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Abstract— This research examined the effectiveness of an AI-
enhanced tutoring system on teaching stochastic and deterministic
algorithms by using QuickSelect and the Median-of-Medians
method as our primary samples. A total of 60 college students were
randomly assigned to either a control group, which did their
assignments on paper, and an experimental group, which had access
to an interactive computer-based tutoring system that included
stepwise assistance, categorization of errors, and immediate
feedback. Both groups completed assignments to learn how to select
good pivots, what constitutes the average and worst case time
complexity, and how to select the best pivot in a deterministic
algorithm. The results revealed that the Al group achieved greater
improvements in their ability to complete the assignments than did
the control group with less variance in performance and significantly
greater ability to resolve conceptual errors than did the control
group. Student participants in the study reported that their
experience using the Al tools improved their understanding of how
to choose good pivots, they were aided in developing recursive
thinking processes, and the abstract nature of time complexity made
it easier to grasp. The overall findings of the study suggest that AI-
enabled tutoring provides a solid foundation for improving students’
comprehension of stochastic QuickSelect and its deterministic no-
throw method.

Keywords—Computational ~ complexity;  Derandomization;
Intelligent tutoring systems; Real-time feedback; Student learning
gains.

JEET Category—Track-Innovative Pedagogies and Active
Learning, Subtrack: Use of Technology in Teaching and Learning.

I. INTRODUCTION

ne of the toughest problems for students studying

Computer Science is to deal with the study of the
computational complexity of randomised computations and
their deterministically implemented counterparts. Students
often have difficulty with the abstractness of randomised
computations through many concepts that involve the use of
pseudorandom generators (PRGs), classes of complexity
defined in terms of Probability Based Complexity Classes, and
the rationale behind derandomizing an algorithm. The
understanding of how to derandomize an algorithm involves the
integration of probabilistic reasoning, the asymptotic analysis
of algorithms, and the proof construction processes. Students
must learn to translate their knowledge of definitions and
theorems into practical terms to develop their reasoning
capabilities. Students need to learn to develop a
'multidimensional’ understanding through the construction of
'multiple’ types of representations - probabilistic spaces,
circuits, and algorithm steps, and link those representations to
their logical reasoning. The complexity of these requirements
makes this topic very challenging for most students in a
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classroom setting. Lecturing and solving problems without the
use of textbooks has long been the primary instructional
approach for traditional instruction. While the lecture and
textbook method certainly demonstrated sufficient theoretical
foundations, there was also a significant limitation in the degree
to which the learner was provided with an opportunity to
validate or receive immediate explanation for the point of
failure in their reasoning process. Many times, learners have
difficulty understanding how to replace random choices in any
algorithm with a deterministic approach while retaining both
correctness and efficiency. As the learner continues to have
misconceptions, the problems only increase as they reach later
topics such as BPPSP or RLESC. The need for precise
unpacking of complicated probabilistic reasoning is critical to a
successful outcome in the student learning experience. When
learners do not receive timely feedback regarding, or an
individualized method of supporting their understanding of,
these included learning points, their errors in understanding
may remain unresolved well after the related lesson has been
completed. Moreover, educational technology has increased its
pace of development as it relates to teaching areas such as
computer programming languages, mathematics through
interactive practice, and structured problem-solving skills.
Current Intelligent Tutoring Systems (ITS) offer some level of
customization with adaptive hints and feedback; as well as
being able to track student struggles on a detailed level. ITS
systems have proven to be successful at enhancing academic
achievement through students' ability to work at their own pace.
However, application of ITS systems within the fields of
abstract thinking such as theoretical computer science, logic,
and reasoning via proofs still have a very limited application.
Many existing ITS platforms focus on guided learning
involving a specific order of computational activities while they
do not incorporate the use of deductive or inductive reasoning
that develops in an abstract manner (e.g., derandomisation).
The inability of current ITS to develop this type of reasoning
serves as both a barrier and a potential catalyst for the
development of ITS that can accommodate proof-based
reasoning and thereby reduce the cognitive load for students
enrolled in theoretical courses. The challenge we face can be
more easily understood with cognitive load theory. The intrinsic
cognitive load of derandomization problems is particularly high
because they require students to consider complex relationships
between several concepts. Oftentimes, students expend
unnecessary mental effort trying to remember various aspects
of their work such as the format of proof, notation, or
definitions instead of focusing on the conceptually complex
ideas underneath (i.e., students often become distracted by the
insignificant details of their work). Students may benefit from
real-time guidance, prompts, and hints to help reduce the
extraneous cognitive load and focus on the core relationships
(i.e., how randomness is simulated, how hardness assumptions
yield pseudorandomness). An Al tutoring system can provide
the much-needed scaffolding to assist students with their
immediate reasoning and help them connect their thoughts,
creating a much different learning environment than what is
typically provided in large or fast-paced classrooms.
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In this research, an Al-enhanced tutoring system has been
designed and tested, which provides derandomization learning
assistance through adaptive hints, identifies students' error
patterns conceptually and structurally, and provides feedback
tailored to students' current level of reasoning. Rather than
replacing face-to-face instruction, the purpose of this system is
to provide individualized real-time help in addition to
conventional instruction. By integrating both automated
feedback and teacher feedback we hope to assist students in
creating a more complete mental picture of how PRGs are
constructed, how PRGs are used in probabilistic classes, and
how to create deterministic simulations of randomized
algorithms.

