
Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

 1

Abstract— New MATLAB learners often get stuck because they

cannot read or fix early errors. We tested a real-time system that

catches run-time exceptions, pulls the message and nearby code,

and gives a short explanation plus a small corrected example inside

the editor. We compared this with MATLAB’s built-in copilot. In

a class study with 60 students, both groups did the same lessons

and tasks; only the feedback differed. The treatment group, which

saw the real-time explanations, scored higher on the post-test (16.8

vs. 13.5), showed a much larger learning gain (0.58 vs. 0.29), and

fixed errors faster. Across about 300 total errors, total repair time

dropped from 1,500 s to 450 s, retries fell from 2 to 1 per error,

and successful fixes rose from 80% to 96%. Beginners improved

the most, and repeat errors fell by roughly 47%. Students said the

messages were clear and useful. Then, turning MATLAB error

messages into short, direct guidance improved accuracy, speed,

and retention without leaving the MATLAB workspace.

Keywords— Debugging; error feedback; MATLAB;

programming education; real-time guidance; learning gain

JEET Category— Track: Emerging Technologies and Future

Skills. SubTrack: Pedagogy for the Modern Classroom-Strategies

for Engaging Students through AI.

I. INTRODUCTION

n engineering and scientific programs, MATLAB has

become a core tool for building algorithmic skills, modeling

dynamic behavior, and tackling numerical problems. Yet

many students—especially those encountering the language for

the first time—struggle when their code breaks. Their limited

grasp of MATLAB’s syntax, logic, and error phrasing often

makes debugging slow and discouraging. These hurdles can

stall progress, increase frustration, and reduce engagement,

Dr. Mahadevaswamy

 Associate Professor, Department of ECE, Vidyavardhaka College of Engineering, Mysuru

mahadevaswamy@vvce.ac.in

particularly in large classes or self-guided settings where timely

instructor help is difficult to obtain.

MATLAB’s error messages are typically fixed, concise system

outputs that rarely offer context beyond identifying the issue.

For beginners who do not yet understand ideas such as

mismatched matrix sizes or incorrect indexing, simply

deciphering what the message means can be a major obstacle.

Although MATLAB provides standard debugging features, the

environment does not supply adaptive or learner-centered

explanations that meet students at their level. As a result,

novices often fall back on guesswork, repeated trial and error,

or searching online for snippets of code—approaches that may

fix immediate issues but contribute little to long-term

understanding.

Recent progress in natural-language models has opened

possibilities for improving programming instruction through

interactive, conversational support. Large language models

(LLMs) like ChatGPT can interpret both text and code,

recognize the situation behind an error, and offer clear

explanations or examples within seconds. When paired with an

execution environment, such models can turn a confusing

system message into an opportunity for guided learning.

Despite this potential, similar integrations have rarely been

explored for MATLAB, even though it remains a central

language in many university courses and research settings.

This study introduces an automated real-time feedback system

designed to bring this capability into MATLAB. The system

detects exceptions during execution, constructs a natural-

language query, and obtains an immediate, tailored response

through an LLM-based interface. In contrast to standard error

messages, the feedback includes plain-language explanations,

stepwise advice, and corrected code grounded in the student’s

own script. The goal is not only to help students resolve errors

Real-Time AI-Assisted Error Feedback System

and Copilot for MATLAB Programming in Core

Engineering Courses: A Comparative Analysis

Dr. Mahadevaswamy1, Dr. Sathyanarayana N2, Dr. B P Pradeep Kumar3, Dr. Jagadeesh B4, Dr.

Swapnil S Ninawe5

1,4Associate Professor, Dept. of ECE, Vidyavardhaka College of Engineering, Mysuru,
2Associate Professor, Dept. of ISE, Vemana Institute of Technology, Bengaluru,

3Professor, Dept. of CSD, Atria Institute of Technology, Bengaluru,
5Assistant Professor, Dept. of ECE, Dayananda Sagar College of Engineering, Bengaluru,

1mahadevaswamy@vvce.ac.in, 2sathya40y@gmail.com , 3pradi14cta@gmail.com ,
4jagadeesh.b@vvce.ac.in, 5swapnil.ninawe@gmail.com

I

mailto:mahadevaswamy@vvce.ac.in
mailto:sathya40y@gmail.com
mailto:pradi14cta@gmail.com
mailto:jagadeesh.b@vvce.ac.in
mailto:5swapnil.ninawe@gmail.com

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

 2

but also to reinforce underlying concepts, making the tool

useful for both troubleshooting and deeper learning.

