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Abstract— New MATLAB learners often get stuck because they 

cannot read or fix early errors. We tested a real-time system that 

catches run-time exceptions, pulls the message and nearby code, 

and gives a short explanation plus a small corrected example inside 

the editor. We compared this with MATLAB’s built-in copilot. In 

a class study with 60 students, both groups did the same lessons 

and tasks; only the feedback differed. The treatment group, which 

saw the real-time explanations, scored higher on the post-test (16.8 

vs. 13.5), showed a much larger learning gain (0.58 vs. 0.29), and 

fixed errors faster. Across about 300 total errors, total repair time 

dropped from 1,500 s to 450 s, retries fell from 2 to 1 per error, 

and successful fixes rose from 80% to 96%. Beginners improved 

the most, and repeat errors fell by roughly 47%. Students said the 

messages were clear and useful. Then, turning MATLAB error 

messages into short, direct guidance improved accuracy, speed, 

and retention without leaving the MATLAB workspace. 
 

Keywords— Debugging; error feedback; MATLAB; 

programming education; real-time guidance; learning gain  
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I. INTRODUCTION 

n engineering and scientific programs, MATLAB has 

become a core tool for building algorithmic skills, modeling 

dynamic behavior, and tackling numerical problems. Yet 

many students—especially those encountering the language for 

the first time—struggle when their code breaks. Their limited 

grasp of MATLAB’s syntax, logic, and error phrasing often 

makes debugging slow and discouraging. These hurdles can 

stall progress, increase frustration, and reduce engagement,  
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particularly in large classes or self-guided settings where timely 

instructor help is difficult to obtain. 

MATLAB’s error messages are typically fixed, concise system 

outputs that rarely offer context beyond identifying the issue. 

For beginners who do not yet understand ideas such as 

mismatched matrix sizes or incorrect indexing, simply 

deciphering what the message means can be a major obstacle. 

Although MATLAB provides standard debugging features, the 

environment does not supply adaptive or learner-centered 

explanations that meet students at their level. As a result, 

novices often fall back on guesswork, repeated trial and error, 

or searching online for snippets of code—approaches that may 

fix immediate issues but contribute little to long-term 

understanding. 

Recent progress in natural-language models has opened 

possibilities for improving programming instruction through 

interactive, conversational support. Large language models 

(LLMs) like ChatGPT can interpret both text and code, 

recognize the situation behind an error, and offer clear 

explanations or examples within seconds. When paired with an 

execution environment, such models can turn a confusing 

system message into an opportunity for guided learning. 

Despite this potential, similar integrations have rarely been 

explored for MATLAB, even though it remains a central 

language in many university courses and research settings. 

This study introduces an automated real-time feedback system 

designed to bring this capability into MATLAB. The system 

detects exceptions during execution, constructs a natural-

language query, and obtains an immediate, tailored response 

through an LLM-based interface. In contrast to standard error 

messages, the feedback includes plain-language explanations, 

stepwise advice, and corrected code grounded in the student’s 

own script. The goal is not only to help students resolve errors 
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but also to reinforce underlying concepts, making the tool 

useful for both troubleshooting and deeper learning. 

The work presented here contributes to programming education 

by (i) building a reliable mechanism for capturing and 

forwarding MATLAB errors, (ii) linking this mechanism to an 

LLM-driven conversational layer for feedback delivery, and 

(iii) assessing the instructional value of the system through 

classroom-based evaluation. The study further analyzes which 

errors students encounter most often, what kinds of 

explanations they find helpful, and how immediate feedback 

shapes their confidence and debugging performance. 

Ultimately, this research responds to the limitations of static 

system messages and lays groundwork for more adaptive 

tutoring systems that respond to students’ coding patterns and 

levels of understanding. The results aim to inform the next 

generation of learning tools, in which artificial intelligence acts 

not simply as a generator of code but as an on-demand guide 

that supports individual learning paths. This work is first of its 

kind as it includes the creation of AI based real time MATLAB 

error analysis and correction support. The major steps involved 

in automating the error feedback system is to first capture the 

error from the MATLAB command window, create a report on 

the error analysis. Create the solutions using chatGPT. 

Compare this performance with that of the copilot from 

MATLAB software. This work examines whether turning the 

MATLAB exceptions into concise, context-aware guidance 

improves learning and debugging. We address five questions: 

RQ1. Does AI based real-time error guidance improve 

performance relative to default MATLAB’s copilot error 

explanation and correction? 

RQ2. Does the system increase debugging efficiency (time per 

error, retries per error) and fix success rate? 

RQ3. Does the system reduce recurrence of the same error 

class across tasks? 

RQ4. Are benefits moderated by prior skill level (beginner, 

intermediate, advanced)? 

RQ5. Which feedback type (clarification, minimal fix snippet, 

conceptual explanation, external link) yields the fastest 

resolution and best retention? 