The goal of this quasi-experimental research was to assess
the effectiveness of both traditional and artificial intelligence
(AI) based teaching methods. As part of the educational impact
of this new technology, we looked for measurable
improvements in three areas: (i) students’ understanding of the
concept of derandomization; (ii) the manner in which students
use real-time feedback to correct errors; and (iii) the way in
which students engage with their assignments while using the
Al automated tutoring system. In addition, the study sought to
answer four questions:

1. Does the use of Al-enhanced tutoring lead to improved
understanding of derandomization.

2. What impact does real-time feedback have on the ability of
students to correct conceptual and structural errors.

3. What are the different trends in student learning curves and
engagement with the Al tutoring system.

4. How do differences in task completion time and accuracy
correlate with the use of the Al automated tutoring system for
various types of derandomization.

By answering each of these research questions, we anticipate
contributing to the field of theoretical computer science as well
as contributing to the conversation about how new
technologies, particularly Al-based technologies, can improve
education in all areas of science, technology, engineering and
mathematics (STEM). In addition, the results of this study will
provide useful information for creating and sustaining scalable
systems for providing assistance to students in courses that have
historically relied on instructor-centric methods of teaching and
supporting students via office hours.

II. LITERATURE REVIEW

Automated feedback from Intelligent Tutoring Systems (ITS)
has been studied for over the last thirty years, and many
researchers agree that good quality feedback can increase the
learning of students. A frequently referenced study is Kulik and
Fletcher (2016) that showed, for many STEM disciplines, that
students using ITS achieved almost equivalent level of learning
to those tutored by humans. The authors of that work
emphasized the usefulness of providing individualized support
to students who frequently create long lasting misconceptions
in their learning. More recently, Kim et al. (2020) evaluated the
use of ITS in K-12 education, finding that those ITS that
provide feedback based on context and time are significantly

JEET



Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

better at increasing student learning than those systems that
provide static and/or generic feedback. While they studied
younger learners, their results suggest that students in higher
education also gain from receiving feedback at the precise
moment that they do not understand the material. In theoretical
computer science, students may misunderstand the material or
miss a critical step in the intermediate reasoning process (step
to the final answer); therefore, providing such feedback in a
timely way is of great use. A number of traditional intelligent
tutoring systems (ITS) have demonstrated the potential for
utilizing user feedback and error analysis in shaping user
learning. For example, SQL-Tutor, a constraint-based tutor for
constructing SQL database queries developed by Mitrovic
(1998), has shown that pinpointing the specific rule that users
violated reduces the amount of cognitive load placed on users,
while also making them more accurate. Similarly, Johnson &
Soloway (1985) have shown through their work on PROUST
that diagnosing structural errors in the student's program, as
opposed to just syntactic errors, can impact how learners deal
with this type of open-ended task. The Cognitive Tutor
developed by Koedinger, et al. (1997) has also provided
empirical evidence to suggest that providing students with step-
by-step guidance and worked examples is beneficial in terms of
promoting procedural fluency and long-term retention of the
skills required to solve procedural problems. Most of the
research that has been conducted thus far has focused on
structured subject areas such as mathematics, introductory
programming and database query construction. However,
increasing evidence indicates that there is also potential for
adaptivity in more abstract conceptual domains. For instance,
Castleman, Macar & Salleb-Aouissi (2024) have demonstrated
that using hierarchical multi-armed bandit algorithms to
sequence concepts and adaptively create unique paths for each
student can support learners as they pass through the topics of
their respective curricular areas that have varying degrees of
difficulty. Conversely, Karnalim, Hermansyah & Rahayu
(2017) have developed Complexitor, a tool designed to help
students visualize time complexity of algorithms. Their
evaluation of Complexitor has clearly demonstrated that
students typically require examples and visual representations
to help them conceptualize abstract concepts.

1) Limitations of Existing ITS for Theoretical Computer
Science

Although the development of intelligent tutoring systems has
progressed, there is presently little application of intelligent
tutoring systems to theoretical computer science; examples of
existing developed intelligent tutoring systems usually address
those areas in which students have a set of clearly defined,
discrete steps that in each instance correspond to an
unambiguous way of checking students' answers based on
either the procedure or the rules to follow or checking students'
answers against some standard output such as a numerical value
associated with that answer. Derandomization, on the other
hand, requires multiple steps in an argument (i.e., a proof),
probabilistic reasoning, and conceptual reasoning that does not
follow a clearly defined, step-by-step algorithm. Errors
stemming from either failure to provide appropriate
justification for a step within a multi-step proof or
misrepresentation of the significance of randomness are far

more difficult to detect using traditional techniques for deriving
constraints on students' problem solving or model analysis than
for developing a new intelligent tutoring system for teaching
proof-related topics in complexity theory. Consequently, whilst
there is some existing research on developing intelligent
tutoring systems that support proof-related work in complexity
theory, there are virtually no intelligent tutoring systems that
provide structured feedback for problem-solving tasks, such as
the construction of pseudo-random number generators,
inclusion proofs, and so on.

