorithm. The 

understanding of how to derandomize an algorithm involves the 

integration of probabilistic reasoning, the asymptotic analysis 

of algorithms, and the proof construction processes. Students 

must learn to translate their knowledge of definitions and 

theorems into practical terms to develop their reasoning 

capabilities. Students need to learn to develop a 

'multidimensional' understanding through the construction of 

'multiple' types of representations - probabilistic spaces, 

circuits, and algorithm steps, and link those representations to 

their logical reasoning. The complexity of these requirements 

makes this topic very challenging for most students in a 
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classroom setting. Lecturing and solving problems without the 

use of textbooks has long been the primary instructional 

approach for traditional instruction. While the lecture and 

textbook method certainly demonstrated sufficient theoretical 

foundations, there was also a significant limitation in the degree 

to which the learner was provided with an opportunity to 

validate or receive immediate explanation for the point of 

failure in their reasoning process. Many times, learners have 

difficulty understanding how to replace random choices in any 

algorithm with a deterministic approach while retaining both 

correctness and efficiency. As the learner continues to have 

misconceptions, the problems only increase as they reach later 

topics such as BPP⊆P or RL⊆SC. The need for precise 

unpacking of complicated probabilistic reasoning is critical to a 

successful outcome in the student learning experience. When 

learners do not receive timely feedback regarding, or an 

individualized method of supporting their understanding of, 

these included learning points, their errors in understanding 

may remain unresolved well after the related lesson has been 

completed. Moreover, educational technology has increased its 

pace of development as it relates to teaching areas such as 

computer programming languages, mathematics through 

interactive practice, and structured problem-solving skills. 

Current Intelligent Tutoring Systems (ITS) offer some level of 

customization with adaptive hints and feedback; as well as 

being able to track student struggles on a detailed level. ITS 

systems have proven to be successful at enhancing academic 

achievement through students' ability to work at their own pace. 

However, application of ITS systems within the fields of 

abstract thinking such as theoretical computer science, logic, 

and reasoning via proofs still have a very limited application. 

Many existing ITS platforms focus on guided learning 

involving a specific order of computational activities while they 

do not incorporate the use of deductive or inductive reasoning 

that develops in an abstract manner (e.g., derandomisation). 

The inability of current ITS to develop this type of reasoning 

serves as both a barrier and a potential catalyst for the 

development of ITS that can accommodate proof-based 

reasoning and thereby reduce the cognitive load for students 

enrolled in theoretical courses. The challenge we face can be 

more easily understood with cognitive load theory. The intrinsic 

cognitive load of derandomization problems is particularly high 

because they require students to consider complex relationships 

between several concepts. Oftentimes, students expend 

unnecessary mental effort trying to remember various aspects 

of their work such as the format of proof, notation, or 

definitions instead of focusing on the conceptually complex 

ideas underneath (i.e., students often become distracted by the 

insignificant details of their work). Students may benefit from 

real-time guidance, prompts, and hints to help reduce the 

extraneous cognitive load and focus on the core relationships 

(i.e., how randomness is simulated, how hardness assumptions 

yield pseudorandomness). An AI tutoring system can provide 

the much-needed scaffolding to assist students with their 

immediate reasoning and help them connect their thoughts, 

creating a much different learning environment than what is 

typically provided in large or fast-paced classrooms. 

In this research, an AI-enhanced tutoring system has been 

designed and tested, which provides derandomization learning 

assistance through adaptive hints, identifies students' error 

patterns conceptually and structurally, and provides feedback 

tailored to students' current level of reasoning. Rather than 

replacing face-to-face instruction, the purpose of this system is 

to provide individualized real-time help in addition to 

conventional instruction. By integrating both automated 

feedback and teacher feedback we hope to assist students in 

creating a more complete mental picture of how PRGs are 

constructed, how PRGs are used in probabilistic classes, and 

how to create deterministic simulations of randomized 

algorithms. 

The goal of this quasi-experimental research was to assess 

the effectiveness of both traditional and artificial intelligence 

(AI) based teaching methods. As part of the educational impact 

of this new technology, we looked for measurable 

improvements in three areas: (i) students’ understanding of the 

concept of derandomization; (ii) the manner in which students 

use real-time feedback to correct errors; and (iii) the way in 

which students engage with their assignments while using the 

AI automated tutoring system. In addition, the study sought to 

answer four questions: 

1. Does the use of AI-enhanced tutoring lead to improved 

understanding of derandomization. 

2. What impact does real-time feedback have on the ability of 

students to correct conceptual and structural errors. 

3. What are the different trends in student learning curves and 

engagement with the AI tutoring system. 

4. How do differences in task completion time and accuracy 

correlate with the use of the AI automated tutoring system for 

various types of derandomization. 

By answering each of these research questions, we anticipate 

contributing to the field of theoretical computer science as well 

as contributing to the conversation about how new 

technologies, particularly AI-based technologies, can improve 

education in all areas of science, technology, engineering and 

mathematics (STEM). In addition, the results of this study will 

provide useful information for creating and sustaining scalable 

systems for providing assistance to students in courses that have 

historically relied on instructor-centric methods of teaching and 

supporting students via office hours. 