II. RELATED WORKS 

Novice programmers struggle first and most with error 

comprehension. Classic and careful studies showed that the 

form and phrasing of error messages materially affect time-to-

fix, comprehension, and frustration, and that improving 

messages helps up to a point but cannot replace targeted 

guidance (Marceau, Fisler, & Krishnamurthi, 2011; Becker, 

2016). Subsequent controlled classroom and field studies 

examined compiler/IDE message redesigns and found 

measurable but bounded gains when messages were clarified, 

localized, or paired with links to examples; stronger outcomes 

appeared when guidance also explained why a fix worked, not 

only what to change (Becker, Glanville, & Goslin, 2018). These 

results motivate systems that go beyond surface edits to attach 

short rationale in the language of the host environment (e.g., 

MATLAB indexing rules, array shape semantics). (Becker, 

2016; Becker et al., 2018; Marceau et al., 2011). A systematic 

review across tools, strategies, and constraints noted that 

effective systems combine test-based checks, program 

analyses, and pattern mining to deliver timely, specific hints; 

they work best when feedback targets a known misconception 

class and when students can iterate quickly (Keuning, Jeuring, 

& Heeren, 2018). This aligns with designs that capture 

exceptions at runtime, compress context, and return minimal, 

actionable suggestions that match the learner’s error class. 

Recent computing-education work has begun to compare 

feedback from large language models with rule-based tasks. 

Across several 2024 conference papers, large models produced 

higher-coverage comments and more natural phrasing but 

varied in correctness and specificity; combining them with 

scaffolds (e.g., “try first, then reveal hint”) reduced over-

reliance and improved revision quality (Azaiz, Kiesler, & 

Strickroth, 2024; Lohr et al., 2024; Ruan et al., 2024). These 

studies recommend constraining prompts, limiting verbosity, 

and embedding verification (tests, examples) alongside model 

feedback-practices mirrored in systems that turn raw exceptions 

into short, environment-specific coaching. A field evaluation in 

higher education reported that large-model tools can generate 

useful formative feedback in programming courses, but utility 

depends on error type, prompt design, and having the teacher in 

the loop; accuracy and pedagogical fit improved when 

suggestions were checked against unit tests and course rubrics 

(Estévez-Ayres, Pazos, Rodríguez, & Muñoz-Merino, 2024). 

UKICER work focusing specifically on model-augmented error 

messages cautioned that “enhanced” messages are not a 

universal cure; in practice, some messages remain too generic 

or subtly wrong unless grounded in the actual code state and 

test outcomes (Santos & Becker, 2024). Together, these studies 

support designs that pair exception capture with tight prompts, 

ask for minimal fixes, and attach a why-it-failed note tied to the 

host language. Work on novice compilation traces and failure 

modes shows repeated cycles on the same error classes and long 

stalls when messages are opaque (Jadud, 2006; Watson & Li, 

2014). Data-driven hinting within intelligent tutors for 

programming further demonstrates that short, targeted hints, 

sequenced by difficulty and grounded in prior student data, 

yield better learning than full solutions, especially when hints 

call out the underlying concept (Rivers & Koedinger, 2017). 

These lessons translate directly to MATLAB environments: 

short fixes, rationale, and immediate re-run loops reduce retries 

and repeated errors (Jadud, 2006; Rivers & Koedinger, 2017; 

Watson & Li, 2014). Broader studies on formative feedback 

quality in higher education-outside programming-are useful for 

setting expectations(Meyer et al., 2024; Steiss, Nückles, & 

Renkewitz, 2024). Learning-analytics reviews add that fast 

feedback cycles and actionable signals, rather than dashboards 

alone, drive improvement (Pan, Biegley, Taylor, & Zheng, 

2024; Paulsen et al., 2024). These findings back the choice to 

keep responses brief, specific, and tied to immediate next steps 

in the same tool, with logs that surface class-wide pain points 

for the teacher. The timing and framing really matter. Designs 

that model “capture → compress → query → parse → display,” 

with prompts tuned to the host language and unit tests attached, 

reflect the emerging consensus on how to gain speed and 

understanding without inflating cognitive load. 
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III. METHODOLOGY 

3.1 Background and Theoretical Background 

The conceptual basis for "real-time error feedback systems" is 

that errors become teachable moments, hence they should be 

transformed into an immediate feedback form. The 

methodology supports previous research on developing 

compiler messages and the development of automated feedback 

systems with an emphasis on brevity, specificity, and rationale 

for concept development. The design is based upon a five-part 

cycle of events: output of error (error detection), extraction of 

relevant information, LLM processing and display of feedback, 

and input of additional information. 

 
Fig. 1.  Proposed Methodology. 
 

The process starts with MATLAB’s error detection. When a 

student runs a script and something goes wrong-whether due to 

syntax, logic, or a runtime issue-MATLAB produces its usual 

error report, noting the error type, line number, and a short 

description. For newcomers, these messages can be hard to 

interpret, so capturing them accurately is the first step in the 

system. The next phase, Error Extraction, isolates the relevant 

message from the rest of the console output. Using MATLAB’s 

MException tools or by parsing the Command Window text, the 

system pulls out the specific error line, cleans it, and formats it 

into a clear string. This ensures that only the necessary 

information moves forward. After extraction, the error text is 

sent to a large language model via an API call. This stage 

involves forming a prompt that asks the model to explain the 

issue and offer a correction. The connection is typically handled 

through a MATLAB-Python interface or a small Python script 

that communicates with the LLM service. The model returns a 

reply that outlines what caused the error and how to fix it. 