The existing gap in research on the development of more
intelligent tutoring systems capable of interpreting, rather than
simply evaluating, the students' reasoning is the impetus for this
exploration of how to create and employ an adaptive, automated
feedback mechanism for teaching derandomization, where
there are severe cognitive demands on the student and relatively
little access to individualized guidance.

2) Comparative Overview of Prior ITS Studies

Table I provides an overview of selected ITS research studies
grouped by domain, design characteristics, and main findings.
The data show that while previous ITS have advanced
significantly in both adaptive capabilities and error detection,
they generally do not include proof-based reasoning similar to
that found in derandomization methods.

TABLEI
SELECTED STUDIES AND THEIR IMPLICATIONS FOR THE PRESENT WORKS
Stud Domai E:;ﬁg:lgn Principal Connection to
Y n Findings This Study
Kulik & _ Inleldqahz ITS can match Supports use
Mixed ed tutoring, X of targeted,
Fletcher human tutors in )
(2016) STEM mastc?ry many contexts personalized
learning feedback
. . Reinforces
Kimetal. K-12 g:)lrrl“t]:ftf:i’z ;l;::::;}slefseedback importance of
(2022) STEM . real-time
ed feedback ~ comprehension .
correction
. Effective at Informs error-
S Constraint- . . classification
Mitrovic Databa diagnosing S
based design in
(1998) ses . conceptual rule
modeling S conceptual
violations b
domains
Helps students Relevant to
Johnson &  Progra Structural correct identifying
Soloway mming  error reasoning proof-
(1985) design diagnosis patterns, not just  structure
syntax errors
. Cognitive Motivates use
Koedinger . Improves long- .
Mathe modeling, of stepwise
etal. . term problem- .
(1997) matics worked solvine abili hints and
examples & ty scaffolding
Shows value
. . Enhances .
Karnalim . Visual S of dynamic
Algorit . . intuition for
et al. hms interactive abstract support for
(2017) feedback complex
concepts :
reasoning
. Adaptive Better mastery Use‘ful forA
Castleman  Alin . pacing topics
. sequencing through .
et al. educati . . like PRGs or
via MAB difficulty-aware
(2024) on . class
models progression . .
inclusions

The literature indicates that there is a clear relationship between
the use of ITS (Intelligent Tutoring Systems) and enhanced
student success as evidenced by studies demonstrating that: 1)
ITS offer scaffolded guidance tailored to the student; 2) ITS
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reduce the cognitive load on students; and 3) ITS support
students in navigating through multi-step reasoning tasks.
However, there is a significant gap in the current literature
regarding the creation of ITS for theoretical computer science
(TCS) with respect to building probabilistic arguments and
constructing proofs. This study intends to address that gap by
determining whether an Al-enabled scaffold can be used to
improve students' understanding of the concept of derivation
from randomness, as well as to provide students with the tools
necessary for reflective reasoning in an area where traditional
instructional methods have relied significantly on instructor-
inspired explanations. Derandomization is among the most
challenging areas of complexity theory for students. The
challenge lies in combining multiple types of reasoning
(probabilistic, asymptotic, multi-step) to solve complex
problems that involve PRGs and class inclusions such as BPP
and RL. Most teaching methods rely on lectures and formal
proof methodologies; however, these methods provide little
support when students encounter barriers while working
through any of the intermediate (proof) steps, resulting in
significant gaps in understanding. While the development of
intelligent tutoring systems (ITS) has been very productive in
structured areas of computer science like programming, logic,
and database querying. (Johnson & Soloway, 1985; Mitrovic,
1998; Koedinger et al. 1997), only a fraction of ITS tools exists
in the field of theoretical computer science. Among those few,
nearly all of them are not designed to provide support for the
conceptual requirements of derandomization. The absence of
effective ITS for derandomization means that students often
cannot get timely clarification when they incorrectly apply
randomness to assumptions or miss important steps in proving
their results. Since current ITS architecture is not equipped to
provide support for this form of reasoning, students are left to
seek other means of support. Recent advancements in Al tools
and large language models have garnered increased interest in
supporting students with real-time feedback; however, because
there has not yet been established an appropriate pedagogical
model, these outputs are inconsistent. Thus, there is a significant
gap between what is available to help students learn
derandomization and what could be available—the advantage
of a dedicated scalable system capable of providing support, by
identifying a student's conceptual error and providing
successful reasoning by replacing randomness with
deterministic strategies. The present study responds to this need
by exploring whether an Al-augmented tutoring approach can
help students build more coherent understanding of
derandomization and its underlying principles.

III. EXPERIMENTAL DESIGN

The purpose of this research study was to determine if an Al-
augmented tutoring system would result in increased
understanding of derandomization for students. The research
study was guided by four research questions:

1. Does the use of Al-augmented tutoring provide students
with greater conceptual understanding of derandomization
than traditional methods?