II. LITERATURE REVIEW 

Automated feedback from Intelligent Tutoring Systems (ITS) 

has been studied for over the last thirty years, and many 

researchers agree that good quality feedback can increase the 

learning of students. A frequently referenced study is Kulik and 

Fletcher (2016) that showed, for many STEM disciplines, that 

students using ITS achieved almost equivalent level of learning 

to those tutored by humans. The authors of that work 

emphasized the usefulness of providing individualized support 

to students who frequently create long lasting misconceptions 

in their learning. More recently, Kim et al. (2020) evaluated the 

use of ITS in K-12 education, finding that those ITS that 

provide feedback based on context and time are significantly 
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better at increasing student learning than those systems that 

provide static and/or generic feedback. While they studied 

younger learners, their results suggest that students in higher 

education also gain from receiving feedback at the precise 

moment that they do not understand the material. In theoretical 

computer science, students may misunderstand the material or 

miss a critical step in the intermediate reasoning process (step 

to the final answer); therefore, providing such feedback in a 

timely way is of great use.  A number of traditional intelligent 

tutoring systems (ITS) have demonstrated the potential for 

utilizing user feedback and error analysis in shaping user 

learning. For example, SQL-Tutor, a constraint-based tutor for 

constructing SQL database queries developed by Mitrovic 

(1998), has shown that pinpointing the specific rule that users 

violated reduces the amount of cognitive load placed on users, 

while also making them more accurate. Similarly, Johnson & 

Soloway (1985) have shown through their work on PROUST 

that diagnosing structural errors in the student's program, as 

opposed to just syntactic errors, can impact how learners deal 

with this type of open-ended task. The Cognitive Tutor 

developed by Koedinger, et al. (1997) has also provided 

empirical evidence to suggest that providing students with step-

by-step guidance and worked examples is beneficial in terms of 

promoting procedural fluency and long-term retention of the 

skills required to solve procedural problems. Most of the 

research that has been conducted thus far has focused on 

structured subject areas such as mathematics, introductory 

programming and database query construction. However, 

increasing evidence indicates that there is also potential for 

adaptivity in more abstract conceptual domains. For instance, 

Castleman, Macar & Salleb-Aouissi (2024) have demonstrated 

that using hierarchical multi-armed bandit algorithms to 

sequence concepts and adaptively create unique paths for each 

student can support learners as they pass through the topics of 

their respective curricular areas that have varying degrees of 

difficulty. Conversely, Karnalim, Hermansyah & Rahayu 

(2017) have developed Complexitor, a tool designed to help 

students visualize time complexity of algorithms. Their 

evaluation of Complexitor has clearly demonstrated that 

students typically require examples and visual representations 

to help them conceptualize abstract concepts. 

 

1) Limitations of Existing ITS for Theoretical Computer 

Science 

Although the development of intelligent tutoring systems has 

progressed, there is presently little application of intelligent 

tutoring systems to theoretical computer science; examples of 

existing developed intelligent tutoring systems usually address 

those areas in which students have a set of clearly defined, 

discrete steps that in each instance correspond to an 

unambiguous way of checking students' answers based on 

either the procedure or the rules to follow or checking students' 

answers against some standard output such as a numerical value 

associated with that answer. Derandomization, on the other 

hand, requires multiple steps in an argument (i.e., a proof), 

probabilistic reasoning, and conceptual reasoning that does not 

follow a clearly defined, step-by-step algorithm. Errors 

stemming from either failure to provide appropriate 

justification for a step within a multi-step proof or 

misrepresentation of the significance of randomness are far 

more difficult to detect using traditional techniques for deriving 

constraints on students' problem solving or model analysis than 

for developing a new intelligent tutoring system for teaching 

proof-related topics in complexity theory. Consequently, whilst 

there is some existing research on developing intelligent 

tutoring systems that support proof-related work in complexity 

theory, there are virtually no intelligent tutoring systems that 

provide structured feedback for problem-solving tasks, such as 

the construction of pseudo-random number generators, 

inclusion proofs, and so on. 

   The existing gap in research on the development of more 

intelligent tutoring systems capable of interpreting, rather than 

simply evaluating, the students' reasoning is the impetus for this 

exploration of how to create and employ an adaptive, automated 

feedback mechanism for teaching derandomization, where 

there are severe cognitive demands on the student and relatively 

little access to individualized guidance. 

2) Comparative Overview of Prior ITS Studies 

Table I provides an overview of selected ITS research studies 

grouped by domain, design characteristics, and main findings. 

The data show that while previous ITS have advanced 

significantly in both adaptive capabilities and error detection, 

they generally do not include proof-based reasoning similar to 

that found in derandomization methods. 

 
TABLE I 

SELECTED STUDIES AND THEIR IMPLICATIONS FOR THE PRESENT WORKS 

Study 
Domai

n 

Key Design 

Features 
 

Principal 

Findings 

Connection to 

This Study 

Kulik & 

Fletcher 

(2016) 

Mixed 

STEM 

Individualiz
ed tutoring, 

mastery 

learning 

ITS can match 

human tutors in 

many contexts 

Supports use 
of targeted, 

personalized 

feedback 

Kim et al. 