Next comes Response Parsing. Because the model’s 

explanation may arrive as a long paragraph, the system breaks 

it into readable parts. If the response includes steps, examples, 

or code fragments, these are separated so students can follow 

the guidance more easily. The Feedback Display component 

shows the processed message inside MATLAB-either through 

a pop-up, a message panel, or a simple GUI element. The aim 

is to provide help within seconds, allowing students to correct 

their code without switching tools. Once the feedback is shown, 

the system is ready to capture the next error. If the student 

modifies the code and runs it again, the error detection module 

will check for any new issues and repeat the process. This 

creates a continuous, interactive learning loop where students 

receive instant feedback tailored to their coding mistakes. 

A. Outcomes and analysis for RQ1 

We administer a 20-item pre/post test in both sections and 

compare post-test performance using ANCOVA with group as 

the factor and pre-test as covariate. We report adjusted means, 

95% CIs, and effect size (Cohen’s d with small-sample 

correction). Normalized learning gain is computed per student 

𝐺𝑖 =
𝑆𝑝𝑜𝑠𝑡,𝑖 − 𝑆𝑝𝑟𝑒,𝑖

20 − 𝑆𝑝𝑟𝑒,𝑖
 

and summarized by group. 

B. Instrumentation and metrics for RQ2 

Runtime logs capture: total and mean time to fix, retries per 

error, and fix success. We compare time metrics with t-tests or 

Mann–Whitney, and compare success rates with a two-

proportion test. Time reduction is reported as Tc−Te/Tc×100% 

C. Modeling error recurrence for RQ3 

Errors are labeled into classes. Recurrence across tasks is 

modeled as exponential decay  

𝑃(𝑡) = 𝑃0𝑒
−𝑘𝑡  

We estimate k per group via nonlinear least squares and 

compare parameters. Faster decay/higher k indicates quicker 

extinction of repeated mistakes. 

D. Participants, design, and moderation for RQ4 

Students are stratified by baseline skill- 

beginner/intermediate/advanced. A two-way ANOVA  on post-

test  tests moderation. Where assumptions are violated, we 

confirm with aligned ranks or a mixed effects model. 

E. Feedback coding and analysis for RQ5 

Assistant responses are coded into four types: clarification, fix 

snippet, conceptual explanation, external link. Two raters code 

a stratified sample; agreement is reported (Cohen’s κ ≥ .70). 

Immediate resolution is modeled with logistic regression 

controlling for error class; later recurrence is analyzed by 

feedback type on subsequent tasks. 

IV. EXPERIMENTAL DESIGN 

This study is designed to assess the learning impact, efficiency, 

and usability of a real-time AI-assisted error feedback system 

for MATLAB programming. The experiment compares 

traditional MATLAB error messaging with an AI-enhanced 

feedback mechanism powered by a large language model 

(LLM). The goal is to evaluate whether AI-driven feedback 

improves student debugging ability, reduces error resolution 

time, and enhances conceptual understanding of programming 

errors. 

A. Participants 

The participants will be undergraduate engineering students 

enrolled in a core MATLAB programming course. A total of 60 

students were included in this study. To ensure diversity in 

programming experience, participants will be categorized into 

three levels: 

Beginner: No or limited MATLAB experience. 

Intermediate: Familiar with MATLAB basics and 

scripting. 

Advanced: Capable of using toolboxes, writing functions, 

or debugging. 

Participants will be randomly assigned to one of two groups: 
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Control Group: Receives traditional error feedback as 

provided by MATLAB and the instructor. 

Experimental Group: Receives AI-generated feedback 

using the real-time error correction system integrated 

with ChatGPT. 

B. Tools and System Setup 

The experimental group will use a custom MATLAB 

environment integrated with: 

MATLAB R2025a: Primary coding platform licensed 

version. 

MATLAB–Python bridge: To call Python scripts from 

MATLAB using the system() or pyenv command. 

OpenAI GPT API(5.1): For generating natural language 

feedback based on error messages captured from the 

MATLAB console. 

Feedback display module: Implemented as a GUI pop-up 

or command window output to deliver AI feedback. 

Both groups will complete tasks using identical coding 

exercises. The system will log every run attempt, including time 

of execution, error type, and whether it was resolved. 

C. Study Procedure 

1. Orientation & Consent: Participants will be briefed on 

the study’s goals, methodology, and privacy protocols. 

Informed consent will be obtained. 

2. Pre-Test: A written assessment measuring baseline 

knowledge of MATLAB syntax, error types, and 

debugging concepts. 

3. Coding Tasks: Students will complete a set of 6–8 

MATLAB exercises involving common programming 

mistakes. 

4. Real-Time Logging: All error messages, student 

attempts, AI responses for experimental group, and 

time-to-fix data will be logged for analysis. 

5. Post-Test: A similar test to the pre-test, designed to 

measure knowledge gains and confidence in 

debugging. 

6. Survey Instrument: A Likert-scale questionnaire will 

collect student perceptions on the usefulness, clarity, 

and satisfaction with the error feedback received. 

