Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

Real-Time Al-Assisted Error Feedback System
and Copilot for MATLAB Programming in Core
Engineering Courses: A Comparative Analysis

Dr. Mahadevaswamy', Dr. Sathyanarayana N2, Dr. B P Pradeep Kumar?, Dr. Jagadeesh B*, Dr.
Swapnil S Ninawe®
4 Associate Professor, Dept. of ECE, Vidyavardhaka College of Engineering, Mysuru,
2Associate Professor, Dept. of ISE, Vemana Institute of Technology, Bengaluru,
3Professor, Dept. of CSD, Atria Institute of Technology, Bengaluru,
SAssistant Professor, Dept. of ECE, Dayananda Sagar College of Engineering, Bengaluru,
'mahadevaswamy@vvce.ac.in, “sathya40y@gmail.com , *pradil4cta@gmail.com ,
“agadeesh.b@vvce.ac.in, >swapnil.ninawe@gmail.com

Abstract— New MATLAB learners often get stuck because they
cannot read or fix early errors. We tested a real-time system that
catches run-time exceptions, pulls the message and nearby code,
and gives a short explanation plus a small corrected example inside
the editor. We compared this with MATLAB’s built-in copilot. In
a class study with 60 students, both groups did the same lessons
and tasks; only the feedback differed. The treatment group, which
saw the real-time explanations, scored higher on the post-test (16.8
vs. 13.5), showed a much larger learning gain (0.58 vs. 0.29), and
fixed errors faster. Across about 300 total errors, total repair time
dropped from 1,500 s to 450 s, retries fell from 2 to 1 per error,
and successful fixes rose from 80% to 96%. Beginners improved
the most, and repeat errors fell by roughly 47%. Students said the
messages were clear and useful. Then, turning MATLAB error
messages into short, direct guidance improved accuracy, speed,
and retention without leaving the MATLAB workspace.

Keywords— Debugging; error feedback; MATLAB;
programming education; real-time guidance; learning gain

JEET Category— Track: Emerging Technologies and Future
Skills. SubTrack: Pedagogy for the Modern Classroom-Strategies
for Engaging Students through Al

I. INTRODUCTION

n engineering and scientific programs, MATLAB has

become a core tool for building algorithmic skills, modeling

dynamic behavior, and tackling numerical problems. Yet
many students—especially those encountering the language for
the first time—struggle when their code breaks. Their limited
grasp of MATLAB’s syntax, logic, and error phrasing often
makes debugging slow and discouraging. These hurdles can
stall progress, increase frustration, and reduce engagement,

particularly in large classes or self-guided settings where timely
instructor help is difficult to obtain.

MATLAB?’s error messages are typically fixed, concise system
outputs that rarely offer context beyond identifying the issue.
For beginners who do not yet understand ideas such as
mismatched matrix sizes or incorrect indexing, simply
deciphering what the message means can be a major obstacle.
Although MATLAB provides standard debugging features, the
environment does not supply adaptive or learner-centered
explanations that meet students at their level. As a result,
novices often fall back on guesswork, repeated trial and error,
or searching online for snippets of code—approaches that may
fix immediate issues but contribute little to long-term
understanding.

Recent progress in natural-language models has opened
possibilities for improving programming instruction through
interactive, conversational support. Large language models
(LLMs) like ChatGPT can interpret both text and code,
recognize the situation behind an error, and offer clear
explanations or examples within seconds. When paired with an
execution environment, such models can turn a confusing
system message into an opportunity for guided learning.
Despite this potential, similar integrations have rarely been
explored for MATLAB, even though it remains a central
language in many university courses and research settings.
This study introduces an automated real-time feedback system
designed to bring this capability into MATLAB. The system
detects exceptions during execution, constructs a natural-
language query, and obtains an immediate, tailored response
through an LLM-based interface. In contrast to standard error
messages, the feedback includes plain-language explanations,
stepwise advice, and corrected code grounded in the student’s
own script. The goal is not only to help students resolve errors

Dr. Mahadevaswamy
Associate Professor, Department of ECE, Vidyavardhaka College of Engineering, Mysuru
mahadevaswamy@vvce.ac.in

1

JEET

mailto:mahadevaswamy@vvce.ac.in
mailto:sathya40y@gmail.com
mailto:pradi14cta@gmail.com
mailto:jagadeesh.b@vvce.ac.in
mailto:5swapnil.ninawe@gmail.com

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

but also to reinforce underlying concepts, making the tool
useful for both troubleshooting and deeper learning.

The work presented here contributes to programming education
by (i) building a reliable mechanism for capturing and
forwarding MATLAB errors, (ii) linking this mechanism to an
LLM-driven conversational layer for feedback delivery, and
(iii) assessing the instructional value of the system through
classroom-based evaluation. The study further analyzes which
errors students encounter most often, what kinds of
explanations they find helpful, and how immediate feedback
shapes their confidence and debugging performance.
Ultimately, this research responds to the limitations of static
system messages and lays groundwork for more adaptive
tutoring systems that respond to students’ coding patterns and
levels of understanding. The results aim to inform the next
generation of learning tools, in which artificial intelligence acts
not simply as a generator of code but as an on-demand guide
that supports individual learning paths. This work is first of its
kind as it includes the creation of Al based real time MATLAB
error analysis and correction support. The major steps involved
in automating the error feedback system is to first capture the
error from the MATLAB command window, create a report on
the error analysis. Create the solutions using chatGPT.
Compare this performance with that of the copilot from
MATLAB software. This work examines whether turning the
MATLAB exceptions into concise, context-aware guidance
improves learning and debugging. We address five questions:
RQI. Does Al based real-time error guidance improve
performance relative to default MATLAB’s copilot error
explanation and correction?

RQ2. Does the system increase debugging efficiency (time per
error, retries per error) and fix success rate?

RQ3. Does the system reduce recurrence of the same error
class across tasks?

RQ4. Are benefits moderated by prior skill level (beginner,
intermediate, advanced)?

RQ5. Which feedback type (clarification, minimal fix snippet,
conceptual explanation, external link) yields the fastest
resolution and best retention?