How does Al-augmented tutoring provide students with
timely and accurate feedback for correcting
misunderstandings about probabilistic complexity classes?
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3. What are the patterns of the learning curves of students
who use the Al-augmented tutor?
4. How does the Al-augmented system influence the time

taken by students to complete tasks and their error rates

when completing tasks?
The research used a quasi-experimental design using a pre-
test/post-test design to compare one group (control group) who
used a traditional method of completing course work to another
group (experimental group) who used the Al-augmented
tutoring system to complete the same course work. The
participants were 60 final-year undergraduate students taking
an elective course in complexity theory. All students had
successfully completed prerequisite courses in algorithms,
discrete mathematics and automata theory. To maintain
baseline equivalency between groups, an effort was made to
create two balanced groups of students using a common
criterion (GPA) and previous course performance, as random
assignments were not feasible due to conflicting schedules.
Both groups received the same two-week module regarding
derandomization, which covers the construction of PRGs from
one-way functions, deterministic simulation of randomized
algorithms, and standard class inclusions such as BPP € P and
RL € SC. The same instructor taught both sections in order to
minimize the impact of variations in the delivery of a course.
The principal difference in how each group completed their
respective assignments was that the control group completed
tasks using a paper format, whereas the experimental group
used a digital interface providing structured hints, immediate
feedback about errors and step wise guidance throughout their
task completion. The tutoring system's three components allow
students to learn in different ways. The first component of the
tutoring system is a prompt-driven explanation module which
supplies a natural language response to assist students with
refining their incomplete arguments. The second component is
an error-classification module that determines whether errors
made by students fall within one of three categories:
conceptual, structural or syntactic; this allows for the delivery
of targeted feedback rather than generic error messages.

A third component of this study was an automated
monitoring system that tracked how students progressed
through each of the four tasks, identified patterns of repeated
mistakes, and modified the amount of hint available. This
system was designed to give students immediate assistance and
provide sufficient time for them to reason through the problem.
Each group completed four tasks that were exactly the same,
including an analysis of a random algorithm and a simulation
of the same process but using a deterministic approach,
constructing a pseudo-random bit generator based on a hardness
assumption, the proof of RL € SC, and answering thirty
conceptual questions. For the control group, class discussion
and written comments provided feedback, while the
experimental group received feedback within seconds of
submitting each step of their reasoning. A 20-item test was
given to all students as a pre- and post-test to measure their
learning and wunderstanding of the main ideas of
derandomization. In addition to the above instruments, the
experimental group was asked to complete a perception survey
and a System Usability Scale (SUS) to determine their
satisfaction with the testing software. The logs collected for the
tutoring group included the number of hints that were used, the
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time per task, and whether students corrected mistakes after
receiving feedback. Internal validity was assessed by verifying
that the instructions were the same for both groups, reviewing
the feedback for accuracy and using a consistent scoring
scheme to assess the four assessments. Students participated in
this study voluntarily, and were made aware of the study's
purpose and that their data would be reported anonymously.

Before the release of this tutoring tool, Evaluation of the

tutoring system's replies was essentially checked to be correct,

and ethics clearance was obtained from the respective
institution. The steps leading through the process flow for the
intervention are as follows:

1) The first step is that the student will send a reasoning part
or incomplete response to the tutoring system.

2) The second step will allow the tutoring system to analyse
what has been sent and to highlight specific elements (e.g.,
conceptual and/or structural) that may cause difficulties to
the student.

3) In the third and final stage of this loop, the student is given
instructions to assist in improving and improving their
reasoning and resubmitted their revised reasoning on to the
system.

4) This process depicts how students were able to use the
tutoring Tool to guide their learning while retaining control
of their proof-based logical thinking.

IV. METHODOLOGY

The proposed methodology of the current research is detailed
in this section.

Research Design

Using a quasi-experimental, between-group design, this study

explored whether an Al-supported tutoring system could

enhance students’ understanding of randomization versus
derandomization in algorithm construction, specifically
through the use of the QuickSelect algorithm. The intervention
implemented a design-based research approach, where a series
of iterative cycles were used to refine the tutoring tool as
teacher implementers assessed its impact under normal school
conditions. A quasi-experimental design was selected because
of the limitations in the use of random assignments, the

difference in course sections, and the requirement for a

controlled comparison.

Participants

Sixty undergraduate students enrolled in a computer science

algorithm course participated in this study; all students

completed the prerequisite courses of data structures and
discrete mathematics before their participation in this study.

Students who have previously completed an advanced

algorithm analysis course or probabilistic methods course were

also excluded to maintain a consistent baseline between groups.

Participants were split into two groups:

1 Control group (n = 30): A traditional teaching method
consisting of lecture and slide presentations along with
written assignments.

2 Experimental group (n = 30): The same lectures as the
control group, yet problem-solving occurred through the
use of the Al-tutoring platform.