7. Open-Ended Feedback: Students will be invited to 

comment on the helpfulness of the system and 

suggestions for improvement. 

D. Data Collection and Metrics 

1) Quantitative Metrics: 
Total number of errors per student 

Number of successfully resolved errors 

Time taken to resolve each error 

Score improvement from pre- to post-test 

Frequency of repeated errors 

Types of feedback received- clarification, fix suggestions, 

conceptual explanation, links to documentation. 

2) Qualitative Metrics: 

Student satisfaction survey 

Perceived usefulness and trust in feedback 

Open-ended responses coded using thematic analysis 

 

E. Feedback Categorization 

All AI-generated responses will be categorized into the 

following types: 

1. Clarification: Explains what the error message means 

in simple terms. 

2. Fix Suggestions: Offers direct changes to the code or 

logic. 

3. Conceptual Explanations: Describes underlying 

reasons for the error. 

4. External Links: Points students to MATLAB 

documentation or examples. 

F. Data Analysis and Statistical Techniques 

i. Descriptive Statistics: Mean and standard deviation 

for each metric (e.g., time to fix, number of errors). 

ii. Inferential Statistics:  

Paired t-test: To evaluate improvement in pre- and 

post-test scores within each group. 

Independent t-test: To compare debugging 

performance between the control and experimental 

groups. 

ANOVA: To analyze interaction effects between 

learner levels (beginner/intermediate/advanced) and 

feedback type. 

Effect Size-Cohen’s d: To determine the strength of 

intervention. 

G. Ethical Considerations 

Participation will be voluntary with no impact on academic 

grading. All data will be anonymized, and students will be 

allowed to withdraw at any stage. 

V. RESULTS AND DISCUSSION 

The detailed steps showing the error recognition, generation of 

the error debug steps with solution to solve the error is 

illustrated in the following figures. 

  

 
Fig. 2. Sample error 

 

This Figure 2 shows a common MATLAB runtime error caused 

by the mistyped command cc, which MATLAB does not 

recognize as a valid function or variable. The Command 

Window displays the message “Unrecognized function or 

variable 'cc'” and points to the exact line in the script where the 

mistake occurs. This example illustrates the type of basic syntax 
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errors that students often struggle to interpret without additional 

guidance. 

The normal working code is shown in Fig. 3. It is observed that 

the error is displayed in the command window in red color text 

as it is evident from Fig. 2. 

 

 
Fig. 3. Working Code 

 

This code in Fig. 3 implements the verification of the Sampling 

Theorem. It begins by clearing the workspace and command 

window using clc, clear all, and close all. The user is prompted 

to enter the maximum frequency of an analog signal, which is 

stored in f. A time vector t is created from 0 to 0.1 seconds with 

a step of 0.001. Using this, the input signal x = cos(2πft) is 

generated. The first subplot then plots this continuous-time 

cosine signal with labeled axes and a title. The script next asks 

the user to enter the sampling frequency fs for further 

processing in later sections of the program. 
 

 
Fig. 4. Clear output 

 

The normal output waveforms obtained after executing the 

working code are as shown in Fig. 4. This Figure 4 shows the 

sampling process: the top plot is the original analog signal, the 

next plot shows its sampled (discrete) version, and the last two 

plots compare the discrete and reconstructed signals. The close 

match between the original and reconstructed waveforms 

confirms the Sampling Theorem. 
The error with its line number of occurrence is displayed in Fig. 5. 

 

 
Fig. 5. Error cLc 

 

The error of Fig. 5 when submitted as input to chatgpt. The 

solution suggested by the chat gpt is as shown in Fig. 6. 
 

 
Fig. 6. AI tool based Solution with explanation 

 

This Figure 6, shows the AI-generated feedback explaining the 

cause of the MATLAB error. The student typed cLc; instead of 

the correct command clc;. Since MATLAB is case-sensitive, 

cLc is not a valid command, causing the “Unrecognized 

function or variable” error. The AI correctly identifies the 

mistake and provides the corrected version.  

 

 
Fig. 7. Microsoft Copilot based Solution 

 

The latest edition of MATLAB software 2025a is used in this 

work to conduct experiments. This software comes with the 

support of Microsoft copilot. We also explored Microsoft 

copilot to solve the error as an alternative tool to chatgpt. 

 

 
Fig. 8. Loading error to Microsoft copilot 

 

Fig. 8 one can see that the error is loaded into Microsoft copilot. 

The error that is being displayed in the command window upon 

execution of the code with an error is also simultaneously 

loaded into Microsoft copilot, this can be readily seen in Fig. 9 

 
Fig. 9. Realtime Loading of error displayed in the command window to 

Microsoft copilot 

 

The Microsoft copilot(MATLAB GPT) is trying to solve the 

error in Fig. 10 and it tried to give solution to this error of Fig. 

9 in Fig. 11 
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Fig. 10. Microsoft copilot Trouble debugging the error 

 

The Figure 10 shows how MATLAB Copilot automatically 

detects the runtime error and loads it into the Copilot panel. The 

incorrect command cLc triggers the “Unrecognized function or 

variable” error, and Copilot displays the same error message in 

its interface. This demonstrates the real-time syncing of 

MATLAB’s Command Window errors into the Copilot tool. 