II. RELATED WORKS

Novice programmers struggle first and most with error
comprehension. Classic and careful studies showed that the
form and phrasing of error messages materially affect time-to-
fix, comprehension, and frustration, and that improving
messages helps up to a point but cannot replace targeted
guidance (Marceau, Fisler, & Krishnamurthi, 2011; Becker,
2016). Subsequent controlled classroom and field studies
examined compiler/IDE message redesigns and found
measurable but bounded gains when messages were clarified,
localized, or paired with links to examples; stronger outcomes
appeared when guidance also explained why a fix worked, not
only what to change (Becker, Glanville, & Goslin, 2018). These
results motivate systems that go beyond surface edits to attach
short rationale in the language of the host environment (e.g.,
MATLAB indexing rules, array shape semantics). (Becker,
2016; Becker et al., 2018; Marceau et al., 2011). A systematic

review across tools, strategies, and constraints noted that
effective systems combine test-based checks, program
analyses, and pattern mining to deliver timely, specific hints;
they work best when feedback targets a known misconception
class and when students can iterate quickly (Keuning, Jeuring,
& Heeren, 2018). This aligns with designs that capture
exceptions at runtime, compress context, and return minimal,
actionable suggestions that match the learner’s error class.
Recent computing-education work has begun to compare
feedback from large language models with rule-based tasks.
Across several 2024 conference papers, large models produced
higher-coverage comments and more natural phrasing but
varied in correctness and specificity; combining them with
scaffolds (e.g., “try first, then reveal hint”) reduced over-
reliance and improved revision quality (Azaiz, Kiesler, &
Strickroth, 2024; Lohr et al., 2024; Ruan et al., 2024). These
studies recommend constraining prompts, limiting verbosity,
and embedding verification (tests, examples) alongside model
feedback-practices mirrored in systems that turn raw exceptions
into short, environment-specific coaching. A field evaluation in
higher education reported that large-model tools can generate
useful formative feedback in programming courses, but utility
depends on error type, prompt design, and having the teacher in
the loop; accuracy and pedagogical fit improved when
suggestions were checked against unit tests and course rubrics
(Estévez-Ayres, Pazos, Rodriguez, & Muiloz-Merino, 2024).
UKICER work focusing specifically on model-augmented error
messages cautioned that “enhanced” messages are not a
universal cure; in practice, some messages remain too generic
or subtly wrong unless grounded in the actual code state and
test outcomes (Santos & Becker, 2024). Together, these studies
support designs that pair exception capture with tight prompts,
ask for minimal fixes, and attach a why-it-failed note tied to the
host language. Work on novice compilation traces and failure
modes shows repeated cycles on the same error classes and long
stalls when messages are opaque (Jadud, 2006; Watson & Li,
2014). Data-driven hinting within intelligent tutors for
programming further demonstrates that short, targeted hints,
sequenced by difficulty and grounded in prior student data,
yield better learning than full solutions, especially when hints
call out the underlying concept (Rivers & Koedinger, 2017).
These lessons translate directly to MATLAB environments:
short fixes, rationale, and immediate re-run loops reduce retries
and repeated errors (Jadud, 2006; Rivers & Koedinger, 2017,
Watson & Li, 2014). Broader studies on formative feedback
quality in higher education-outside programming-are useful for
setting expectations(Meyer et al., 2024; Steiss, Niickles, &
Renkewitz, 2024). Learning-analytics reviews add that fast
feedback cycles and actionable signals, rather than dashboards
alone, drive improvement (Pan, Biegley, Taylor, & Zheng,
2024; Paulsen et al., 2024). These findings back the choice to
keep responses brief, specific, and tied to immediate next steps
in the same tool, with logs that surface class-wide pain points
for the teacher. The timing and framing really matter. Designs
that model “capture — compress — query — parse — display,”
with prompts tuned to the host language and unit tests attached,
reflect the emerging consensus on how to gain speed and
understanding without inflating cognitive load.

JEET

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

III. METHODOLOGY

3.1 Background and Theoretical Background

The conceptual basis for "real-time error feedback systems" is
that errors become teachable moments, hence they should be
transformed into an immediate feedback form. The
methodology supports previous research on developing
compiler messages and the development of automated feedback
systems with an emphasis on brevity, specificity, and rationale
for concept development. The design is based upon a five-part
cycle of events: output of error (error detection), extraction of
relevant information, LLM processing and display of feedback,
and input of additional information.

—
'A - .
—_— ChatGPT
LLM

Error Detection Error Extraction
in MATLAB

L=

P ==y
Feedback
Display

Response
Parsing

Response
Parsing

Fig. 1. Proposed Methodology.

The process starts with MATLAB’s error detection. When a
student runs a script and something goes wrong-whether due to
syntax, logic, or a runtime issue-MATLAB produces its usual
error report, noting the error type, line number, and a short
description. For newcomers, these messages can be hard to
interpret, so capturing them accurately is the first step in the
system. The next phase, Error Extraction, isolates the relevant
message from the rest of the console output. Using MATLAB’s
MException tools or by parsing the Command Window text, the
system pulls out the specific error line, cleans it, and formats it
into a clear string. This ensures that only the necessary
information moves forward. After extraction, the error text is
sent to a large language model via an API call. This stage
involves forming a prompt that asks the model to explain the
issue and offer a correction. The connection is typically handled
through a MATLAB-Python interface or a small Python script
that communicates with the LLM service. The model returns a
reply that outlines what caused the error and how to fix it.

Next comes Response Parsing. Because the model’s
explanation may arrive as a long paragraph, the system breaks
it into readable parts. If the response includes steps, examples,
or code fragments, these are separated so students can follow
the guidance more easily. The Feedback Display component
shows the processed message inside MATLAB-either through
a pop-up, a message panel, or a simple GUI element. The aim
is to provide help within seconds, allowing students to correct
their code without switching tools. Once the feedback is shown,
the system is ready to capture the next error. If the student
modifies the code and runs it again, the error detection module
will check for any new issues and repeat the process. This
creates a continuous, interactive learning loop where students
receive instant feedback tailored to their coding mistakes.