The work presented here contributes to programming education

by (i) building a reliable mechanism for capturing and

forwarding MATLAB errors, (ii) linking this mechanism to an

LLM-driven conversational layer for feedback delivery, and

(iii) assessing the instructional value of the system through

classroom-based evaluation. The study further analyzes which

errors students encounter most often, what kinds of

explanations they find helpful, and how immediate feedback

shapes their confidence and debugging performance.

Ultimately, this research responds to the limitations of static

system messages and lays groundwork for more adaptive

tutoring systems that respond to students’ coding patterns and

levels of understanding. The results aim to inform the next

generation of learning tools, in which artificial intelligence acts

not simply as a generator of code but as an on-demand guide

that supports individual learning paths. This work is first of its

kind as it includes the creation of AI based real time MATLAB

error analysis and correction support. The major steps involved

in automating the error feedback system is to first capture the

error from the MATLAB command window, create a report on

the error analysis. Create the solutions using chatGPT.

Compare this performance with that of the copilot from

MATLAB software. This work examines whether turning the

MATLAB exceptions into concise, context-aware guidance

improves learning and debugging. We address five questions:

RQ1. Does AI based real-time error guidance improve

performance relative to default MATLAB’s copilot error

explanation and correction?

RQ2. Does the system increase debugging efficiency (time per

error, retries per error) and fix success rate?

RQ3. Does the system reduce recurrence of the same error

class across tasks?

RQ4. Are benefits moderated by prior skill level (beginner,

intermediate, advanced)?

RQ5. Which feedback type (clarification, minimal fix snippet,

conceptual explanation, external link) yields the fastest

resolution and best retention?

II. RELATED WORKS

Novice programmers struggle first and most with error

comprehension. Classic and careful studies showed that the

form and phrasing of error messages materially affect time-to-

fix, comprehension, and frustration, and that improving

messages helps up to a point but cannot replace targeted

guidance (Marceau, Fisler, & Krishnamurthi, 2011; Becker,

2016). Subsequent controlled classroom and field studies

examined compiler/IDE message redesigns and found

measurable but bounded gains when messages were clarified,

localized, or paired with links to examples; stronger outcomes

appeared when guidance also explained why a fix worked, not

only what to change (Becker, Glanville, & Goslin, 2018). These

results motivate systems that go beyond surface edits to attach

short rationale in the language of the host environment (e.g.,

MATLAB indexing rules, array shape semantics). (Becker,

2016; Becker et al., 2018; Marceau et al., 2011). A systematic

review across tools, strategies, and constraints noted that

effective systems combine test-based checks, program

analyses, and pattern mining to deliver timely, specific hints;

they work best when feedback targets a known misconception

class and when students can iterate quickly (Keuning, Jeuring,

& Heeren, 2018). This aligns with designs that capture

exceptions at runtime, compress context, and return minimal,

actionable suggestions that match the learner’s error class.

Recent computing-education work has begun to compare

feedback from large language models with rule-based tasks.

Across several 2024 conference papers, large models produced

higher-coverage comments and more natural phrasing but

varied in correctness and specificity; combining them with

scaffolds (e.g., “try first, then reveal hint”) reduced over-

reliance and improved revision quality (Azaiz, Kiesler, &

Strickroth, 2024; Lohr et al., 2024; Ruan et al., 2024). These

studies recommend constraining prompts, limiting verbosity,

and embedding verification (tests, examples) alongside model

feedback-practices mirrored in systems that turn raw exceptions

into short, environment-specific coaching. A field evaluation in

higher education reported that large-model tools can generate

useful formative feedback in programming courses, but utility

depends on error type, prompt design, and having the teacher in

the loop; accuracy and pedagogical fit improved when

suggestions were checked against unit tests and course rubrics

(Estévez-Ayres, Pazos, Rodríguez, & Muñoz-Merino, 2024).

UKICER work focusing specifically on model-augmented error

messages cautioned that “enhanced” messages are not a

universal cure; in practice, some messages remain too generic

or subtly wrong unless grounded in the actual code state and

test outcomes (Santos & Becker, 2024). Together, these studies

support designs that pair exception capture with tight prompts,

ask for minimal fixes, and attach a why-it-failed note tied to the

host language. Work on novice compilation traces and failure

modes shows repeated cycles on the same error classes and long

stalls when messages are opaque (Jadud, 2006; Watson & Li,

2014). Data-driven hinting within intelligent tutors for

programming further demonstrates that short, targeted hints,

sequenced by difficulty and grounded in prior student data,

yield better learning than full solutions, especially when hints

call out the underlying concept (Rivers & Koedinger, 2017).