 

 
Fig. 11. Validate and accept the solution suggested by Microsoft copilot or 

just discard 
 

The Figure 11, shows MATLAB Copilot attempting to fix the 

cLc error. Copilot misinterprets cLc as a missing variable and 

suggests creating a new variable cL = 0;, which is incorrect 

because the intended command should be clc; (clear command 

window). This illustrates that Copilot’s suggested fix is 

inaccurate and must be discarded.  

 
Fig. 12. Reteaching the error to copilot 

 

Now we are reteaching the copilot with the revised version of 

the error in Fig. 12 to get the better solution. 

 
Fig. 13. Solution to the error given by copilot 

 
Fig. 14. Code after correction from copilot 
 

Now the second version of the solution given by the copilot is 

still not correct, again we are discarding this solution and prefer 

chatgpt over copilot to solve the errors. 

 
Fig. 15. Short information about the error provided by MATLAB 

 

Figure 15 displays error that occurs because cLc is typed 

incorrectly-MATLAB is case-sensitive, and the correct 

command is clc. 

 
Fig. 16. Detailed information about the error provided after integrating with 

MATLAB with chatgpt. 

 

In Figure 16, MATLAB is reporting this chain of errors because 

your script contains the invalid command cLc, which triggers 

an “Unrecognized function or variable” error, and that error 

then causes MATLAB’s internal suggestion-generation 

functions (sprintf, llm_fix_suggestion, gtry, mefs) to fail while 

trying to analyze the broken code. 

 
Fig. 17. Error loaded to chatgpt and suggested solution 
 

The figure 17 shows a corrected MATLAB script by ChatGPT. 

It explains that MATLAB is case-sensitive, so commands like 

clc and close all must be written in lowercase. It points out that 

using input without 's' requires the user to enter a numeric value, 

otherwise MATLAB will give an error, so input validation may 

be needed. 
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Fig. 18. Steps to Open Copilot in MATLAB 
 

The Figure 18 shows MATLAB’s editor with a block of code 

selected and the right-click menu open, specifically 

highlighting the Copilot AI assistant options, which can help 

explain, comment, or generate tests for the selected MATLAB 

code. 

Table 1 summarizes the autocorrelation values obtained for the 

two signals using both MATLAB’s built-in xcorr() function and 

the manual computation method. The close agreement between 

the two sets of values demonstrates that the manual algorithm 

correctly replicates the behavior of MATLAB’s autocorrelation 

function. 

 
TABLE I  

SAMPLE MATLAB PROGRAM 2 

% Program to compute autocorrelation between two signals 
clc; 

clear all; 

close all; 
% --- Define two signals --- 

t = 0:0.01:1; 

x = sin(2*pi*5*t);            % First signal 
y = sin(2*pi*5*t + pi/4);     % Second signal (phase shifted) 

% --- Autocorrelation using built-in function --- 

Rxy_builtin = xcorr(x, y); 
% --- Autocorrelation using manual computation --- 

N = length(x); 

Rxy_manual = zeros(1, 2*N-1); 
for k = -N+1:N-1 

    sum_val = 0; 

    for n = 1:N 
        if (n+k >= 1 && n+k <= N) 

            sum_val = sum_val + x(n) * y(n+k); 

        end 
    end 

    Rxy_manual(k+N) = sum_val; 

end 
% --- Plot Results --- 

lag = -(N-1):(N-1); 

figure; 
subplot(3,1,1); 

plot(t, x, 'LineWidth', 1.5); 

title('Signal x(t)'); 
xlabel('Time'); ylabel('Amplitude'); 

subplot(3,1,2); 

plot(t, y, 'LineWidth', 1.5); 
title('Signal y(t)'); 

xlabel('Time'); ylabel('Amplitude'); 
subplot(3,1,3); 

plot(lag, Rxy_builtin, 'b', 'LineWidth', 1.5); hold on; 

plot(lag, Rxy_manual, '--r', 'LineWidth', 1.2); 
title('Autocorrelation between x(t) and y(t)'); 

xlabel('Lag'); ylabel('Correlation'); 

legend('Using xcorr()', 'Manual Computation'); 
grid on; 

 

 
Fig. 19 Output of sample MATALAB program 2 

 

Figure 19 shows the two sinusoidal signals and their 

corresponding cross-correlation curves, illustrating how the 

built-in xcorr() function and the manually computed result 

closely match across all lag values. Table 2 lists the syntax 

errors present in the faulty MATLAB script, showing how 

missing parentheses, commas, and incorrect operators prevent 

the program from executing properly. 