(2022) 

K–12 

STEM 

Immediate, 
contextualiz

ed feedback 

Timely feedback 
increases 

comprehension 

Reinforces 

importance of 

real-time 
correction 

Mitrovic 

(1998) 

Databa

ses 

Constraint-
based 

modeling 

Effective at 

diagnosing 

conceptual rule 
violations 

Informs error-

classification 
design in 

conceptual 

domains 

Johnson & 

Soloway 

(1985) 

Progra

mming 

design 

Structural 

error 

diagnosis 

Helps students 
correct 

reasoning 

patterns, not just 
syntax 

Relevant to 
identifying 

proof-

structure 
errors 

Koedinger 

et al. 

(1997) 

Mathe
matics 

Cognitive 

modeling, 
worked 

examples 

Improves long-

term problem-

solving ability 

Motivates use 

of stepwise 
hints and 

scaffolding 

Karnalim 

et al. 

(2017) 

Algorit
hms 

Visual 

interactive 

feedback 

Enhances 

intuition for 
abstract 

concepts 

Shows value 
of dynamic 

support for 

complex 
reasoning 

Castleman 
et al. 

(2024) 

AI in 
educati

on 

Adaptive 

sequencing 

via MAB 
models 

Better mastery 

through 

difficulty-aware  
progression 

Useful for 

pacing topics 
like PRGs or 

class 

inclusions 

 

The literature indicates that there is a clear relationship between 

the use of ITS (Intelligent Tutoring Systems) and enhanced 

student success as evidenced by studies demonstrating that: 1) 

ITS offer scaffolded guidance tailored to the student; 2) ITS 
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reduce the cognitive load on students; and 3) ITS support 

students in navigating through multi-step reasoning tasks. 

However, there is a significant gap in the current literature 

regarding the creation of ITS for theoretical computer science 

(TCS) with respect to building probabilistic arguments and 

constructing proofs. This study intends to address that gap by 

determining whether an AI-enabled scaffold can be used to 

improve students' understanding of the concept of derivation 

from randomness, as well as to provide students with the tools 

necessary for reflective reasoning in an area where traditional 

instructional methods have relied significantly on instructor-

inspired explanations. Derandomization is among the most 

challenging areas of complexity theory for students. The 

challenge lies in combining multiple types of reasoning 

(probabilistic, asymptotic, multi-step) to solve complex 

problems that involve PRGs and class inclusions such as BPP 

and RL. Most teaching methods rely on lectures and formal 

proof methodologies; however, these methods provide little 

support when students encounter barriers while working 

through any of the intermediate (proof) steps, resulting in 

significant gaps in understanding. While the development of 

intelligent tutoring systems (ITS) has been very productive in 

structured areas of computer science like programming, logic, 

and database querying. (Johnson & Soloway, 1985; Mitrovic, 

1998; Koedinger et al. 1997), only a fraction of ITS tools exists 

in the field of theoretical computer science. Among those few, 

nearly all of them are not designed to provide support for the 

conceptual requirements of derandomization. The absence of 

effective ITS for derandomization means that students often 

cannot get timely clarification when they incorrectly apply 

randomness to assumptions or miss important steps in proving 

their results. Since current ITS architecture is not equipped to 

provide support for this form of reasoning, students are left to 

seek other means of support. Recent advancements in AI tools 

and large language models have garnered increased interest in 

supporting students with real-time feedback; however, because 

there has not yet been established an appropriate pedagogical 

model, these outputs are inconsistent.Thus, there is a significant 

gap between what is available to help students learn 

derandomization and what could be available—the advantage 

of a dedicated scalable system capable of providing support, by 

identifying a student's conceptual error and providing 

successful reasoning by replacing randomness with 

deterministic strategies. The present study responds to this need 

by exploring whether an AI-augmented tutoring approach can 

help students build more coherent understanding of 

derandomization and its underlying principles. 

III. EXPERIMENTAL DESIGN 

The purpose of this research study was to determine if an AI-

augmented tutoring system would result in increased 

understanding of derandomization for students. The research 

study was guided by four research questions: 

1. Does the use of AI-augmented tutoring provide students 

with greater conceptual understanding of derandomization 

than traditional methods? 

2. How does AI-augmented tutoring provide students with 

timely and accurate feedback for correcting 

misunderstandings about probabilistic complexity classes? 

3. What are the patterns of the learning curves of students 

who use the AI-augmented tutor? 

4. How does the AI-augmented system influence the time 

taken by students to complete tasks and their error rates 

when completing tasks? 

The research used a quasi-experimental design using a pre-

test/post-test design to compare one group (control group) who 

used a traditional method of completing course work to another 

group (experimental group) who used the AI-augmented 

tutoring system to complete the same course work. The 

participants were 60 final-year undergraduate students taking 

an elective course in complexity theory. All students had 

successfully completed prerequisite courses in algorithms, 

discrete mathematics and automata theory. To maintain 

baseline equivalency between groups, an effort was made to 

create two balanced groups of students using a common 

criterion (GPA) and previous course performance, as random 

assignments were not feasible due to conflicting schedules. 

Both groups received the same two-week module regarding 

derandomization, which covers the construction of PRGs from 

one-way functions, deterministic simulation of randomized 

algorithms, and standard class inclusions such as BPP ⊆ P and 

RL ⊆ SC. The same instructor taught both sections in order to 

minimize the impact of variations in the delivery of a course. 