A. Outcomes and analysis for RQ1

We administer a 20-item pre/post test in both sections and
compare post-test performance using ANCOVA with group as
the factor and pre-test as covariate. We report adjusted means,
95% Cls, and effect size (Cohen’s d with small-sample
correction). Normalized learning gain is computed per student
G = Spost,i — Opre,i
' 20 = Sprei

and summarized by group.

B. Instrumentation and metrics for RQ2
Runtime logs capture: total and mean time to fix, retries per
error, and fix success. We compare time metrics with #-tests or
Mann—Whitney, and compare success rates with a two-
proportion test. Time reduction is reported as Tc—Te/Tcx100%
C. Modeling error recurrence for RO3
Errors are labeled into classes. Recurrence across tasks is
modeled as exponential decay

P(t) = Pye k¢
We estimate k& per group via nonlinear least squares and
compare parameters. Faster decay/higher k indicates quicker
extinction of repeated mistakes.
D. Participants, design, and moderation for RQ4
Students are stratified by baseline skill-
beginner/intermediate/advanced. A two-way ANOVA on post-
test tests moderation. Where assumptions are violated, we
confirm with aligned ranks or a mixed effects model.
E. Feedback coding and analysis for RQ5
Assistant responses are coded into four types: clarification, fix
snippet, conceptual explanation, external link. Two raters code
a stratified sample; agreement is reported (Cohen’s k > .70).
Immediate resolution is modeled with logistic regression
controlling for error class; later recurrence is analyzed by
feedback type on subsequent tasks.

IV. EXPERIMENTAL DESIGN

This study is designed to assess the learning impact, efficiency,
and usability of a real-time Al-assisted error feedback system
for MATLAB programming. The experiment compares
traditional MATLAB error messaging with an Al-enhanced
feedback mechanism powered by a large language model
(LLM). The goal is to evaluate whether Al-driven feedback
improves student debugging ability, reduces error resolution
time, and enhances conceptual understanding of programming
errors.

A. Participants

The participants will be undergraduate engineering students
enrolled in a core MATLAB programming course. A total of 60
students were included in this study. To ensure diversity in
programming experience, participants will be categorized into
three levels:
Beginner: No or limited MATLAB experience.
Intermediate: Familiar with MATLAB basics and
scripting.
Advanced: Capable of using toolboxes, writing functions,
or debugging.
Participants will be randomly assigned to one of two groups:

JEET

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

B.

Control Group: Receives traditional error feedback as
provided by MATLAB and the instructor.
Experimental Group: Receives Al-generated feedback
using the real-time error correction system integrated
with ChatGPT.

Tools and System Setup

The experimental group will use a custom MATLAB
environment integrated with:

MATLAB R2025a: Primary coding platform licensed
version.

MATLAB—-Python bridge: To call Python scripts from
MATLAB using the system() or pyenv command.

OpenAl GPT API(5.1): For generating natural language
feedback based on error messages captured from the
MATLAB console.

Feedback display module: Implemented as a GUI pop-up
or command window output to deliver Al feedback.

Both groups will complete tasks using identical coding
exercises. The system will log every run attempt, including time
of execution, error type, and whether it was resolved.

C.

D.

Study Procedure

1. Orientation & Consent: Participants will be briefed on
the study’s goals, methodology, and privacy protocols.
Informed consent will be obtained.

2. Pre-Test: A written assessment measuring baseline
knowledge of MATLAB syntax, error types, and
debugging concepts.

3. Coding Tasks: Students will complete a set of 6-8
MATLAB exercises involving common programming
mistakes.

4. Real-Time Logging: All error messages, student
attempts, Al responses for experimental group, and
time-to-fix data will be logged for analysis.

5. Post-Test: A similar test to the pre-test, designed to
measure knowledge gains and confidence in
debugging.

6. Survey Instrument: A Likert-scale questionnaire will
collect student perceptions on the usefulness, clarity,
and satisfaction with the error feedback received.

7. Open-Ended Feedback: Students will be invited to
comment on the helpfulness of the system and

suggestions for improvement.

Data Collection and Metrics

1) Quantitative Metrics:

Total number of errors per student

Number of successfully resolved errors

Time taken to resolve each error

Score improvement from pre- to post-test

Frequency of repeated errors

Types of feedback received- clarification, fix suggestions,
conceptual explanation, links to documentation.

2) Qualitative Metrics:

Student satisfaction survey
Perceived usefulness and trust in feedback
Open-ended responses coded using thematic analysis

E. Feedback Categorization

All Al-generated responses will be categorized into the

following types:

1. Clarification: Explains what the error message means
in simple terms.

2. Fix Suggestions: Offers direct changes to the code or
logic.

3. Conceptual Explanations: Describes underlying
reasons for the error.

4. External Links: Points students to MATLAB

documentation or examples.

F. Data Analysis and Statistical Techniques

1.

ii.

Descriptive Statistics: Mean and standard deviation
for each metric (e.g., time to fix, number of errors).
Inferential Statistics:

Paired t-test: To evaluate improvement in pre- and
post-test scores within each group.

Independent t-test: To compare debugging
performance between the control and experimental
groups.

ANOVA: To analyze interaction effects between
learner levels (beginner/intermediate/advanced) and
feedback type.

Effect Size-Cohen’s d: To determine the strength of
intervention.

G. Ethical Considerations

Participation will be voluntary with no impact on academic
grading. All data will be anonymized, and students will be
allowed to withdraw at any stage.

V. RESULTS AND DISCUSSION

The detailed steps showing the error recognition, generation of
the error debug steps with solution to solve the error is
illustrated in the following figures.

Fig. 2. Sample error

This Figure 2 shows a common MATLAB runtime error caused
by the mistyped command cc, which MATLAB does not
recognize as a valid function or variable. The Command
Window displays the message “Unrecognized function or

variable 'cc

5

and points to the exact line in the script where the

mistake occurs. This example illustrates the type of basic syntax

JEET

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

errors that students often struggle to interpret without additional

guidance.
The normal working code is shown in Fig. 3. It is observed that

the error is displayed in the command window in red color text
as it is evident from Fig. 2.