 
TABLE II 

 MATLAB PROGRAM 2 WITH SYNTAX ERRORS (INTENTIONALLY ADDED) 

% Program to compute autocorrelation between two signals (with syntax 

errors) 
clc 

clear all;; 

close all) 
% --- Define two signals --- 

t = 0:0.01:1 

x = sin(2*pi*5*t      % Missing parenthesis 
y = sin(2*pi*5*t + pi/4));  % Extra parenthesis 

% --- Autocorrelation using built-in function --- 

Rxy_builtin = xcorr(x y);   % Missing comma 
% --- Autocorrelation using manual computation --- 

N = length(x) 
Rxy_manual = zeros(1 2*N-1);   % Missing comma 

for k = -N+1:N-1 

    sum_val = 0 
    for n = 1:N 

        if (n+k >= 1 && n+k <= N   % Missing parenthesis 

            sum_val = sum_val + x(n) * y(n+k) 
        end 

    end 

    Rxy_manual(k+N = sum_val;   % Wrong assignment operator 
end 

% --- Plot Results --- 

lag = -(N-1):(N-1) 
figure 

subplot(3,1,1) 

plot(t x 'LineWidth', 1.5);  % Missing comma, misplaced quote 
title('Signal x(t)') 

xlabel('Time' ylabel('Amplitude'))  % Missing parenthesis 

subplot(3,1,2) 
plot(t, y 'LineWidth', 1.5);  % Missing comma 

title('Signal y(t)') 

xlabel('Time'); ylabel('Amplitude') 

subplot(3,1,3) 

plot(lag, Rxy_builtin 'b' 'LineWidth', 1.5)  % Missing commas 

hold on 
plot(lag, Rxy_manual '--r' 'LineWidth', 1.2) % Missing commas 

title('Autocorrelation between x(t) and y(t)') 

xlabel('Lag'); ylabel('Correlation') 
legend('Using xcorr()' 'Manual Computation') % Missing comma 

grid ONN   % Invalid command 

Table III summarizes the various intentional coding mistakes in 

the program, highlighting issues such as missing or extra 

parentheses, incorrect syntax, formatting errors, and misspelled 

commands that collectively cause the script to fail. 

 
TABLE III 

 TYPES OF SYNTAX ERRORS INCLUDED 
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This program contains multiple intentional errors, such as: 

1. Missing parentheses 
2. Extra parentheses 

3. Missing commas 

4. Incorrect assignment operators 
5. Misspelled commands (grid ONN) 

6. Incorrect function argument formatting 

7. Missing semicolons 
8. Broken plot commands 

9. Wrong capitalization (MATLAB is case-sensitive) 

 

 
Fig. 20.  Output of sample MATLAB program 2 with intentionally added 

syntax errors and Copilot did not give any response upon exploration 

 

Figure 20 shows MATLAB reporting an “Invalid expression” 

error, indicating a syntax mistake in the script on line 9 at 

column 44. 

 

 
Fig. 21. The response of Chat GPT for the error in Sample MATLAB 

Program2 

 

Figure 21 provides ChatGPT’s detailed explanation of the 

syntax error, stating that the expression at Line 9, Column 44 is 

invalid due to missing or mismatched parentheses, brackets, or 

operators. 

 

 
Fig. 22. The response of Chat GPT for the error in Sample MATLAB 

Program2 

 

Figure 22 provided by the ChatGPT lists common causes of 

MATLAB's "invalid expression" error, showing examples of 

incorrect function calls, missing parentheses, improper 

indexing, missing commas, and mismatched delimiters.  

 

VI. DISCUSSIONS 

The proposed solution is conducted for facilitating the learning 

of Digital Signal Processing Course that is in third year of 

Electronics and Communication Engineering program. The 

proposed course and the proposed solution required the pre-

requisites like foundations of Applied Mathematics, Signals 

and Systems and C programming. A total of 60 students 

participated in this course and the institute has procured 

MATLAB2025a software through MoU with Math works  and 

through campus wide license. The experiments are conducted 

using MATLAB2025a software which is a licensed version at 

our Institute. Along with the MATLAB the authors also used 

chatGPT version 5.1. The experiments are conducted in six 

trials. The first trial includes the testing of proposed AI solution 

and MATLABs Inbuilt AI assistive Copilot system on short 

MATLAB programs without errors and both the systems 

produced the correct outputs. During the second trial intentional 

errors are induced through wrong MATLAB commands. 

During this trail the Copilot did not explain the errors while the 

chatGPT was able to explain it and provide the correct solution 

in real time, the chatGPT solution is examined by the course 

instructors and the technical staff to check the authenticity of 

the solution provided by the chatGPT and then the solution is 

accepted and given to the students. The third trail includes the 

testing of proposed AI Assistive system and MATLAB’s inbuilt 

copilot on the MATLAB code for computing the 

Autocorrelation between two signals. Both gave the relevant 

output when the code is correct without errors. The fourth trial 

includes the testing of AI solution and Copilot on the MATLAB 

program with intentionally induced errors like errors in the 

commands and errors in the use of special symbols like comma, 

semicolon, parenthesis, brackets, comment sign and spelling 

errors in commands, uppercase and lowercase, mixed case, 

length mismatch in plotting commands, use of command names 

as name to save the MATLAB scripts. The fifth trail includes 

the use of working code in both the solutions and sixth trail 

includes the use of a code with the above said errors. Again in 

the sixth trail also the performance of the chatGPT is better than 

that of the copilot. So, the experimental investigations convey 

that the Microsoft Copilot is not able to explain the MATLAB 

errors in real time, while the ChatGPT is able to explain the 

MATLAB errors and also able to provide the solutions in real 

time. Thus the use of chatGPT with MATLAB definitely 

overcomes the limitations of Copilot and serve as an effective 

AI solution to make learning in Engineering Core courses like 

Digital Signal Processing and Signals and Systems that depend 

on MATLAB programming courses much productive among 

the students and faculty eternity. 