These lessons translate directly to MATLAB environments:

short fixes, rationale, and immediate re-run loops reduce retries

and repeated errors (Jadud, 2006; Rivers & Koedinger, 2017;

Watson & Li, 2014). Broader studies on formative feedback

quality in higher education-outside programming-are useful for

setting expectations(Meyer et al., 2024; Steiss, Nückles, &

Renkewitz, 2024). Learning-analytics reviews add that fast

feedback cycles and actionable signals, rather than dashboards

alone, drive improvement (Pan, Biegley, Taylor, & Zheng,

2024; Paulsen et al., 2024). These findings back the choice to

keep responses brief, specific, and tied to immediate next steps

in the same tool, with logs that surface class-wide pain points

for the teacher. The timing and framing really matter. Designs

that model “capture → compress → query → parse → display,”

with prompts tuned to the host language and unit tests attached,

reflect the emerging consensus on how to gain speed and

understanding without inflating cognitive load.

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

 3

III. METHODOLOGY

3.1 Background and Theoretical Background

The conceptual basis for "real-time error feedback systems" is

that errors become teachable moments, hence they should be

transformed into an immediate feedback form. The

methodology supports previous research on developing

compiler messages and the development of automated feedback

systems with an emphasis on brevity, specificity, and rationale

for concept development. The design is based upon a five-part

cycle of events: output of error (error detection), extraction of

relevant information, LLM processing and display of feedback,

and input of additional information.

Fig. 1. Proposed Methodology.

The process starts with MATLAB’s error detection. When a

student runs a script and something goes wrong-whether due to

syntax, logic, or a runtime issue-MATLAB produces its usual

error report, noting the error type, line number, and a short

description. For newcomers, these messages can be hard to

interpret, so capturing them accurately is the first step in the

system. The next phase, Error Extraction, isolates the relevant

message from the rest of the console output. Using MATLAB’s

MException tools or by parsing the Command Window text, the

system pulls out the specific error line, cleans it, and formats it

into a clear string. This ensures that only the necessary

information moves forward. After extraction, the error text is

sent to a large language model via an API call. This stage

involves forming a prompt that asks the model to explain the

issue and offer a correction. The connection is typically handled

through a MATLAB-Python interface or a small Python script

that communicates with the LLM service. The model returns a

reply that outlines what caused the error and how to fix it.

Next comes Response Parsing. Because the model’s

explanation may arrive as a long paragraph, the system breaks

it into readable parts. If the response includes steps, examples,

or code fragments, these are separated so students can follow

the guidance more easily. The Feedback Display component

shows the processed message inside MATLAB-either through

a pop-up, a message panel, or a simple GUI element. The aim

is to provide help within seconds, allowing students to correct

their code without switching tools. Once the feedback is shown,

the system is ready to capture the next error. If the student

modifies the code and runs it again, the error detection module

will check for any new issues and repeat the process. This

creates a continuous, interactive learning loop where students

receive instant feedback tailored to their coding mistakes.

A. Outcomes and analysis for RQ1

We administer a 20-item pre/post test in both sections and

compare post-test performance using ANCOVA with group as

the factor and pre-test as covariate. We report adjusted means,

95% CIs, and effect size (Cohen’s d with small-sample

correction). Normalized learning gain is computed per student

𝐺𝑖 =
𝑆𝑝𝑜𝑠𝑡,𝑖 − 𝑆𝑝𝑟𝑒,𝑖

20 − 𝑆𝑝𝑟𝑒,𝑖

and summarized by group.

B. Instrumentation and metrics for RQ2

Runtime logs capture: total and mean time to fix, retries per

error, and fix success. We compare time metrics with t-tests or

Mann–Whitney, and compare success rates with a two-

proportion test. Time reduction is reported as Tc−Te/Tc×100%

C. Modeling error recurrence for RQ3

Errors are labeled into classes. Recurrence across tasks is

modeled as exponential decay

𝑃(𝑡) = 𝑃0𝑒
−𝑘𝑡

We estimate k per group via nonlinear least squares and

compare parameters. Faster decay/higher k indicates quicker

extinction of repeated mistakes.

D. Participants, design, and moderation for RQ4

Students are stratified by baseline skill-

beginner/intermediate/advanced. A two-way ANOVA on post-

test tests moderation. Where assumptions are violated, we

confirm with aligned ranks or a mixed effects model.