The principal difference in how each group completed their 

respective assignments was that the control group completed 

tasks using a paper format, whereas the experimental group 

used a digital interface providing structured hints, immediate 

feedback about errors and step wise guidance throughout their 

task completion. The tutoring system's three components allow 

students to learn in different ways. The first component of the 

tutoring system is a prompt-driven explanation module which 

supplies a natural language response to assist students with 

refining their incomplete arguments. The second component is 

an error-classification module that determines whether errors 

made by students fall within one of three categories: 

conceptual, structural or syntactic; this allows for the delivery 

of targeted feedback rather than generic error messages. 

  A third component of this study was an automated 

monitoring system that tracked how students progressed 

through each of the four tasks, identified patterns of repeated 

mistakes, and modified the amount of hint available. This 

system was designed to give students immediate assistance and 

provide sufficient time for them to reason through the problem. 

Each group completed four tasks that were exactly the same, 

including an analysis of a random algorithm and a simulation 

of the same process but using a deterministic approach, 

constructing a pseudo-random bit generator based on a hardness 

assumption, the proof of RL ⊆ SC, and answering thirty 

conceptual questions. For the control group, class discussion 

and written comments provided feedback, while the 

experimental group received feedback within seconds of 

submitting each step of their reasoning. A 20-item test was 

given to all students as a pre- and post-test to measure their 

learning and understanding of the main ideas of 

derandomization. In addition to the above instruments, the 

experimental group was asked to complete a perception survey 

and a System Usability Scale (SUS) to determine their 

satisfaction with the testing software. The logs collected for the 

tutoring group included the number of hints that were used, the 
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time per task, and whether students corrected mistakes after 

receiving feedback. Internal validity was assessed by verifying 

that the instructions were the same for both groups, reviewing 

the feedback for accuracy and using a consistent scoring 

scheme to assess the four assessments. Students participated in 

this study voluntarily, and were made aware of the study's 

purpose and that their data would be reported anonymously. 
Before the release of this tutoring tool, Evaluation of the 

tutoring system's replies was essentially checked to be correct, 

and ethics clearance was obtained from the respective 

institution. The steps leading through the process flow for the 

intervention are as follows: 

1) The first step is that the student will send a reasoning part 

or incomplete response to the tutoring system. 

2) The second step will allow the tutoring system to analyse 

what has been sent and to highlight specific elements (e.g., 

conceptual and/or structural) that may cause difficulties to 

the student. 

3) In the third and final stage of this loop, the student is given 

instructions to assist in improving and improving their 

reasoning and resubmitted their revised reasoning on to the 

system. 

4) This process depicts how students were able to use the 

tutoring Tool to guide their learning while retaining control 

of their proof-based logical thinking. 

IV. METHODOLOGY 

The proposed methodology of the current research is detailed 

in this section. 

 

Research Design 

Using a quasi-experimental, between-group design, this study 

explored whether an AI-supported tutoring system could 

enhance students’ understanding of randomization versus 

derandomization in algorithm construction, specifically 

through the use of the QuickSelect algorithm. The intervention 

implemented a design-based research approach, where a series 

of iterative cycles were used to refine the tutoring tool as 

teacher implementers assessed its impact under normal school 

conditions. A quasi-experimental design was selected because 

of the limitations in the use of random assignments, the 

difference in course sections, and the requirement for a 

controlled comparison. 

Participants 

Sixty undergraduate students enrolled in a computer science 

algorithm course participated in this study; all students 

completed the prerequisite courses of data structures and 

discrete mathematics before their participation in this study. 

Students who have previously completed an advanced 

algorithm analysis course or probabilistic methods course were 

also excluded to maintain a consistent baseline between groups. 

Participants were split into two groups: 

1 Control group (n = 30): A traditional teaching method 

consisting of lecture and slide presentations along with 

written assignments. 

2 Experimental group (n = 30): The same lectures as the 

control group, yet problem-solving occurred through the 

use of the AI-tutoring platform. 

Participation in this study was voluntary and was advertised 

through the learning portal for the course. 

Instructional Intervention 

The focus of this instructional module was to compare random 

and non-random selection techniques for the design of 

algorithms based on the example of Randomized QuickSelect 

and its deterministic version. Many important aspects of 

algorithm design were examined; these included the amount of 

time taken (expected vs worst-case scenarios), how larger 

random pitfalls impact on performance and predictability, and 

how to implement a deterministic selection method (e.g. the 

median of the medians) for a deterministic quickselect 

algorithm. 

An instruction module that was designed by the AI-tutoring 

platform supported and complemented the learning by using 

four features: 

1 The Pivot Feedback Module: Analyzed student 

rationalizations regarding pivot selection and provided 

recommendations regarding expected vs worst-case 

performance. 

2 Error Classifier: Helped categorize student errors by 

distinguishing them into three categories: conceptual errors 

(failure to understand what O(n) means), structural errors 

(incorrectly reasoned recursive steps), or procedural errors 

(incorrect partition steps). 

3 Progress Tracker: Monitored students' progress toward 

mastering recurrence reasoning, partitioning logic, and 

comparing computational complexity, and modified 

further instruction as necessary. 