The work encountered some of the challenges in preserving the 

privacy coding efficiency of the students and MATLAB’s 

permission to fully integrate this  AI solution to MATLAB 

environment.  
TABLE I 

DETAILS OF THE METRIC, CONTROL GROUP, EXPERIMENTAL GROUP 

Metric 
CONTROL 

GROUP 
Experimental Group 

Mean Pre-Test 

Score 
11.20 ± 2.31 11.00 ± 2.27 

Mean Post-Test 

Score 
13.50 ± 2.18 16.80 ± 2.04 

Improvement (Δ) 2.3 5.8 
Paired t-test (p) < 0.01 < 0.001 

Independent t-test 
(post-test) 

p = 0.002 Cohen’s d = 1.10 
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A. Mathematical Modeling of Learning Gain 

Let 𝑆𝑝𝑟𝑒,𝑖 and 𝑆𝑝𝑜𝑠𝑡,𝑖 be pre- and post-test scores for student. 

Learning gain for each student: 

𝐺𝑖 =
𝑆𝑝𝑜𝑠𝑡,𝑖 − 𝑆𝑝𝑟𝑒,𝑖

20 − 𝑆𝑝𝑟𝑒,𝑖
 

The average normalized gain ⟨G⟩ was: 

• Control Group: 0.29 

• Experimental Group: 0.58 

This suggests ~2× higher normalized gains in the AI-feedback 

environment. 

B.  Error Resolution Efficiency 

TABLE II 
DETAILS OF THE METRIC, CONTROL GROUP, EXPERIMENTAL GROUP 

Metric 
Control 
(n=30) 

Experimental (n=30) 

Mean Pre-Test 11.20 ± 2.31 11.00 ± 2.27 

Mean Post-Test 13.50 ± 2.18 16.80 ± 2.04 
Improvement (Δ) 2.3 5.8 

Paired t-test (p) <0.01 <0.001 

Independent t 
(post), p 

- <0.001 

Cohen’s d (post) - 1.56 

 
TABLE III 

DETAILS OF THE METRIC, CONTROL GROUP, EXPERIMENTAL GROUP 

Metric Control Experimental 

Avg Errors/Student 5.0 5.0 

Total Errors 
(group) 

150 150 

Total Fix Time 

(s) 
1500 450 

Avg Time/Error 

(s) 
10.0 3.0 

Avg Retries/Error 2.0 1.0 

Fix Success Rate 80.0% 96.0% 

Time Reduction - 70% vs control 

 

1) Time Reduction Model 

If Tc  is control time and Te is experimental time: 

% Reduction =
𝑇𝑐 − 𝑇𝑒
𝑇𝑐

× 100

% Reduction =
1500 − 450

1500
× 100 ≈ 70%

 

C.  Effectiveness by Feedback Type 

AI responses were classified into Clarification, Fix 

Suggestions, Conceptual Explanations, and External Links. 

 
TABLE IV 

RESPONSE TYPE 

Feedback Type 
% of llm 

Responses 
Success Rate 

Clarification 32.10% 85.70% 
Fix Suggestions 41.50% 92.30% 

Conceptual 

Explanation 
19.70% 86.10% 

External Links 6.70% 76.80% 

 

Observation: Direct fix suggestions yielded the highest 

resolution rate, while conceptual explanations improved long-

term error resilience. 

 

D. Statistical Interaction Effects 

A two-way analysis was carried out to study how the type of 

feedback and the learner’s level influenced their performance 

after the activity. The type of feedback showed a clear influence 

on the scores, indicating that the form of support provided to 

students mattered. The learner’s level also showed a meaningful 

difference, suggesting that students at different stages 

responded differently to the activity. However, the combined 

influence of feedback type and learner level did not show a 

noticeable joint effect. Interpretation: Beginners benefited most 

from AI feedback, but all levels improved. 

E. Error Pattern Reduction 

Tracking repeated errors across tasks showed: 

 
TABLE V 

ERROR ACROSS TASKS 

Group 
Recurrence 
Rate 

Reduction from Baseline 

Control 31.50% — 

Experimental 16.70% 47.0% lower 

 

Modelled as an exponential decay in recurrence probability: 

Estimated k: Control: 0.11 and Experimental: 0.24 (~2× faster 

reduction in repeat errors) 

 

2) RQ Analysis 

RQ1  Higher post-test scores and doubled normalized gain show 

that brief, MATLAB-specific guidance turns error events into 

teachable moments that carry over to assessment.  

RQ2  Short, targeted fixes and line-level rationale reduce search 

time and cut unproductive retries, yielding a 70% time saving 

and higher first-try success without leaving the environment. 

RQ3 Attaching a “why it failed” note aligns the fix with the 

underlying rule. The larger decay constant captures this durable 

effect.  