E. Feedback coding and analysis for RQ5

Assistant responses are coded into four types: clarification, fix

snippet, conceptual explanation, external link. Two raters code

a stratified sample; agreement is reported (Cohen’s κ ≥ .70).

Immediate resolution is modeled with logistic regression

controlling for error class; later recurrence is analyzed by

feedback type on subsequent tasks.

IV. EXPERIMENTAL DESIGN

This study is designed to assess the learning impact, efficiency,

and usability of a real-time AI-assisted error feedback system

for MATLAB programming. The experiment compares

traditional MATLAB error messaging with an AI-enhanced

feedback mechanism powered by a large language model

(LLM). The goal is to evaluate whether AI-driven feedback

improves student debugging ability, reduces error resolution

time, and enhances conceptual understanding of programming

errors.

A. Participants

The participants will be undergraduate engineering students

enrolled in a core MATLAB programming course. A total of 60

students were included in this study. To ensure diversity in

programming experience, participants will be categorized into

three levels:

Beginner: No or limited MATLAB experience.

Intermediate: Familiar with MATLAB basics and

scripting.

Advanced: Capable of using toolboxes, writing functions,

or debugging.

Participants will be randomly assigned to one of two groups:

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

 4

Control Group: Receives traditional error feedback as

provided by MATLAB and the instructor.

Experimental Group: Receives AI-generated feedback

using the real-time error correction system integrated

with ChatGPT.

B. Tools and System Setup

The experimental group will use a custom MATLAB

environment integrated with:

MATLAB R2025a: Primary coding platform licensed

version.

MATLAB–Python bridge: To call Python scripts from

MATLAB using the system() or pyenv command.

OpenAI GPT API(5.1): For generating natural language

feedback based on error messages captured from the

MATLAB console.

Feedback display module: Implemented as a GUI pop-up

or command window output to deliver AI feedback.

Both groups will complete tasks using identical coding

exercises. The system will log every run attempt, including time

of execution, error type, and whether it was resolved.

C. Study Procedure

1. Orientation & Consent: Participants will be briefed on

the study’s goals, methodology, and privacy protocols.

Informed consent will be obtained.

2. Pre-Test: A written assessment measuring baseline

knowledge of MATLAB syntax, error types, and

debugging concepts.

3. Coding Tasks: Students will complete a set of 6–8

MATLAB exercises involving common programming

mistakes.

4. Real-Time Logging: All error messages, student

attempts, AI responses for experimental group, and

time-to-fix data will be logged for analysis.

5. Post-Test: A similar test to the pre-test, designed to

measure knowledge gains and confidence in

debugging.

6. Survey Instrument: A Likert-scale questionnaire will

collect student perceptions on the usefulness, clarity,

and satisfaction with the error feedback received.

7. Open-Ended Feedback: Students will be invited to

comment on the helpfulness of the system and

suggestions for improvement.

D. Data Collection and Metrics

1) Quantitative Metrics:
Total number of errors per student

Number of successfully resolved errors

Time taken to resolve each error

Score improvement from pre- to post-test

Frequency of repeated errors

Types of feedback received- clarification, fix suggestions,

conceptual explanation, links to documentation.

2) Qualitative Metrics:

Student satisfaction survey

Perceived usefulness and trust in feedback

Open-ended responses coded using thematic analysis

E. Feedback Categorization

All AI-generated responses will be categorized into the

following types:

1. Clarification: Explains what the error message means

in simple terms.

2. Fix Suggestions: Offers direct changes to the code or

logic.

3. Conceptual Explanations: Describes underlying

reasons for the error.

4. External Links: Points students to MATLAB

documentation or examples.

F. Data Analysis and Statistical Techniques

i. Descriptive Statistics: Mean and standard deviation

for each metric (e.g., time to fix, number of errors).

ii. Inferential Statistics:

Paired t-test: To evaluate improvement in pre- and

post-test scores within each group.

Independent t-test: To compare debugging

performance between the control and experimental

groups.

ANOVA: To analyze interaction effects between

learner levels (beginner/intermediate/advanced) and

feedback type.

Effect Size-Cohen’s d: To determine the strength of

intervention.

G. Ethical Considerations

Participation will be voluntary with no impact on academic

grading. All data will be anonymized, and students will be

allowed to withdraw at any stage.

V. RESULTS AND DISCUSSION

The detailed steps showing the error recognition, generation of

the error debug steps with solution to solve the error is

illustrated in the following figures.