Participation in this study was voluntary and was advertised
through the learning portal for the course.
Instructional Intervention
The focus of this instructional module was to compare random
and non-random selection techniques for the design of
algorithms based on the example of Randomized QuickSelect
and its deterministic version. Many important aspects of
algorithm design were examined; these included the amount of
time taken (expected vs worst-case scenarios), how larger
random pitfalls impact on performance and predictability, and
how to implement a deterministic selection method (e.g. the
median of the medians) for a deterministic quickselect
algorithm.

An instruction module that was designed by the Al-tutoring

platform supported and complemented the learning by using

four features:

1 The Pivot Feedback Module: Analyzed student
rationalizations regarding pivot selection and provided
recommendations regarding expected vs worst-case
performance.

2 Error Classifier: Helped categorize student errors by
distinguishing them into three categories: conceptual errors
(failure to understand what O(n) means), structural errors
(incorrectly reasoned recursive steps), or procedural errors
(incorrect partition steps).

3 Progress Tracker: Monitored students' progress toward
mastering recurrence reasoning, partitioning logic, and
comparing computational complexity, and modified
further instruction as necessary.

4 Real-time Feedback Loop: Provided instantaneous
responses to students regarding their partition diagrams,
choices made regarding pivots, and the linear-time
properties of QuickSelect.

The approach emphasized encouraging students to arrive at

their own correct conclusions rather than providing them with

direct answers.

Learning Tasks

Both groups completed four structured activities centered on

the QuickSelect example:

1. Trace a randomized QuickSelect execution: Students
explained how random pivots affect expected O(n)
time.

2. Derandomize the algorithm: Students rewrote
QuickSelect with a deterministic pivot rule and
analysed its worst-case behaviour.

3. Compare complexities: Students contrasted pivot
distributions and calculated approximate comparisons
used in both approaches.

4. Answer MCQs and short-response questions targeting
misconceptions about O(n), O(n?), and algorithmic
behaviour under random vs fixed pivot choices.

The experimental group solved tasks through the Al platform,

while the control group worked on paper and discussed

solutions during class.

Instruments and Measures

To assess learning gains and student perceptions, the following

instruments were used:

1 Pre-test and post-test: A 20-item assessment measuring
conceptual understanding of randomization,
derandomization, and linear-time selection.
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System logs: Captured error categories, number of hints
used, pivot-choice attempts, and time spent per task.
Student survey: A 15-item Likert-scale questionnaire on
clarity of explanations, usefulness of feedback, and
perceived cognitive load.

System Usability Scale (SUS): Measured perceived
usability of the tutoring system.

Open-ended reflections: Students in the experimental
group described which explanations or prompts helped
them understand pivot behaviour and complexity
differences.

Data Analysis

Statistical analysis was performed with paired t-test to measure
the change in performance from pre-intervention to post-
intervention, and independent t-test or ANOVA to measure the
differences in performance between groups. The strength of the
intervention was assessed by effect sizes (Cohen's d). Log data
were represented using scatter plots, box plots, and progress
charts to show the number of corrections made after corrective
feedback, and the decrease in total time spent analysing the
three partition steps. Qualitative comments provided by
students were inductively coded into themes related to how
students defined the pivot they selected, how they explained the
time complexity of O(n) behaviour, and how they differentiated
between executions of the Randomized and Deterministic
Execution Paths.

Ethical Considerations

The university's ethics board approved this research, confirmed
by the submission of written informed consent from all
participants in this research project. Each participant's data were
kept confidential with the use of unique identifiers assigned to
each participant, and the tutoring program's feedback messages
were examined by teachers so as not to mislead or suggest too
heavily of hints to the participants in this research study.
Workflow Summary

The instructional cycle was executed in a repetitive sequence:
students completed a QuickSelect-based task, the tutors
determined how well students reasoned, provided the necessary
feedback, revised their reasoning habits, and continued with
their QuickSelect tasks again. During this repeated sequence,
the classroom instruction of algorithmic complexity was
integrated into the tutoring program's automated support
features to help students gain a better understanding of the
differences  between randomized and derandomized
QuickSelect and the time complexities associated with each
method of obtaining an ordered list.
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Participants selection

Instructional Intervention

Instruments and Measures

Fig. 1. Proposed Methodology

The structure of this visual summarises the sequential steps of
the methodology used to conduct this study in six phases
(see Figure 1). Phase 1 - Research Design - involves
establishing the overall Quasi-Experimental Research Design;
that is, the goal of comparing Randomised Quick Select
Instruction and Deterministic Derandomised Quick Select
Instruction. Phase 2 - Participants - outlines all participated
groups within the study (i.e. what are student groups). Phase 3
- Instructional Intervention - describes how the Al Assisted
Tutoring System was used to instruct children in algorithm
behaviours and Pivot Selection Phase 4 - Learning Tasks -
details how the students performed specific tasks to learn the
Randomiser/Deterministic concepts. Phase 5 - Instruments and
Measures - describes the instruments (e.g. tests, logs, surveys)
used to collect evidence of acquiring knowledge. Lastly, Phase
6 - Data Analysis - provides an overview of how the data
collected were analysed using both quantitative and qualitative
methods in order to assess how much students improved as a
result of learning about these algorithms from the Al Tutoring
Module. In summary, the combination of these six phases
provides a clear, focused sequence of steps for evaluating the
educational impact of the Al Tutoring Module.