4 Real-time Feedback Loop: Provided instantaneous 

responses to students regarding their partition diagrams, 

choices made regarding pivots, and the linear-time 

properties of QuickSelect. 

The approach emphasized encouraging students to arrive at 

their own correct conclusions rather than providing them with 

direct answers. 

Learning Tasks 

Both groups completed four structured activities centered on 

the QuickSelect example: 

1. Trace a randomized QuickSelect execution: Students 

explained how random pivots affect expected O(n) 

time. 

2. Derandomize the algorithm: Students rewrote 

QuickSelect with a deterministic pivot rule and 

analysed its worst-case behaviour. 

3. Compare complexities: Students contrasted pivot 

distributions and calculated approximate comparisons 

used in both approaches. 

4. Answer MCQs and short-response questions targeting 

misconceptions about O(n), O(n²), and algorithmic 

behaviour under random vs fixed pivot choices. 

The experimental group solved tasks through the AI platform, 

while the control group worked on paper and discussed 

solutions during class. 

Instruments and Measures 

To assess learning gains and student perceptions, the following 

instruments were used: 

1 Pre-test and post-test: A 20-item assessment measuring 

conceptual understanding of randomization, 

derandomization, and linear-time selection. 
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2 System logs: Captured error categories, number of hints 

used, pivot-choice attempts, and time spent per task. 

3 Student survey: A 15-item Likert-scale questionnaire on 

clarity of explanations, usefulness of feedback, and 

perceived cognitive load. 

4 System Usability Scale (SUS): Measured perceived 

usability of the tutoring system. 

5 Open-ended reflections: Students in the experimental 

group described which explanations or prompts helped 

them understand pivot behaviour and complexity 

differences. 

Data Analysis 

Statistical analysis was performed with paired t-test to measure 

the change in performance from pre-intervention to post-

intervention, and independent t-test or ANOVA to measure the 

differences in performance between groups. The strength of the 

intervention was assessed by effect sizes (Cohen's d). Log data 

were represented using scatter plots, box plots, and progress 

charts to show the number of corrections made after corrective 

feedback, and the decrease in total time spent analysing the 

three partition steps. Qualitative comments provided by 

students were inductively coded into themes related to how 

students defined the pivot they selected, how they explained the 

time complexity of O(n) behaviour, and how they differentiated 

between executions of the Randomized and Deterministic 

Execution Paths. 

Ethical Considerations 

The university's ethics board approved this research, confirmed 

by the submission of written informed consent from all 

participants in this research project. Each participant's data were 

kept confidential with the use of unique identifiers assigned to 

each participant, and the tutoring program's feedback messages 

were examined by teachers so as not to mislead or suggest too 

heavily of hints to the participants in this research study. 

Workflow Summary 

The instructional cycle was executed in a repetitive sequence: 

students completed a QuickSelect-based task, the tutors 

determined how well students reasoned, provided the necessary 

feedback, revised their reasoning habits, and continued with 

their QuickSelect tasks again. During this repeated sequence, 

the classroom instruction of algorithmic complexity was 

integrated into the tutoring program's automated support 

features to help students gain a better understanding of the 

differences between randomized and derandomized 

QuickSelect and the time complexities associated with each 

method of obtaining an ordered list. 

 
Fig. 1. Proposed Methodology  

 

The structure of this visual summarises the sequential steps of 

the methodology used to conduct this study in six phases         

(see Figure 1). Phase 1 - Research Design - involves 

establishing the overall Quasi-Experimental Research Design; 

that is, the goal of comparing Randomised Quick Select 

Instruction and Deterministic Derandomised Quick Select 

Instruction. Phase 2 - Participants - outlines all participated 

groups within the study (i.e. what are student groups). Phase 3 

- Instructional Intervention - describes how the AI Assisted 

Tutoring System was used to instruct children in algorithm 

behaviours and Pivot Selection Phase 4 - Learning Tasks - 

details how the students performed specific tasks to learn the 

Randomiser/Deterministic concepts. Phase 5 - Instruments and 

Measures - describes the instruments (e.g. tests, logs, surveys) 

used to collect evidence of acquiring knowledge. Lastly, Phase 

6 - Data Analysis - provides an overview of how the data 

collected were analysed using both quantitative and qualitative 

methods in order to assess how much students improved as a 

result of learning about these algorithms from the AI Tutoring 

Module. In summary, the combination of these six phases 

provides a clear, focused sequence of steps for evaluating the 

educational impact of the AI Tutoring Module. 

 

V. RESULTS 

The detailed description of the results is presented in this 

section. 
5.1 Descriptive Statistics 

A Toal of 60 undergraduate students took both the pre-test and 

post-test assessments to evaluate their understanding of random 

vs. non-random reasoning concepts. These assessments include 

the use of pivot-choice analyses, justification for expected time, 

steps taken in a simulated deterministic environment, and short 

proof writing, as measured by the tests. 
 