B m | gt = makehgita

%X Verification of Sampling Theorem.
cle;
close all;

4 clear all;

ication of Sampling Theorem');

6 f=input(‘enter the max frequency of analog signal f in Hz='
7 =0:0.001:0.1;

8 % Define input
9 x=€0s(24p1*Frt);

18 % Plot the input signal
1 subplot(4,1,1);

12 plot(t,x};

13 xlabel(time’);
amplitude');

signal

14 ylabel(

17 Fs=input he ling frequency fs in HZ=')

Fig. 3. Working Code

This code in Fig. 3 implements the verification of the Sampling
Theorem. It begins by clearing the workspace and command
window using clc, clear all, and close all. The user is prompted
to enter the maximum frequency of an analog signal, which is
stored in f. A time vector t is created from 0 to 0.1 seconds with
a step of 0.001. Using this, the input signal x = cos(2nft) is
generated. The first subplot then plots this continuous-time
cosine signal with labeled axes and a title. The script next asks
the user to enter the sampling frequency fs for further
processing in later sections of the program.

g igass

Fig. 4. Clear output

The normal output waveforms obtained after executing the
working code are as shown in Fig. 4. This Figure 4 shows the
sampling process: the top plot is the original analog signal, the
next plot shows its sampled (discrete) version, and the last two
plots compare the discrete and reconstructed signals. The close
match between the original and reconstructed waveforms

confirms the Sampling Theorem.
The error with its line number of occurrence is displayed in Fig. 5.

>> expBl

Unrecognized function or variable ‘'clc’.
Error in expBl (line 2)

clLc;

AAA

Fig. 5. Error cLc

The error of Fig. 5 when submitted as input to chatgpt. The
solution suggested by the chat gpt is as shown in Fig. 6.

| see the MATLAB error in your screenshot. The issue is simple:

You wrote

cle;

instead of

cle;

Fig. 6. Al tool based Solution with explanation

This Figure 6, shows the Al-generated feedback explaining the
cause of the MATLAB error. The student typed cLc; instead of
the correct command clc;. Since MATLAB is case-sensitive,
cLc is not a valid command, causing the “Unrecognized
function or variable” error. The Al correctly identifies the
mistake and provides the corrected version.

Verification of Sampling Theorem
enter the max frequency of analog signal f in HZ=16@
enter the sampling frequency fs in HZ=25@

++ Ask Copliot ENTER to Submit / ESC to exit

Fig. 7. Microsoft Copilot based Solution

The latest edition of MATLAB software 2025a is used in this
work to conduct experiments. This software comes with the
support of Microsoft copilot. We also explored Microsoft
copilot to solve the error as an alternative tool to chatgpt.

%% Verification of Sampling Theorem.

Error in expB1 (line 2)
clLc;

Fig. 8. Loading error to Microsoft copilot

Fig. 8 one can see that the error is loaded into Microsoft copilot.
The error that is being displayed in the command window upon
execution of the code with an error is also simultaneously
loaded into Microsoft copilot, this can be readily seen in Fig. 9

1 %% Verification of Sampling Theorem.

function or vanable ‘ciL.c’,
ine 2)

2 cllc;
3 close all;
a4 clear all;
>> expBl
Unrecognized function or variable ‘cllc
Error in expBl (line 2)
cllc;

Fig. 9. Realtime Loading of error displayed in the command window to
Microsoft copilot

The Microsoft copilot(MATLAB GPT) is trying to solve the
error in Fig. 10 and it tried to give solution to this error of Fig.
9 in Fig. 11

JEET

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

¢ SE@ Do s mew

SATpm % expBTm X

gESpaNEITanSIomE m % | makengom.m

Unrecogizes function or varable ‘L |
4 Enorin oxpB1 (ine 2)
oL

[Step Generating

2 clc;
3 close all;
a clear all;

Command Winsow
Pt

recognized function or variable ‘clc’.

rror in expBl (line 2)
L

Fig. 10. Microsoft copilot Trouble debugging the error

The Figure 10 shows how MATLAB Copilot automatically
detects the runtime error and loads it into the Copilot panel. The
incorrect command cLc triggers the “Unrecognized function or
variable” error, and Copilot displays the same error message in
its interface. This demonstrates the real-time syncing of
MATLAB’s Command Window errors into the Copilot tool.

%% Verification of Sampling Theorem.
cle;
Unrecognized function or variable ‘cLc. P
4 Ermor in expB1 (line 2)
* g
To save, first accept or discard changes.

e generated output before use

Accept| [Discard iy [GP

|cL = @; % Initialize cL to avoid unrecognized variable error

Fig. 11. Validate and accept the solution suggested by Microsoft copilot or
just discard

The Figure 11, shows MATLAB Copilot attempting to fix the
cLc error. Copilot misinterprets cLc as a missing variable and
suggests creating a new variable cL = 0;, which is incorrect
because the intended command should be clc; (clear command
window). This illustrates that Copilot’s suggested fix is
inaccurate and must be discarded.

%% Verification of Sampling Theorem.

clc;

close all;

clear all;

disp('Verification of Sampling Theorem');

f=input('enter the max frequency of analog signal f in HZ=')j
e comection of nialzing GL=3 wil o solv ihe erar we have fo convert L in ek to i give >

t=0:8.001:0.1;

% Define input signal

x=cos (2*pi*Ff*r);

% Plot the input signal

Fig. 12. Reteaching the error to copilot

Now we are reteaching the copilot with the revised version of
the error in Fig. 12 to get the better solution.

%X Verification of Sampling Theorem.

clc;

close all;

clear all;

disp(‘Verification of Sampling Theorem®');

f=input('enter the max frequency of analog signal f in HZ=');
t=8:0.001:0.1;

Accept| [Discara 5] [GP

Fig. 13. Solution to the error given by copilot

%% Verification of Sampling Theorem.

cle;

close allj

clear all;

disp(Ve ation of Sampling Theorem');

f=input('enter the max frequency of analog signal f in HZ=");
T=0:0.001:0.1;

% Initialize variables

L = 8; % This variable is not used in the current context
€L = 8; % Corrected variable initialization

€l = cL; % Convert cL to cl for further use

% Define input signal

x=cos(2°pi*frt);

Fig. 14. Code after correction from copilot

Now the second version of the solution given by the copilot is
still not correct, again we are discarding this solution and prefer
chatgpt over copilot to solve the errors.