V.RESULTS
The detailed description of the results is presented in this
section.
5.1 Descriptive Statistics
A Toal of 60 undergraduate students took both the pre-test and
post-test assessments to evaluate their understanding of random
vs. non-random reasoning concepts. These assessments include
the use of pivot-choice analyses, justification for expected time,
steps taken in a simulated deterministic environment, and short
proof writing, as measured by the tests.

TABLE II
SUMMARY OF PRE- AND POST-TEST PERFORMANCE

Mean

Pre- Mean Post-  Learning Gain Std. Dev.
Group o o

Test Test (%) (%) (Post)

(%)
Control 41.7 62.9 21.2 11.4
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Experime

432 79.5 36.3 9.2
ntal

As indicated in Table II, the descriptive statistics show that the
Al-enhanced learning platform provided significantly better
post test results and greater learning gains for the students. The
experimental group's posttest variance was lower than that of
students who did not utilize the platform, indicating that it
provided a more equally supportive environment for weaker
and stronger students, consistent with results from previous
research on intelligent tutoring systems. To enhance clarity,
visual representation of the learning gains is shown in the graph
in Fig. 1, as recommended by the reviewers.
5.2 Inferential Statistics
Statistical significance was determined as follows:
1 Within-group improvement was assessed using paired
t-tests.
2 Differences between groups in post-test scores were
analysed with an independent samples t-test.
3 The effect size was measured using Cohen's d.
4  Improvement in the Control Group and Experimental
Group
5 Control Group (t(29)=8.42, p<0.001), Experimental
Group (t(29)=14.87, p<0.001).
6  Comparison between Groups
7 Post-test score difference (t(58)=5.33, p<0.001),
Effect Size (Cohen's d=1.37 which is Large).
The results demonstrate that the Al-assisted
outperformed the traditional learners on the tests.
A response to the suggestion made by the reviewers:
A possible confounding variable is the high frequency of
interaction that the experimental subjects had with the step-wise
reasoning prompts, which could have increased their
motivation. Nevertheless, since both groups received the same
lecture content, there was no bias in the content delivered by
either group.
5.3 Task-Type Performance Summary
To connect outcomes with specific content areas, scores were
broken down by task type.

learners

TABLE III
AVERAGE PERFORMANCE BY TASK TYPE (POST-TEST)
Cont  Experi
Task Type rol mental Task Type Control (%)
) (%)
Randomized Randomized
QuickSelect 68.1 84.6 QuickSelect 68.1
tracing tracing
Determ?nistic 504 312 D_eterm?nistic 504
simulation simulation
Complexity Complexity
comparison 65.7 86.3 comparison 65.7
(O(n) vs O(n?)) (O(n) vs O(n?))
Short
Shon conceptual 62.5 78.4 conceptual 62.5
items .
items

The strongest relative improvements appeared in deterministic-
simulation reasoning-aligning with the areas where the Al
system provided the most scaffolding.

5.4 Error Resolution and Feedback Analysis

System logs enabled a fine-grained look at how students
interacted with feedback. Errors were automatically classified
as:

L. Conceptual: incorrect pivot logic or complexity
reasoning.

ii. Structural: flawed recursion or partition structure.

iii. Syntactic: arithmetic or notation slips.
TABLEIV.
ERROR TYPES AND RESOLUTION RATES
Avg. Frequency  Resolution

Error Type per Student Rate (%) Error Type

Conceptual 53 78.2 Conceptual

Structural 3.8 84.5 Structural

Syntactic 2.6 96.1 Syntactic

Syntactic errors were easiest to correct, but importantly, nearly
four out of five conceptual errors were resolved, demonstrating
that feedback supported deeper learning-not just superficial
edits. A heatmap (Fig. 4) illustrates common conceptual
challenges, such as misinterpreting expected O(n) behaviour or
confusing pivot-based branching logic.
5.5 Feedback Utility and Usage Patterns
In the analysis of how students engaged with feedback through
the four different types of feedback, hints, clarifications,
example-explanations and linked-reference prompts, the mean
number of times a student used each type of feedback is found
in Figure 1.

1  Hints: (12.6)

2 Clarification: (9.1)

3 Example-Explanation: (7.4)

4  Linked Reference Prompt: (4.3)
As noted above, the high frequency of hints and clarifications
supports that students looked for help in their reasoning
process as opposed to looking for a quick answer. This finding
supports the cognitive-scaffolding theory and shows that the
feedback provided by the Al could be considered to have been
part of the ZPD.
5.7 Learner Perception and System Usability
A 15-item Likert survey and SUS were administered to the

experimental group.
TABLE V.
PERCEPTION AND USABILITY SCORES

Metric Mean (/5)
Clarity of

feedback 4.3
He]pfulness of 45

hints

Confidence in 41
concepts ’
Engagement 44

SUS Score 86.2/100

Open-ended comments described the experience as “like having
a patient TA walking through each step”. Students appreciated
that the Al tool encouraged reflective thinking rather than
supplying full solutions.