TABLE II  

SUMMARY OF PRE- AND POST-TEST PERFORMANCE 

Group 

Mean 

Pre-
Test 

(%) 

Mean Post-
Test (%) 

Learning Gain 
(%) 

Std. Dev. 
(Post) 

Control 41.7 62.9 21.2 11.4 
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Experime
ntal 

43.2 79.5 36.3 9.2 

 

As indicated in Table II, the descriptive statistics show that the 

AI-enhanced learning platform provided significantly better 

post test results and greater learning gains for the students. The 

experimental group's posttest variance was lower than that of 

students who did not utilize the platform, indicating that it 

provided a more equally supportive environment for weaker 

and stronger students, consistent with results from previous 

research on intelligent tutoring systems. To enhance clarity, 

visual representation of the learning gains is shown in the graph 

in Fig. 1, as recommended by the reviewers. 

5.2 Inferential Statistics 

Statistical significance was determined as follows: 

1 Within-group improvement was assessed using paired 

t-tests. 

2 Differences between groups in post-test scores were 

analysed with an independent samples t-test. 

3 The effect size was measured using Cohen's d. 

4 Improvement in the Control Group and Experimental 

Group 

5 Control Group (t(29)=8.42, p<0.001), Experimental 

Group (t(29)=14.87, p<0.001). 

6 Comparison between Groups 

7 Post-test score difference (t(58)=5.33, p<0.001), 

Effect Size (Cohen's d=1.37 which is Large). 

The results demonstrate that the AI-assisted learners 

outperformed the traditional learners on the tests. 

A response to the suggestion made by the reviewers: 

A possible confounding variable is the high frequency of 

interaction that the experimental subjects had with the step-wise 

reasoning prompts, which could have increased their 

motivation. Nevertheless, since both groups received the same 

lecture content, there was no bias in the content delivered by 

either group. 

5.3 Task-Type Performance Summary  

To connect outcomes with specific content areas, scores were 

broken down by task type. 
 

TABLE III 
AVERAGE PERFORMANCE BY TASK TYPE (POST-TEST) 

Task Type 

Cont

rol 

(%) 

Experi

mental 

(%) 

Task Type Control (%) 

Randomized 
QuickSelect 

tracing 

68.1 84.6 
Randomized 
QuickSelect 

tracing 

68.1 

Deterministic 
simulation 

59.4 81.2 
Deterministic 
simulation 

59.4 

Complexity 

comparison 
(O(n) vs O(n²)) 

65.7 86.3 

Complexity 

comparison 
(O(n) vs O(n²)) 

65.7 

Short conceptual 

items 
62.5 78.4 

Short 

conceptual 
items 

62.5 

 

The strongest relative improvements appeared in deterministic-

simulation reasoning-aligning with the areas where the AI 

system provided the most scaffolding. 

5.4 Error Resolution and Feedback Analysis 

System logs enabled a fine-grained look at how students 

interacted with feedback. Errors were automatically classified 

as: 

i. Conceptual: incorrect pivot logic or complexity 

reasoning. 

ii. Structural: flawed recursion or partition structure. 

iii. Syntactic: arithmetic or notation slips. 

 
TABLE IV.  

ERROR TYPES AND RESOLUTION RATES 

Error Type 
Avg. Frequency 

per Student 

Resolution 

Rate (%) 
Error Type 

Conceptual 5.3 78.2 Conceptual 

Structural 3.8 84.5 Structural 

Syntactic 2.6 96.1 Syntactic 

 

Syntactic errors were easiest to correct, but importantly, nearly 

four out of five conceptual errors were resolved, demonstrating 

that feedback supported deeper learning-not just superficial 

edits. A heatmap (Fig. 4) illustrates common conceptual 

challenges, such as misinterpreting expected O(n) behaviour or 

confusing pivot-based branching logic. 

5.5 Feedback Utility and Usage Patterns 

In the analysis of how students engaged with feedback through 

the four different types of feedback, hints, clarifications, 

example-explanations and linked-reference prompts, the mean 

number of times a student used each type of feedback is found 

in Figure 1. 

1 Hints: (12.6) 

2 Clarification: (9.1) 

3 Example-Explanation: (7.4) 

4 Linked Reference Prompt: (4.3) 

As noted above, the high frequency of hints and clarifications 

supports that students looked for help in their reasoning 

process as opposed to looking for a quick answer. This finding 

supports the cognitive-scaffolding theory and shows that the 

feedback provided by the AI could be considered to have been 

part of the ZPD. 

5.7 Learner Perception and System Usability 

A 15-item Likert survey and SUS were administered to the 

experimental group. 
TABLE V.  

PERCEPTION AND USABILITY SCORES 

Metric Mean (/5) 

Clarity of 

feedback 
4.3 

Helpfulness of 

hints 
4.5 

Confidence in 
concepts 

4.1 

Engagement 4.4 

SUS Score 86.2 / 100 

 

Open-ended comments described the experience as “like having 

a patient TA walking through each step”. Students appreciated 

that the AI tool encouraged reflective thinking rather than 

supplying full solutions. 