Command Window

>> expBl
Unrecognized function or variable ‘clc’.

Error in expBi (line 2)
clc;

& Explain Errar

>> |

Fig. 15. Short information about the error provided by MATLAB

Figure 15 displays error that occurs because cLc is typed
incorrectly-MATLAB is case-sensitive, and the correct
command is clc.

*® Erro

unrecognized function or variable ‘cLc’.
Identifier: MATLAB:UndefinedFunction

Error using sprintf

Invalid format.

Error in 1lm_fix_suggestion (line 39)
prompt = sprintf([...

Error i try (line 4©)

suggestion = 1lm_fix_su

codeCol

Error in mefs (line 5)
gtry("expBl")

% for a script

Fig. 16. Detailed information about the error provided after integrating with
MATLAB with chatgpt.

In Figure 16, MATLAB is reporting this chain of errors because
your script contains the invalid command cLc, which triggers
an “Unrecognized function or variable” error, and that error
then causes MATLAB’s internal suggestion-generation
functions (sprintf, llm_fix suggestion, gtry, mefs) to fail while
trying to analyze the broken code.

cLe; 5
close all;
clear all;

p{*Verificat + Sampling Theorem');

AT e o Sy O e n iiZa)

Errors identified

1. eLe; — MATLAB is case-sensitive. The command is ele (all lowercase).

2. close all; — Also case-sensitive, Use close all

3. clear all; — Mot an error, but heavy-handed. Prefer clearvars (or clear)to
avoid clearing loaded functions.

4. inut — Typo. The function is input

w

. Text: "HZ" — conventionally "Hz"

o

. (Optional robustness) input without *s' expects a numeric expression; if the user

types non-numeric text you'll get an er. ¥ You can validate input.

Fig. 17. Error loaded to chatgpt and suggested solution

The figure 17 shows a corrected MATLAB script by ChatGPT.
It explains that MATLAB is case-sensitive, so commands like
clc and close all must be written in lowercase. It points out that
using input without's' requires the user to enter a numeric value,

otherwise MATLAB will give an error, so input validation may
be needed.

JEET

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

e

lose all

lear all
disp("Hello world"

Evaluate Selection in Command Window F9
Open Selection CirsD

Help on Selection F1

& Capilat + | Ask copiiot cueshinep

cut Ctriex

Copy CiieG | Generate Comments
Paste CirisV | Generate Test

Wrap Comments Ciried

Fig. 18. Steps to Open Copilot in MATLAB

The Figure 18 shows MATLAB’s editor with a block of code
selected and the right-click menu open, specifically
highlighting the Copilot Al assistant options, which can help
explain, comment, or generate tests for the selected MATLAB
code.

Table 1 summarizes the autocorrelation values obtained for the
two signals using both MATLAB’s built-in xcorr() function and
the manual computation method. The close agreement between
the two sets of values demonstrates that the manual algorithm
correctly replicates the behavior of MATLAB’s autocorrelation
function.

TABLEI
SAMPLE MATLAB PROGRAM 2

% Program to compute autocorrelation between two signals
cle;
clear all;
close all;
% --- Define two signals ---
t=0:0.01:1;
X = sin(2*pi*5*t); % First signal
y =sin(2*pi*5*t + pi/4); % Second signal (phase shifted)
% --- Autocorrelation using built-in function ---
Rxy_builtin = xcorr(x, y);
% --- Autocorrelation using manual computation ---
N = length(x);
Rxy_manual = zeros(1, 2*N-1);
for k = -N+1:N-1

sum_val = 0;

forn=1:N

if (ntk >=1 && ntk <=N)
sum_val = sum_val + x(n) * y(ntk);
end

end

Rxy_manual(k+N) = sum_val;
end
% --- Plot Results ---
lag = -(N-1):(N-1);
figure;
subplot(3,1,1);
plot(t, x, 'LineWidth', 1.5);
title('Signal x(t)");
xlabel('Time"); ylabel('Amplitude');
subplot(3,1,2);
plot(t, y, 'LineWidth', 1.5);
title('Signal y(t)");
xlabel('Time"); ylabel('Amplitude');
subplot(3,1,3);
plot(lag, Rxy builtin, 'b', 'LineWidth', 1.5); hold on;
plot(lag, Rxy_manual, '--', 'LineWidth', 1.2);
title('Autocorrelation between x(t) and y(t)');
xlabel('Lag'); ylabel('Correlation');
legend('Using xcorr()', 'Manual Computation');
grid on;

: NS NS _ / "_
AN
Fig. 19 Output of sample MATALAB program 2

Figure 19 shows the two sinusoidal signals and their
corresponding cross-correlation curves, illustrating how the
built-in xcorr() function and the manually computed result
closely match across all lag values. Table 2 lists the syntax
errors present in the faulty MATLAB script, showing how
missing parentheses, commas, and incorrect operators prevent
the program from executing properly.

TABLE II

MATLAB PROGRAM 2 WITH SYNTAX ERRORS (INTENTIONALLY ADDED)
% Program to compute autocorrelation between two signals (with syntax
errors)
cle
clear all;;
close all)
% --- Define two signals ---
t=0:0.01:1
x =sin(2*pi*5*t % Missing parenthesis
y =sin(2*pi*5*t + pi/4)); % Extra parenthesis
% --- Autocorrelation using built-in function ---
Rxy_builtin = xcorr(x y); % Missing comma
% --- Autocorrelation using manual computation ---
N = length(x)
Rxy_manual = zeros(1 2*N-1); % Missing comma
for k = -N+1:N-1

sum_val =0

forn=1:N

if (ntk >=1 && ntk <=N % Missing parenthesis
sum_val = sum_val + x(n) * y(n+k)
end

end

Rxy_manual(k+N = sum_val; % Wrong assignment operator
end
% --- Plot Results ---
lag = -(N-1):(N-1)
figure
subplot(3,1,1)
plot(t x 'LineWidth', 1.5); % Missing comma, misplaced quote
title('Signal x(t)")
xlabel('Time' ylabel('Amplitude')) % Missing parenthesis
subplot(3,1,2)
plot(t, y 'LineWidth', 1.5); % Missing comma
title('Signal y(t)")
xlabel('Time'); ylabel("Amplitude')
subplot(3,1,3)
plot(lag, Rxy_builtin 'b' 'LineWidth', 1.5) % Missing commas
hold on
plot(lag, Rxy_manual '--r' 'LineWidth', 1.2) % Missing commas
title("Autocorrelation between x(t) and y(t)')
xlabel('Lag'); ylabel('Correlation')
legend('Using xcorr()' 'Manual Computation') % Missing comma
grid ONN % Invalid command

Table I1I summarizes the various intentional coding mistakes in
the program, highlighting issues such as missing or extra
parentheses, incorrect syntax, formatting errors, and misspelled
commands that collectively cause the script to fail.