Fig. 2. Sample error

This Figure 2 shows a common MATLAB runtime error caused

by the mistyped command cc, which MATLAB does not

recognize as a valid function or variable. The Command

Window displays the message “Unrecognized function or

variable 'cc'” and points to the exact line in the script where the

mistake occurs. This example illustrates the type of basic syntax

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

 5

errors that students often struggle to interpret without additional

guidance.

The normal working code is shown in Fig. 3. It is observed that

the error is displayed in the command window in red color text

as it is evident from Fig. 2.

Fig. 3. Working Code

This code in Fig. 3 implements the verification of the Sampling

Theorem. It begins by clearing the workspace and command

window using clc, clear all, and close all. The user is prompted

to enter the maximum frequency of an analog signal, which is

stored in f. A time vector t is created from 0 to 0.1 seconds with

a step of 0.001. Using this, the input signal x = cos(2πft) is

generated. The first subplot then plots this continuous-time

cosine signal with labeled axes and a title. The script next asks

the user to enter the sampling frequency fs for further

processing in later sections of the program.

Fig. 4. Clear output

The normal output waveforms obtained after executing the

working code are as shown in Fig. 4. This Figure 4 shows the

sampling process: the top plot is the original analog signal, the

next plot shows its sampled (discrete) version, and the last two

plots compare the discrete and reconstructed signals. The close

match between the original and reconstructed waveforms

confirms the Sampling Theorem.
The error with its line number of occurrence is displayed in Fig. 5.

Fig. 5. Error cLc

The error of Fig. 5 when submitted as input to chatgpt. The

solution suggested by the chat gpt is as shown in Fig. 6.

Fig. 6. AI tool based Solution with explanation

This Figure 6, shows the AI-generated feedback explaining the

cause of the MATLAB error. The student typed cLc; instead of

the correct command clc;. Since MATLAB is case-sensitive,

cLc is not a valid command, causing the “Unrecognized

function or variable” error. The AI correctly identifies the

mistake and provides the corrected version.

Fig. 7. Microsoft Copilot based Solution

The latest edition of MATLAB software 2025a is used in this

work to conduct experiments. This software comes with the

support of Microsoft copilot. We also explored Microsoft

copilot to solve the error as an alternative tool to chatgpt.

Fig. 8. Loading error to Microsoft copilot

Fig. 8 one can see that the error is loaded into Microsoft copilot.

The error that is being displayed in the command window upon

execution of the code with an error is also simultaneously

loaded into Microsoft copilot, this can be readily seen in Fig. 9

Fig. 9. Realtime Loading of error displayed in the command window to

Microsoft copilot

The Microsoft copilot(MATLAB GPT) is trying to solve the

error in Fig. 10 and it tried to give solution to this error of Fig.

9 in Fig. 11

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

 6

Fig. 10. Microsoft copilot Trouble debugging the error

The Figure 10 shows how MATLAB Copilot automatically

detects the runtime error and loads it into the Copilot panel. The

incorrect command cLc triggers the “Unrecognized function or

variable” error, and Copilot displays the same error message in

its interface. This demonstrates the real-time syncing of

MATLAB’s Command Window errors into the Copilot tool.

Fig. 11. Validate and accept the solution suggested by Microsoft copilot or

just discard

The Figure 11, shows MATLAB Copilot attempting to fix the

cLc error. Copilot misinterprets cLc as a missing variable and

suggests creating a new variable cL = 0;, which is incorrect

because the intended command should be clc; (clear command

window). This illustrates that Copilot’s suggested fix is

inaccurate and must be discarded.

Fig. 12. Reteaching the error to copilot

Now we are reteaching the copilot with the revised version of

the error in Fig. 12 to get the better solution.

Fig. 13. Solution to the error given by copilot

Fig. 14. Code after correction from copilot

Now the second version of the solution given by the copilot is

still not correct, again we are discarding this solution and prefer

chatgpt over copilot to solve the errors.

Fig. 15. Short information about the error provided by MATLAB

Figure 15 displays error that occurs because cLc is typed

incorrectly-MATLAB is case-sensitive, and the correct

command is clc.

Fig. 16. Detailed information about the error provided after integrating with

MATLAB with chatgpt.

In Figure 16, MATLAB is reporting this chain of errors because

your script contains the invalid command cLc, which triggers

an “Unrecognized function or variable” error, and that error

then causes MATLAB’s internal suggestion-generation

functions (sprintf, llm_fix_suggestion, gtry, mefs) to fail while

trying to analyze the broken code.