5.8 Summary of results 

Compared to conventional teaching methods, the AI-infused 

learning environment led to an overall higher positive impact 
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on learning (36.3% vs. 21.2%), the difference having a large 

effect size (d = 1.37). The consistency of this effect across all 

learners can be observed through the fact that the experimental 

group demonstrated a smaller variance than the control group, 

while high conceptual error resolution rates further validate the 

usefulness of the feedback loop (i.e., the learners who resolved 

their errors will continue to receive corrections until they reach 

the correct answer). A higher level of engagement with hints 

and clarifications has been associated with a greater extent of 

conceptual mastery. In a comprehensive assessment (SUS), the 

system received a score of 86.2 (which is regarded as signalling 

that students found it easy to understand and use). These 

findings confirm the ability of interactive, targeted, AI-

generated feedback to significantly enhance learners' 

conceptual learning concerning abstract algorithmic concepts 

such Randallized versus deterministic reasoning. 

 
Fig. 2.  Bar chart of pre- and post-test means and learning gains for control and 

experimental groups 

Bar chart displays mean pre-test, post-test scores, and learning 

gains for control (41.7%, 62.9%, 21.2%) and experimental 

groups (43.2%, 79.5%, 36.3%). Experimental group shows 

substantially higher post-test performance and learning gains, 

indicating AI-augmented instruction effectiveness. 

 
Fig. 3 Bar chart comparing post-test scores by task type across groups from 

Table III 

Grouped bars compare post-test performance across four task 

types, with experimental group outperforming control in all 

areas. Largest improvements appear in deterministic simulation 

(81.2% vs 59.4%) and complexity comparison (86.3% vs 

65.7%), highlighting targeted AI scaffolding benefits. 

 

Fig. 4 . Bar chart of error frequencies and resolution rates from Table IV 

 

Dual-axis chart shows error frequencies per student 

(conceptual: 5.3, structural: 3.8, syntactic: 2.6) alongside 

resolution rates (78.2%, 84.5%, 96.1%). High conceptual error 

resolution demonstrates AI feedback supported deeper 

understanding beyond surface corrections. 

VII. DISCUSSION 

The study shows that the scaffolded support offered by the 

tutoring system helped students build a firmer grasp of both 

randomized and deterministic algorithm ideas. Learners 

working with the tool made clearer progress than those taught 

through conventional methods, and the gains were consistent 

across students with different levels of preparation. The 

prompts guiding recursion, pivot choices, and related reasoning 

also led to marked improvement in how students approached 

complexity ideas compared to those relying solely on 

traditional explanations. Students also resolved more of their 

misunderstandings, even in areas where mistakes were more 

common, and the steady use of step-wise hints proved valuable 

for encouraging careful reflection rather than quick fixes. A 

strong link emerged between improved scores and the 

correction of deeper conceptual issues, reinforcing the role of 

guided reasoning. Feedback from the usability survey and 

student reflections indicated that the system felt like supportive, 

patient assistance, helping learners stay engaged and more 

confident without becoming dependent on automated cues. 

These outcomes suggest that such platforms can be expanded 

to help teach advanced algorithmic ideas, especially those that 

are abstract or proof-driven. At the same time, the study notes 

that factors such as how often students interact with the tool 

should be monitored carefully. Future work should look at long-

term retention, how well students transfer these skills to other 

contexts, and how the tool supports both procedural reasoning 

and deeper conceptual understanding. 

 

Post-Survey Questions (After Intervention) 

How confident are you now in explaining the difference 

between randomized and derandomized QuickSelect 

compared to before the module? 

Did the AI tutoring system improve your understanding of 

how pivot selection influences expected and worst-case 

behaviour? 
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How has your ability to trace and compare recursive steps 

in randomized vs deterministic QuickSelect changed after 

the intervention? 

To what extent did real-time feedback help you correct 

conceptual misunderstandings - misreading partitions, 

misjudging complexity? 

How confident are you now in reasoning about 

deterministic simulations of randomized algorithms? 

Did the system reduce the time you needed to diagnose and 

correct reasoning errors? 

How has your overall confidence in tackling abstract 

reasoning tasks - O(n) vs O(n²) justification, changed after 

the module? 

Do you feel better equipped to transfer your understanding 

of randomization and derandomization to other algorithmic 

problems? 

How effective was the tutoring system in keeping you 

engaged compared to traditional worksheets or in-class 

discussions? 

To what extent do you believe this approach prepared you 

for more advanced theoretical computer science courses? 

 

 Feedback Questions 

Which features of the AI tutoring system - hints, 

clarifications, step-by-step prompts, examples, were most 

helpful for understanding randomized and deterministic 

reasoning? 

Did the step-wise guidance style - instead of full solutions, 

support your understanding of QuickSelect’s behaviour? 

How clear and accurate did you find the explanations and 

pivot-selection feedback provided by the system? 

Were there moments when the feedback did not match your 

difficulty - conceptual vs structural vs procedural? 

Did the system make the learning process more engaging 

than traditional assignments? 

How did receiving immediate feedback affect your 

confidence in solving recursion-based or proof-style 

questions? 

What challenges - technical, interpretive, or instructional, 

did you face while using the system? 

Did the system encourage you to reflect on your reasoning 

process rather than simply correct the final answer? 

What improvements would you suggest to make the 

tutoring system more effective for algorithmic reasoning 

tasks? 

Would you recommend using similar AI tutoring tools in 

other theoretical computer science or algorithms courses? 