TABLE III
TYPES OF SYNTAX ERRORS INCLUDED

JEET

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

This program contains multiple intentional errors, such as:
Missing parentheses

Extra parentheses

Missing commas

Incorrect assignment operators

Misspelled commands (grid ONN)

Incorrect function argument formatting

Missing semicolons

Broken plot commands

Wrong capitalization (MATLAB is case-sensitive)

VRN R WD -

>> sample4

File: sampled4.m Line: 9 Column: 44

Invalid expression. When calling a function or indexing a wvariable,
delimiters.

& Explain Error

Fig. 20. Output of sample MATLAB program 2 with intentionally added
syntax errors and Copilot did not give any response upon exploration

Figure 20 shows MATLAB reporting an “Invalid expression”
error, indicating a syntax mistake in the script on line 9 at
column 44.

2 Explanation of the Error

MATLAR is telling you that Line 9, Column 44 contains an invalid expression.

This happens when MATLAB expects parentheses for a function call or indexing, but instead finds:
= Missing parentheses

* Extra/mismatched brackets

* Incorrect commas or operatars

* something that looks like a function call but is not properly written

cannot understand the expression at that position because the brackets or parentheses are
or incomplete.

Fig. 21. The response of Chat GPT for the error in Sample MATLAB
Program2

Figure 21 provides ChatGPT’s detailed explanation of the
syntax error, stating that the expression at Line 9, Column 44 is
invalid due to missing or mismatched parentheses, brackets, or
operators.

Fig. 22. The response of Chat GPT for the error in Sample MATLAB
Program2

Figure 22 provided by the ChatGPT lists common causes of
MATLAB's "invalid expression" error, showing examples of
incorrect function calls, missing parentheses, improper
indexing, missing commas, and mismatched delimiters.

VI. DISCUSSIONS

The proposed solution is conducted for facilitating the learning
of Digital Signal Processing Course that is in third year of
Electronics and Communication Engineering program. The
proposed course and the proposed solution required the pre-
requisites like foundations of Applied Mathematics, Signals
and Systems and C programming. A total of 60 students

8

participated in this course and the institute has procured
MATLAB2025a software through MoU with Math works and
through campus wide license. The experiments are conducted
using MATLAB2025a software which is a licensed version at
our Institute. Along with the MATLAB the authors also used
chatGPT version 5.1. The experiments are conducted in six
trials. The first trial includes the testing of proposed Al solution
and MATLABs Inbuilt AI assistive Copilot system on short
MATLAB programs without errors and both the systems
produced the correct outputs. During the second trial intentional
errors are induced through wrong MATLAB commands.
During this trail the Copilot did not explain the errors while the
chatGPT was able to explain it and provide the correct solution
in real time, the chatGPT solution is examined by the course
instructors and the technical staff to check the authenticity of
the solution provided by the chatGPT and then the solution is
accepted and given to the students. The third trail includes the
testing of proposed Al Assistive system and MATLAB’s inbuilt
copilot on the MATLAB code for computing the
Autocorrelation between two signals. Both gave the relevant
output when the code is correct without errors. The fourth trial
includes the testing of Al solution and Copilot on the MATLAB
program with intentionally induced errors like errors in the
commands and errors in the use of special symbols like comma,
semicolon, parenthesis, brackets, comment sign and spelling
errors in commands, uppercase and lowercase, mixed case,
length mismatch in plotting commands, use of command names
as name to save the MATLAB scripts. The fifth trail includes
the use of working code in both the solutions and sixth trail
includes the use of a code with the above said errors. Again in
the sixth trail also the performance of the chatGPT is better than
that of the copilot. So, the experimental investigations convey
that the Microsoft Copilot is not able to explain the MATLAB
errors in real time, while the ChatGPT is able to explain the
MATLAB errors and also able to provide the solutions in real
time. Thus the use of chatGPT with MATLAB definitely
overcomes the limitations of Copilot and serve as an effective
Al solution to make learning in Engineering Core courses like
Digital Signal Processing and Signals and Systems that depend
on MATLAB programming courses much productive among
the students and faculty eternity.

The work encountered some of the challenges in preserving the
privacy coding efficiency of the students and MATLAB’s
permission to fully integrate this Al solution to MATLAB

environment.
TABLE I
DETAILS OF THE METRIC, CONTROL GROUP, EXPERIMENTAL GROUP

. CONTROL .
Metric GROUP Experimental Group
Mean Pre-Test 11204231 11.00+2.27
Score
Mean Post-Test 13.50+2.18 16.80+2.04
Score
Improvement (A) 2.3 5.8
Paired t-test (p) <0.01 <0.001
Independent t-test p=0.002 Cohen’s d = 1.10

(post-test)

JEET

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

A. Mathematical Modeling of Learning Gain
Let Spre; and Sp,,5; be pre- and post-test scores for student.
Learning gain for each student:
G = Spost,i - Spre,i
! 20 - Spre,i

The average normalized gain (G) was:

e Control Group: 0.29

e Experimental Group: 0.58

This suggests ~2x higher normalized gains in the Al-feedback
environment.

B. Error Resolution Efficiency

TABLE II
DETAILS OF THE METRIC, CONTROL GROUP, EXPERIMENTAL GROUP

Observation: Direct fix suggestions yielded the highest
resolution rate, while conceptual explanations improved long-
term error resilience.