Fig. 17. Error loaded to chatgpt and suggested solution

The figure 17 shows a corrected MATLAB script by ChatGPT.

It explains that MATLAB is case-sensitive, so commands like

clc and close all must be written in lowercase. It points out that

using input without 's' requires the user to enter a numeric value,

otherwise MATLAB will give an error, so input validation may

be needed.

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

 7

Fig. 18. Steps to Open Copilot in MATLAB

The Figure 18 shows MATLAB’s editor with a block of code

selected and the right-click menu open, specifically

highlighting the Copilot AI assistant options, which can help

explain, comment, or generate tests for the selected MATLAB

code.

Table 1 summarizes the autocorrelation values obtained for the

two signals using both MATLAB’s built-in xcorr() function and

the manual computation method. The close agreement between

the two sets of values demonstrates that the manual algorithm

correctly replicates the behavior of MATLAB’s autocorrelation

function.

TABLE I

SAMPLE MATLAB PROGRAM 2

% Program to compute autocorrelation between two signals
clc;

clear all;

close all;
% --- Define two signals ---

t = 0:0.01:1;

x = sin(2*pi*5*t); % First signal
y = sin(2*pi*5*t + pi/4); % Second signal (phase shifted)

% --- Autocorrelation using built-in function ---

Rxy_builtin = xcorr(x, y);
% --- Autocorrelation using manual computation ---

N = length(x);

Rxy_manual = zeros(1, 2*N-1);
for k = -N+1:N-1

 sum_val = 0;

 for n = 1:N
 if (n+k >= 1 && n+k <= N)

 sum_val = sum_val + x(n) * y(n+k);

 end
 end

 Rxy_manual(k+N) = sum_val;

end
% --- Plot Results ---

lag = -(N-1):(N-1);

figure;
subplot(3,1,1);

plot(t, x, 'LineWidth', 1.5);

title('Signal x(t)');
xlabel('Time'); ylabel('Amplitude');

subplot(3,1,2);

plot(t, y, 'LineWidth', 1.5);
title('Signal y(t)');

xlabel('Time'); ylabel('Amplitude');
subplot(3,1,3);

plot(lag, Rxy_builtin, 'b', 'LineWidth', 1.5); hold on;

plot(lag, Rxy_manual, '--r', 'LineWidth', 1.2);
title('Autocorrelation between x(t) and y(t)');

xlabel('Lag'); ylabel('Correlation');

legend('Using xcorr()', 'Manual Computation');
grid on;

Fig. 19 Output of sample MATALAB program 2

Figure 19 shows the two sinusoidal signals and their

corresponding cross-correlation curves, illustrating how the

built-in xcorr() function and the manually computed result

closely match across all lag values. Table 2 lists the syntax

errors present in the faulty MATLAB script, showing how

missing parentheses, commas, and incorrect operators prevent

the program from executing properly.

TABLE II

 MATLAB PROGRAM 2 WITH SYNTAX ERRORS (INTENTIONALLY ADDED)

% Program to compute autocorrelation between two signals (with syntax

errors)
clc

clear all;;

close all)
% --- Define two signals ---

t = 0:0.01:1

x = sin(2*pi*5*t % Missing parenthesis
y = sin(2*pi*5*t + pi/4)); % Extra parenthesis

% --- Autocorrelation using built-in function ---

Rxy_builtin = xcorr(x y); % Missing comma
% --- Autocorrelation using manual computation ---

N = length(x)
Rxy_manual = zeros(1 2*N-1); % Missing comma

for k = -N+1:N-1

 sum_val = 0
 for n = 1:N

 if (n+k >= 1 && n+k <= N % Missing parenthesis

 sum_val = sum_val + x(n) * y(n+k)
 end

 end

 Rxy_manual(k+N = sum_val; % Wrong assignment operator
end

% --- Plot Results ---

lag = -(N-1):(N-1)
figure

subplot(3,1,1)

plot(t x 'LineWidth', 1.5); % Missing comma, misplaced quote
title('Signal x(t)')

xlabel('Time' ylabel('Amplitude')) % Missing parenthesis

subplot(3,1,2)
plot(t, y 'LineWidth', 1.5); % Missing comma

title('Signal y(t)')

xlabel('Time'); ylabel('Amplitude')

subplot(3,1,3)

plot(lag, Rxy_builtin 'b' 'LineWidth', 1.5) % Missing commas

hold on
plot(lag, Rxy_manual '--r' 'LineWidth', 1.2) % Missing commas

title('Autocorrelation between x(t) and y(t)')

xlabel('Lag'); ylabel('Correlation')
legend('Using xcorr()' 'Manual Computation') % Missing comma

grid ONN % Invalid command

Table III summarizes the various intentional coding mistakes in

the program, highlighting issues such as missing or extra

parentheses, incorrect syntax, formatting errors, and misspelled

commands that collectively cause the script to fail.