CONCLUSION 

This research shows that students taking algorithm analysis 

focused on randomized QuickSelect can improve their 

understanding of the two algorithms when guided through an 

AI-based tutoring tool compared to traditional methods where 

guided feedback is given at a different time from when the 

student is doing their work. This increase in understanding 

occurred for both concepts learned based on the student’s and 

teacher’s understanding of how each method operates. In 

addition, the AI tutoring system allowed for the students to 

think critically about different factors such as how to choose the 

correct pivot choice, how deep in the recursion tree the pivot 

should be chosen from, and the difference between “expected” 

vs. “guaranteed” O(n) time complexity. Additionally, students 

reported higher levels of confidence and engagement during 

their analyses of how these algorithms work on data sets, and 

the increased understanding was even more pronounced in 

derandomizing the algorithm and having an upper bound on 

how long it should take. Even with the limited scope of the 

current research, the current model of using AI tutoring to 

support algorithm analysis can benefit a teacher and student 

significantly with further studies likely opening up even more 

opportunities. Future research could find new applications in 

areas such as choice selection and divide-and-conquer types of 

algorithms. 
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TABLE VII.  

PRESURVEY QUESTIONS(BEFORE INTERVENTION) 

Question 5 4 3 2 1 

Confidence in explaining 

randomized vs deterministic 
algorithms 

3 4 11 24 58 

Understanding of pivot selection’s 

effect on QuickSelect time 
complexity 

3 4 10 26 57 

Familiarity with expected time, 

worst-case time, linear-time 
selection 

2 5 10 27 56 

Prior experience 

analyzing/simulating randomized 
algorithms deterministically 

3 5 9 24 59 

Comfort tracing recursion and 

partition-based algorithm execution 
3 4 12 23 58 

Engagement or difficulty with 

abstract theoretical CS concepts 
2 4 10 29 55 

Frequency of seeking additional 

resources when struggling 
3 5 9 23 60 

Confidence identifying and 

correcting conceptual errors in 
reasoning 

3 4 11 25 57 

Strategies used for learning 

complex concepts (examples, 
diagrams, tracing) 

3 5 10 26 56 

Motivation to apply randomized vs 

deterministic reasoning beyond 
exams 

3 4 11 24 58 

 
TABLE VIII.  

POSTSURVEY QUESTIONS(BEFORE INTERVENTION) 

Question 5 4 3 2 1 

How confident are you now in 

explaining the difference between 
randomized and derandomized 

QuickSelect compared to before the 

module? 

5 4 3 2 1 

Did the AI tutoring system improve 

your understanding of how pivot 

selection influences expected and worst-
case behaviour? 

60 23 9 5 3 

How has your ability to trace and 

compare recursive steps in randomized 
vs deterministic QuickSelect changed 

after the intervention? 

58 25 10 4 3 

To what extent did real-time feedback 
help you correct conceptual 

misunderstandings - misreading 

partitions, misjudging complexity? 

57 26 11 3 3 

How confident are you now in reasoning 

about deterministic simulations of 

randomized algorithms? 

59 24 10 4 3 

Did the system reduce the time you 

needed to diagnose and correct 

reasoning errors? 

56 27 10 5 2 

How has your overall confidence in 

tackling abstract reasoning tasks - O(n) 

vs O(n²) justification, changed after the 
module? 

61 22 10 4 3 

Do you feel better equipped to transfer 

your understanding of randomization 
and derandomization to other 

algorithmic problems? 

58 25 9 5 3 

How effective was the tutoring system 
in keeping you engaged compared to 

traditional worksheets or in-class 

discussions? 

57 24 12 4 3 

To what extent do you believe this 

approach prepared you for more 

advanced theoretical computer science 
courses? 

55 28 10 4 3 

 

 
TABLE IX.  

FEEDBACK QUESTIONS 

Question 5 4 3 2 1 

Which features of the AI tutoring 

system - hints, clarifications, step-by-

step prompts, examples, were most 

helpful for understanding randomized 

and deterministic reasoning? 

58 24 11 4 3 

Did the step-wise guidance style - 

instead of full solutions, support your 

understanding of QuickSelect’s 
behaviour? 

57 26 10 4 3 

How clear and accurate did you find the 

explanations and pivot-selection 
feedback provided by the system? 

56 27 10 5 2 

Were there moments when the feedback 

did not match your difficulty - 
conceptual vs structural vs procedural? 

59 24 9 5 3 

Did the system make the learning 

process more engaging than traditional 
assignments? 

58 23 12 4 3 

How did receiving immediate feedback 

affect your confidence in solving 
recursion-based or proof-style 

questions? 

55 29 10 4 2 

What challenges - technical, 
interpretive, or instructional, did you 

face while using the system? 

60 23 9 5 3 

Did the system encourage you to reflect 
on your reasoning process rather than 

simply correct the final answer? 

57 25 11 4 3 

What improvements would you suggest 
to make the tutoring system more 

effective for algorithmic reasoning 

tasks? 

56 26 10 5 3 

Would you recommend using similar AI 

tutoring tools in other theoretical 
computer science or algorithms courses? 

58 24 11 4 3 

ABBREVIATIONS 

BPP ⊆ P 

BPP = Bounded-error Probabilistic Polynomial time. 

RL ⊆ SC 

RL = Randomized Logspace with one-sided error.  

SC = Steve’s Class. 
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