5.8 Summary of results

Compared to conventional teaching methods, the Al-infused
learning environment led to an overall higher positive impact

JEET



Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

on learning (36.3% vs. 21.2%), the difference having a large
effect size (d = 1.37). The consistency of this effect across all
learners can be observed through the fact that the experimental
group demonstrated a smaller variance than the control group,
while high conceptual error resolution rates further validate the
usefulness of the feedback loop (i.e., the learners who resolved
their errors will continue to receive corrections until they reach
the correct answer). A higher level of engagement with hints
and clarifications has been associated with a greater extent of
conceptual mastery. In a comprehensive assessment (SUS), the
system received a score of 86.2 (which is regarded as signalling
that students found it easy to understand and use). These
findings confirm the ability of interactive, targeted, Al-
generated feedback to significantly enhance learners'
conceptual learning concerning abstract algorithmic concepts

such Randallized versus deterministic reasoning.

Pre- and Post-Test Performance by Group
100

Test Type
EEE Mean Pre-Test (%)
Mean Post-Test (%)

80 Learning Gain (%)
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60
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Fig. 2. Bar chart of pre- and post-test means and learning gains for control and
experimental groups

Bar chart displays mean pre-test, post-test scores, and learning
gains for control (41.7%, 62.9%, 21.2%) and experimental
groups (43.2%, 79.5%, 36.3%). Experimental group shows
substantially higher post-test performance and learning gains,
indicating Al-augmented instruction effectiveness.
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Fig. 3 Bar chart comparing post-test scores by task type across groups from
Table 11T

Grouped bars compare post-test performance across four task
types, with experimental group outperforming control in all
areas. Largest improvements appear in deterministic simulation
(81.2% vs 59.4%) and complexity comparison (86.3% vs
65.7%), highlighting targeted Al scaffolding benefits.
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Error Types and Resolution Rates
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Fig. 4 . Bar chart of error frequencies and resolution rates from Table IV

Dual-axis chart shows error frequencies per student
(conceptual: 5.3, structural: 3.8, syntactic: 2.6) alongside
resolution rates (78.2%, 84.5%, 96.1%). High conceptual error
resolution demonstrates Al feedback supported deeper
understanding beyond surface corrections.

VII. DISCUSSION

The study shows that the scaffolded support offered by the
tutoring system helped students build a firmer grasp of both
randomized and deterministic algorithm ideas. Learners
working with the tool made clearer progress than those taught
through conventional methods, and the gains were consistent
across students with different levels of preparation. The
prompts guiding recursion, pivot choices, and related reasoning
also led to marked improvement in how students approached
complexity ideas compared to those relying solely on
traditional explanations. Students also resolved more of their
misunderstandings, even in areas where mistakes were more
common, and the steady use of step-wise hints proved valuable
for encouraging careful reflection rather than quick fixes. A
strong link emerged between improved scores and the
correction of deeper conceptual issues, reinforcing the role of
guided reasoning. Feedback from the usability survey and
student reflections indicated that the system felt like supportive,
patient assistance, helping learners stay engaged and more
confident without becoming dependent on automated cues.
These outcomes suggest that such platforms can be expanded
to help teach advanced algorithmic ideas, especially those that
are abstract or proof-driven. At the same time, the study notes
that factors such as how often students interact with the tool
should be monitored carefully. Future work should look at long-
term retention, how well students transfer these skills to other
contexts, and how the tool supports both procedural reasoning
and deeper conceptual understanding.

Post-Survey Questions (After Intervention)

How confident are you now in explaining the difference
between randomized and derandomized QuickSelect
compared to before the module?

Did the Al tutoring system improve your understanding of
how pivot selection influences expected and worst-case
behaviour?
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How has your ability to trace and compare recursive steps
in randomized vs deterministic QuickSelect changed after
the intervention?

To what extent did real-time feedback help you correct
conceptual misunderstandings - misreading partitions,
misjudging complexity?

How confident are you now in reasoning about
deterministic simulations of randomized algorithms?

Did the system reduce the time you needed to diagnose and
correct reasoning errors?

How has your overall confidence in tackling abstract
reasoning tasks - O(n) vs O(n?) justification, changed after
the module?

Do you feel better equipped to transfer your understanding
of randomization and derandomization to other algorithmic
problems?

How effective was the tutoring system in keeping you
engaged compared to traditional worksheets or in-class
discussions?

To what extent do you believe this approach prepared you
for more advanced theoretical computer science courses?

Feedback Questions

Which features of the AI tutoring system - hints,
clarifications, step-by-step prompts, examples, were most
helpful for understanding randomized and deterministic
reasoning?

Did the step-wise guidance style - instead of full solutions,
support your understanding of QuickSelect’s behaviour?
How clear and accurate did you find the explanations and
pivot-selection feedback provided by the system?