TABLE III

 TYPES OF SYNTAX ERRORS INCLUDED

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

 8

This program contains multiple intentional errors, such as:

1. Missing parentheses
2. Extra parentheses

3. Missing commas

4. Incorrect assignment operators
5. Misspelled commands (grid ONN)

6. Incorrect function argument formatting

7. Missing semicolons
8. Broken plot commands

9. Wrong capitalization (MATLAB is case-sensitive)

Fig. 20. Output of sample MATLAB program 2 with intentionally added

syntax errors and Copilot did not give any response upon exploration

Figure 20 shows MATLAB reporting an “Invalid expression”

error, indicating a syntax mistake in the script on line 9 at

column 44.

Fig. 21. The response of Chat GPT for the error in Sample MATLAB

Program2

Figure 21 provides ChatGPT’s detailed explanation of the

syntax error, stating that the expression at Line 9, Column 44 is

invalid due to missing or mismatched parentheses, brackets, or

operators.

Fig. 22. The response of Chat GPT for the error in Sample MATLAB

Program2

Figure 22 provided by the ChatGPT lists common causes of

MATLAB's "invalid expression" error, showing examples of

incorrect function calls, missing parentheses, improper

indexing, missing commas, and mismatched delimiters.

VI. DISCUSSIONS

The proposed solution is conducted for facilitating the learning

of Digital Signal Processing Course that is in third year of

Electronics and Communication Engineering program. The

proposed course and the proposed solution required the pre-

requisites like foundations of Applied Mathematics, Signals

and Systems and C programming. A total of 60 students

participated in this course and the institute has procured

MATLAB2025a software through MoU with Math works and

through campus wide license. The experiments are conducted

using MATLAB2025a software which is a licensed version at

our Institute. Along with the MATLAB the authors also used

chatGPT version 5.1. The experiments are conducted in six

trials. The first trial includes the testing of proposed AI solution

and MATLABs Inbuilt AI assistive Copilot system on short

MATLAB programs without errors and both the systems

produced the correct outputs. During the second trial intentional

errors are induced through wrong MATLAB commands.

During this trail the Copilot did not explain the errors while the

chatGPT was able to explain it and provide the correct solution

in real time, the chatGPT solution is examined by the course

instructors and the technical staff to check the authenticity of

the solution provided by the chatGPT and then the solution is

accepted and given to the students. The third trail includes the

testing of proposed AI Assistive system and MATLAB’s inbuilt

copilot on the MATLAB code for computing the

Autocorrelation between two signals. Both gave the relevant

output when the code is correct without errors. The fourth trial

includes the testing of AI solution and Copilot on the MATLAB

program with intentionally induced errors like errors in the

commands and errors in the use of special symbols like comma,

semicolon, parenthesis, brackets, comment sign and spelling

errors in commands, uppercase and lowercase, mixed case,

length mismatch in plotting commands, use of command names

as name to save the MATLAB scripts. The fifth trail includes

the use of working code in both the solutions and sixth trail

includes the use of a code with the above said errors. Again in

the sixth trail also the performance of the chatGPT is better than

that of the copilot. So, the experimental investigations convey

that the Microsoft Copilot is not able to explain the MATLAB

errors in real time, while the ChatGPT is able to explain the

MATLAB errors and also able to provide the solutions in real

time. Thus the use of chatGPT with MATLAB definitely

overcomes the limitations of Copilot and serve as an effective

AI solution to make learning in Engineering Core courses like

Digital Signal Processing and Signals and Systems that depend

on MATLAB programming courses much productive among

the students and faculty eternity.