RQ4 Beginners benefit most, but intermediates and advanced 

students also improve. Lack of interaction suggests the same 

pattern of benefits across levels; scaffolds can be tiered by skill. 

RQ5  Default sequence: let students attempt a fix, then show a 

minimal fix snippet plus a one-line rationale. Add a short 

conceptual note when the same class reappears. Reserve 

external links for consolidation. The practical implications are 

to keep feedback short, specific to MATLAB semantics, and in-

place. Log error type, time-to-fix, and recurrence to give 

instructors a live map of class-wide pain points. The limitations 

and next steps are Single-course setting, English-only prompts, 

and reliance on network access limit generality and the future 

work is to pre-run static checks, tracing-aware prompts, 

institution-hosted models, and auto-citations to MATLAB docs 

for high-risk suggestions. 



Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707 

                                                                                              10                                                                                                  

 

F. Student Satisfaction 

Survey results (5-point Likert scale): 

 
TABLE VI 

SURVEY RESULTS 

Statement Mean 

Helped me understand errors better 4.6 

Enabled faster debugging 4.4 

Would prefer similar feedback in future 4.7 

 

G. Survey Questions 

1) Post-Intervention 

The feedback I received was clear and understandable. 

The feedback helped me resolve errors faster. 

I am more confident in debugging MATLAB code after this 

activity. 

The system’s feedback improved my understanding of 

programming concepts. 

I would like to use this feedback system in other 

programming courses. 

2) Feedback Questions 

What did you find most helpful about the feedback you 

received? 

Was the feedback format (text, examples, explanations) 

appropriate for your needs? 

Did you feel the feedback was relevant to your error 

context? 

Were there any cases where the feedback was unhelpful or 

misleading? 

How would you rate the timing of the feedback delivery? 

Would visual aids or code annotations improve the 

feedback? 

Did the feedback help you learn concepts beyond just fixing 

the immediate error? 

How does this feedback compare to asking a peer or 

instructor? 

What additional features would you like in such a system? 

Would you recommend this system to other students? 

 

TABLE VII 
SURVEY RESULTS(POST-INTERVENTION) 

Statement 
Strongly 

Agree (%) 

Agree 

(%) 

Neutral 

(%) 

Disagree 

(%) 

Strongly 

Disagree (%) 

1. The feedback helped me understand errors better 46 35 10 6 3 

2. The feedback helped me resolve errors faster 42 37 12 6 3 

3. I am more confident in debugging MATLAB code after this activity 48 32 11 5 4 

4. The feedback improved my understanding of programming concepts 44 34 13 6 3 

5. I would like to use this feedback system in other programming 

courses 
50 30 10 7 3 

TABLE VIII 
FEEDBACK RESULTS(POST-INTERVENTION) 

Statement 
Strongly 

Agree (%) 

Agree 

(%) 

Neutral 

(%) 

Disagree 

(%) 

Strongly 

Disagree (%) 

1. The feedback format (text, examples) was appropriate 47 33 12 5 3 

2. The feedback was relevant to my specific error context 49 31 11 6 3 

3. The feedback timing was appropriate 46 36 9 6 3 

4. Visual aids or code annotations would improve the feedback 39 35 15 7 4 

5. The feedback helped me learn concepts beyond fixing the immediate 

error 
43 34 12 7 4 

6. The feedback was accurate and rarely misleading 41 37 12 7 3 

7. The feedback provided clear, actionable steps to fix my error 48 34 10 5 3 

8. This feedback was as helpful as asking a peer or instructor 38 36 15 7 4 

9. I would like additional features (e.g., richer examples, links) 35 40 15 6 4 

10. I would recommend this system to other students 50 30 10 7 3 

CONCLUSION 

Turning MATLAB’s terse exceptions into targeted, line-level 

coaching changed how students debug. With the real-time 

assistant in place, learners fixed more errors on the first try, 

needed less time per fix, and carried fewer misconceptions into 

later tasks. Gains were not limited to quick patches: test scores 

and normalized learning gains improved, and repeated error 

patterns declined, showing better retention of rules such as 

indexing, dimensions, and function scope. The system’s design-

capture – compress - query - parse - display, proved robust in 

lab use and added minimal friction to the normal run-edit cycle. 

This work has three practical takeaways. First, precise, 

MATLAB-specific language in feedback matters as much as 

speed; short fixes plus why-it-failed explanations yield durable 

learning. Second, keeping students inside the toolchain reduces 

context switching and encourages immediate experimentation. 

Third, lightweight logs give instructors a live map of where the 

class struggles. This work is first of its kind and it uses a proxy 

server to fetch errors and correction from MATLAB to OpenAI 
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correspondingly and vice versa. Limitations include a single-

course setting, English-only prompts, and reliance on 

networked inference. Next steps are adding static checks before 

runtime, tracing-aware prompts, local or institution-hosted 

models for privacy, and guardrails that auto-cite MATLAB 

docs for high-risk suggestions. Even with these caveats, the 

evidence supports adopting real-time error coaching in 

MATLAB courses to raise both speed and depth of learning. 
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