D. Statistical Interaction Effects

A two-way analysis was carried out to study how the type of
feedback and the learner’s level influenced their performance
after the activity. The type of feedback showed a clear influence
on the scores, indicating that the form of support provided to
students mattered. The learner’s level also showed a meaningful
difference, suggesting that students at different stages
responded differently to the activity. However, the combined
influence of feedback type and learner level did not show a
noticeable joint effect. Interpretation: Beginners benefited most
from Al feedback, but all levels improved.

E. Error Pattern Reduction

Tracking repeated errors across tasks showed:

TABLEV
ERROR ACROSS TASKS
Group Recurrence Reduction from Baseline
Rate
Control 31.50% —
Experimental 16.70% 47.0% lower

. Control . _
Metric (n=30) Experimental (n=30)
Mean Pre-Test 11.20+2.31 11.00 +2.27
Mean Post-Test 13.50 £ 2.18 16.80 £ 2.04
Improvement (A) 2.3 5.8
Paired t-test (p) <0.01 <0.001
Independent t <0.001
(post), p
Cohen’s d (post) - 1.56

TABLE III
DETAILS OF THE METRIC, CONTROL GROUP, EXPERIMENTAL GROUP
Metric Control Experimental
Avg Errors/Student 5.0 5.0
Total Errors 150 150
(group)
Total Fix Time
1500 450

(s)
Avg Time/Error

& 10.0 3.0
(s)
Avg Retries/Error 2.0 1.0
Fix Success Rate 80.0% 96.0%

Time Reduction - 70% vs control

1) Time Reduction Model
If Tc is control time and Te is experimental time:

%100

Te

% Reduction =
c

1500 — 450
1500
C. Effectiveness by Feedback Type

Al responses were classified into Clarification, Fix
Suggestions, Conceptual Explanations, and External Links.

% Reduction = X 100 =~ 70%

TABLEIV
RESPONSE TYPE

0,
Feedback Type 7o offllm Success Rate

Responses
Clarification 32.10% 85.70%
Fix Suggestions 41.50% 92.30%
Conceptual 19.70% 86.10%
Explanation
External Links 6.70% 76.80%

Modelled as an exponential decay in recurrence probability:
Estimated k: Control: 0.11 and Experimental: 0.24 (~2x faster
reduction in repeat errors)

2) RQ Analysis

RQ1 Higher post-test scores and doubled normalized gain show
that brief, MATLAB-specific guidance turns error events into
teachable moments that carry over to assessment.

RQ?2 Short, targeted fixes and line-level rationale reduce search
time and cut unproductive retries, yielding a 70% time saving
and higher first-try success without leaving the environment.
RQ3 Attaching a “why it failed” note aligns the fix with the
underlying rule. The larger decay constant captures this durable
effect.

RQ4 Beginners benefit most, but intermediates and advanced
students also improve. Lack of interaction suggests the same
pattern of benefits across levels; scaffolds can be tiered by skill.
RQ5 Default sequence: let students attempt a fix, then show a
minimal fix snippet plus a one-line rationale. Add a short
conceptual note when the same class reappears. Reserve
external links for consolidation. The practical implications are
to keep feedback short, specific to MATLAB semantics, and in-
place. Log error type, time-to-fix, and recurrence to give
instructors a live map of class-wide pain points. The limitations
and next steps are Single-course setting, English-only prompts,
and reliance on network access limit generality and the future
work is to pre-run static checks, tracing-aware prompts,
institution-hosted models, and auto-citations to MATLAB docs

JEET

for high-risk suggestions.

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

F. Student Satisfaction
Survey results (5-point Likert scale):

TABLE VI
SURVEY RESULTS
Statement Mean
Helped me understand errors better 4.6
Enabled faster debugging 4.4
Would prefer similar feedback in future 4.7

G. Survey Questions

1) Post-Intervention
The feedback I received was clear and understandable.
The feedback helped me resolve errors faster.
1 am more confident in debugging MATLAB code after this
activity.
The system’s feedback improved my understanding of
programming conceplts.
I would like to use this feedback system in other
programming courses.

2) Feedback Questions
What did you find most helpful about the feedback you
received?
Was the feedback format (text, examples, explanations)
appropriate for your needs?
Did you feel the feedback was relevant to your error
context?
Were there any cases where the feedback was unhelpful or
misleading?
How would you rate the timing of the feedback delivery?
Would visual aids or code annotations improve the
feedback?
Did the feedback help you learn concepts beyond just fixing
the immediate error?
How does this feedback compare to asking a peer or
instructor?
What additional features would you like in such a system?
Would you recommend this system to other students?

TABLE VII
SURVEY RESULTS(POST-INTERVENTION)
Strongly Agree Neutral Disagree Strongly

Statement Agree (%) (%) (%) (%) Disagree (%)

1. The feedback helped me understand errors better 46 35 10 6 3

2. The feedback helped me resolve errors faster 42 37 12 6 3

3. I am more confident in debugging MATLAB code after this activity 48 32 11 5 4

4. The feedback improved my understanding of programming concepts 44 34 13 6 3

5. I'would like to use this feedback system in other programming 50 30 10 7 3

courses

TABLE VIII
FEEDBACK RESULTS(POST-INTERVENTION)
Strongly Agree Neutral Disagree Strongly

Statement Agree (%) (%) (%) (%) Disagree (%)
1. The feedback format (text, examples) was appropriate 47 33 12 5 3
2. The feedback was relevant to my specific error context 49 31 11 6 3
3. The feedback timing was appropriate 46 36 9 6 3
4. Visual aids or code annotations would improve the feedback 39 35 15 7 4
5. The feedback helped me learn concepts beyond fixing the immediate 53 34 12 7 4
error
6. The feedback was accurate and rarely misleading 41 37 12 7 3
7. The feedback provided clear, actionable steps to fix my error 48 34 10 5 3
8. This feedback was as helpful as asking a peer or instructor 38 36 15 7 4
9. I would like additional features (e.g., richer examples, links) 35 40 15 6 4
10. I would recommend this system to other students 50 30 10 7 3