Were there moments when the feedback did not match your
difficulty - conceptual vs structural vs procedural?

Did the system make the learning process more engaging
than traditional assignments?

How did receiving immediate feedback affect your
confidence in solving recursion-based or proof-style
questions?

What challenges - technical, interpretive, or instructional,
did you face while using the system?

Did the system encourage you to reflect on your reasoning
process rather than simply correct the final answer?

What improvements would you suggest to make the
tutoring system more effective for algorithmic reasoning
tasks?

Would you recommend using similar Al tutoring tools in
other theoretical computer science or algorithms courses?

CONCLUSION

This research shows that students taking algorithm analysis
focused on randomized QuickSelect can improve their
understanding of the two algorithms when guided through an
Al-based tutoring tool compared to traditional methods where
guided feedback is given at a different time from when the
student is doing their work. This increase in understanding
occurred for both concepts learned based on the student’s and
teacher’s understanding of how each method operates. In

addition, the Al tutoring system allowed for the students to
think critically about different factors such as how to choose the
correct pivot choice, how deep in the recursion tree the pivot
should be chosen from, and the difference between “expected”
vs. “guaranteed” O(n) time complexity. Additionally, students
reported higher levels of confidence and engagement during
their analyses of how these algorithms work on data sets, and
the increased understanding was even more pronounced in
derandomizing the algorithm and having an upper bound on
how long it should take. Even with the limited scope of the
current research, the current model of using Al tutoring to
support algorithm analysis can benefit a teacher and student
significantly with further studies likely opening up even more
opportunities. Future research could find new applications in
areas such as choice selection and divide-and-conquer types of
algorithms.
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TABLE VIL

PRESURVEY QUESTIONS(BEFORE INTERVENTION)

Question 5

4

3

2

Confidence in explaining

randomized vs deterministic 3
algorithms

Understanding of pivot selection’s

effect on QuickSelect time 3
complexity

Familiarity with expected time,
worst-case time, linear-time 2
selection

Prior experience

analyzing/simulating randomized 3
algorithms deterministically
Comfort tracing recursion and
partition-based algorithm execution

Engagement or difficulty with
abstract theoretical CS concepts

Frequency of seeking additional
resources when struggling
Confidence identifying and
correcting conceptual errors in 3
reasoning

Strategies used for learning

complex concepts (examples, 3
diagrams, tracing)

Motivation to apply randomized vs
deterministic reasoning beyond 3
exams

11

10

10

24

26

27

24

23

29

23

25

26

24

58

57

56

59

58

55

60

57

56

58

TABLE VIIL

POSTSURVEY QUESTIONS(BEFORE INTERVENTION)

Question

5

4

3

How confident are you now in
explaining the difference between
randomized and derandomized
QuickSelect compared to before the
module?

Did the Al tutoring system improve
your understanding of how pivot
selection influences expected and worst-
case behaviour?

How has your ability to trace and
compare recursive steps in randomized
vs deterministic QuickSelect changed
after the intervention?

To what extent did real-time feedback
help you correct conceptual
misunderstandings - misreading
partitions, misjudging complexity?
How confident are you now in reasoning
about deterministic simulations of
randomized algorithms?

Did the system reduce the time you
needed to diagnose and correct
reasoning errors?

How has your overall confidence in
tackling abstract reasoning tasks - O(n)
vs O(n?) justification, changed after the
module?

60

58

57

59

56

61

23

25

26

24

27

22

39

Do you feel better equipped to transfer
your understanding of randomization
and derandomization to other
algorithmic problems?

How effective was the tutoring system
in keeping you engaged compared to
traditional worksheets or in-class
discussions?

To what extent do you believe this
approach prepared you for more
advanced theoretical computer science
courses?

58

57

55

25

24

28

TABLE IX.
FEEDBACK QUESTIONS

Question 5

Which features of the Al tutoring

system - hints, clarifications, step-by-

step prompts, examples, were most 58
helpful for understanding randomized
and deterministic reasoning?

Did the step-wise guidance style -
instead of full solutions, support your
understanding of QuickSelect’s
behaviour?

How clear and accurate did you find the
explanations and pivot-selection 56
feedback provided by the system?

Were there moments when the feedback

did not match your difficulty - 59
conceptual vs structural vs procedural?

Did the system make the learning

process more engaging than traditional 58
assignments?

How did receiving immediate feedback
affect your confidence in solving
recursion-based or proof-style
questions?

What challenges - technical,
interpretive, or instructional, did you 60
face while using the system?

Did the system encourage you to reflect

on your reasoning process rather than 57
simply correct the final answer?

What improvements would you suggest
to make the tutoring system more
effective for algorithmic reasoning
tasks?

Would you recommend using similar Al
tutoring tools in other theoretical 58
computer science or algorithms courses?

55

56

24

26

27

24

23

29

23

25

26

24

ABBREVIATIONS

BPP c P
BPP = Bounded-error Probabilistic Polynomial time.
RL c SC
RL = Randomized Logspace with one-sided error.
SC = Steve’s Class.
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