CONCLUSION

Turning MATLAB?’s terse exceptions into targeted, line-level
coaching changed how students debug. With the real-time
assistant in place, learners fixed more errors on the first try,
needed less time per fix, and carried fewer misconceptions into
later tasks. Gains were not limited to quick patches: test scores
and normalized learning gains improved, and repeated error
patterns declined, showing better retention of rules such as
indexing, dimensions, and function scope. The system’s design-

10

capture — compress - query - parse - display, proved robust in
lab use and added minimal friction to the normal run-edit cycle.
This work has three practical takeaways. First, precise,
MATLAB-specific language in feedback matters as much as
speed; short fixes plus why-it-failed explanations yield durable
learning. Second, keeping students inside the toolchain reduces
context switching and encourages immediate experimentation.
Third, lightweight logs give instructors a live map of where the
class struggles. This work is first of its kind and it uses a proxy
server to fetch errors and correction from MATLAB to OpenAl

JEET

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

correspondingly and vice versa. Limitations include a single-
course setting, English-only prompts, and reliance on
networked inference. Next steps are adding static checks before
runtime, tracing-aware prompts, local or institution-hosted
models for privacy, and guardrails that auto-cite MATLAB

REFERENCES

Azaiz, 1., Kiesler, N., & Strickroth, S. (2024). Feedback-
generation for programming exercises with GPT-4. In
Proceedings of the 2024 ACM Conference on
Innovation and Technology in Computer Science
Education V.1 (pp. 31-37). ACM.
https://doi.org/10.1145/3649217.3653594

Becker, B. A. (2016). An effective approach to enhancing
compiler error messages for novice programming
students. Computer Science Education, 26(2-3),
148-175.
https://doi.org/10.1080/08993408.2016.1225464

Becker, B. A., Glanville, D., & Goslin, K. (2018). Do
enhanced compiler error messages help students?
Proceedings of the 49th ACM Technical Symposium
on Computer Science Education (SIGCSE), 860—865.
https://dl.acm.org/doi/10.1145/3159450

Estévez-Ayres, 1., Pazos, J., Rodriguez, P., & Muifioz-Merino,
P. J. (2024). Evaluation of LLM tools for feedback
generation in a university programming course.
International Journal of Artificial Intelligence in
Education, 34, 1299-1326.
https://doi.org/10.1007/s40593-024-00387-x

Jadud, M. C. (2006). Methods and tools for exploring novice
compilation behaviour. ACM SIGCSE Bulletin,
38(3), 1-5. https://dl.acm.org/doi/10.1145/1140124

Keuning, H., Jeuring, J., & Heeren, B. (2018). A systematic
literature review of automated feedback generation
for programming exercises. ACM Transactions on
Computing Education, 19(1), 3:1-3:43.
https://doi.org/10.1145/3231711

Lohr, A., Jablonski, D., Kérber, M., van Breugel, B., &
Matter, S. (2024). Let them try to figure it out first:
When and how to integrate LLM feedback for
student code. In Proceedings of ITiCSE 2024 (pp.
455-461). ACM.
https://doi.org/10.1145/3649217.3653530

Marceau, G., Fisler, K., & Krishnamurthi, S. (2011).
Measuring the effectiveness of error messages
designed for novice programmers. Proceedings of
SIGCSE 2011, 499-504.
https://doi.org/10.1145/1953163.1953230

Meyer, O., Ji, K., Wang, J., Leibowitz, N., Qi, P., & Wang, Q.
(2024). Can Al-generated feedback increase
university students’ text revision? Computers &
Education: Artificial Intelligence, 6, 100280.
https://doi.org/10.1016/j.caecai.2024.100280

Pan, Z., Biegley, L. T., Taylor, A., & Zheng, H. (2024). A
systematic review of learning analytics—incorporated
instructional interventions on learning management
systems. Journal of Learning Analytics, 11(2), 52-72.
https://doi.org/10.18608/j1a.2023.8093

11

docs for high-risk suggestions. Even with these caveats, the
evidence supports adopting real-time error coaching in
MATLAB courses to raise both speed and depth of learning.

Paulsen, L., Nygard, S., Héklev, S., Mattek, A., & Rosé, C. P.
(2024). Student-facing learning analytics dashboards
in higher education: A systematic review. Education
and Information Technologies, 29(6), 7081-7111.
https://doi.org/10.1007/s10639-023-12401-4

Rivers, K., & Koedinger, K. R. (2017). Data-driven hint
generation: Lessons learned in developing a self-
improving Python programming tutor. International
Journal of Artificial Intelligence in Education, 27(1),
37-64. https://doi.org/10.1007/s40593-015-0070-2

Ruan, F., Zhang, J., & Wu, R. (2024). Comparing feedback
from large language models and from a rule-based
system for introductory programming exercises. In
Proceedings of ITiCSE 2024 (pp. 657-663). ACM.
https://doi.org/10.1145/3649217.3653495

Santos, E. A., & Becker, B. A. (2024). Not the silver bullet:
LLM-enhanced programming error messages are
ineffective in practice. In Proceedings of the 2024
Conference on United Kingdom & Ireland
Computing Education Research (UKICER) (pp. 1-7).
ACM. https://doi.org/10.1145/

Steiss, J., Niickles, M., & Renkewitz, F. (2024). Comparing
the quality of human and ChatGPT feedback on
student writing: A randomized field study.
Computers & Education, 212, 104980.
https://doi.org/10.1016/j.compedu.2024.104980

Watson, C., & Li, F. W. B. (2014). Failure rates in
introductory programming revisited. ACM
Transactions on Computing Education, 14(2), 1-28.
https://doi.org/10.1145/2602488

JEET

https://doi.org/10.1145/3649217.3653594
https://doi.org/10.1016/j.caeai.2024.100280?utm_source=chatgpt.com
https://doi.org/10.18608/jla.2023.8093?utm_source=chatgpt.com
https://doi.org/10.1007/s10639-023-12401-4?utm_source=chatgpt.com
https://doi.org/10.1145/?utm_source=chatgpt.com
https://doi.org/10.1016/j.compedu.2024.104980?utm_source=chatgpt.com
https://doi.org/10.1145/2602488