The work encountered some of the challenges in preserving the

privacy coding efficiency of the students and MATLAB’s

permission to fully integrate this AI solution to MATLAB

environment.
TABLE I

DETAILS OF THE METRIC, CONTROL GROUP, EXPERIMENTAL GROUP

Metric
CONTROL

GROUP
Experimental Group

Mean Pre-Test

Score
11.20 ± 2.31 11.00 ± 2.27

Mean Post-Test

Score
13.50 ± 2.18 16.80 ± 2.04

Improvement (Δ) 2.3 5.8
Paired t-test (p) < 0.01 < 0.001

Independent t-test
(post-test)

p = 0.002 Cohen’s d = 1.10

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

 9

A. Mathematical Modeling of Learning Gain

Let 𝑆𝑝𝑟𝑒,𝑖 and 𝑆𝑝𝑜𝑠𝑡,𝑖 be pre- and post-test scores for student.

Learning gain for each student:

𝐺𝑖 =
𝑆𝑝𝑜𝑠𝑡,𝑖 − 𝑆𝑝𝑟𝑒,𝑖

20 − 𝑆𝑝𝑟𝑒,𝑖

The average normalized gain ⟨G⟩ was:

• Control Group: 0.29

• Experimental Group: 0.58

This suggests ~2× higher normalized gains in the AI-feedback

environment.

B. Error Resolution Efficiency

TABLE II
DETAILS OF THE METRIC, CONTROL GROUP, EXPERIMENTAL GROUP

Metric
Control
(n=30)

Experimental (n=30)

Mean Pre-Test 11.20 ± 2.31 11.00 ± 2.27

Mean Post-Test 13.50 ± 2.18 16.80 ± 2.04
Improvement (Δ) 2.3 5.8

Paired t-test (p) <0.01 <0.001

Independent t
(post), p

- <0.001

Cohen’s d (post) - 1.56

TABLE III

DETAILS OF THE METRIC, CONTROL GROUP, EXPERIMENTAL GROUP

Metric Control Experimental

Avg Errors/Student 5.0 5.0

Total Errors
(group)

150 150

Total Fix Time

(s)
1500 450

Avg Time/Error

(s)
10.0 3.0

Avg Retries/Error 2.0 1.0

Fix Success Rate 80.0% 96.0%

Time Reduction - 70% vs control

1) Time Reduction Model

If Tc is control time and Te is experimental time:

% Reduction =
𝑇𝑐 − 𝑇𝑒
𝑇𝑐

× 100

% Reduction =
1500 − 450

1500
× 100 ≈ 70%

C. Effectiveness by Feedback Type

AI responses were classified into Clarification, Fix

Suggestions, Conceptual Explanations, and External Links.

TABLE IV

RESPONSE TYPE

Feedback Type
% of llm

Responses
Success Rate

Clarification 32.10% 85.70%
Fix Suggestions 41.50% 92.30%

Conceptual

Explanation
19.70% 86.10%

External Links 6.70% 76.80%

Observation: Direct fix suggestions yielded the highest

resolution rate, while conceptual explanations improved long-

term error resilience.

D. Statistical Interaction Effects

A two-way analysis was carried out to study how the type of

feedback and the learner’s level influenced their performance

after the activity. The type of feedback showed a clear influence

on the scores, indicating that the form of support provided to

students mattered. The learner’s level also showed a meaningful

difference, suggesting that students at different stages

responded differently to the activity. However, the combined

influence of feedback type and learner level did not show a

noticeable joint effect. Interpretation: Beginners benefited most

from AI feedback, but all levels improved.

E. Error Pattern Reduction

Tracking repeated errors across tasks showed:

TABLE V

ERROR ACROSS TASKS

Group
Recurrence
Rate

Reduction from Baseline

Control 31.50% —

Experimental 16.70% 47.0% lower

Modelled as an exponential decay in recurrence probability:

Estimated k: Control: 0.11 and Experimental: 0.24 (~2× faster

reduction in repeat errors)

2) RQ Analysis

RQ1 Higher post-test scores and doubled normalized gain show

that brief, MATLAB-specific guidance turns error events into

teachable moments that carry over to assessment.

RQ2 Short, targeted fixes and line-level rationale reduce search

time and cut unproductive retries, yielding a 70% time saving

and higher first-try success without leaving the environment.

RQ3 Attaching a “why it failed” note aligns the fix with the

underlying rule. The larger decay constant captures this durable

effect.

RQ4 Beginners benefit most, but intermediates and advanced

students also improve. Lack of interaction suggests the same

pattern of benefits across levels; scaffolds can be tiered by skill.

RQ5 Default sequence: let students attempt a fix, then show a

minimal fix snippet plus a one-line rationale. Add a short

conceptual note when the same class reappears. Reserve

external links for consolidation. The practical implications are

to keep feedback short, specific to MATLAB semantics, and in-

place. Log error type, time-to-fix, and recurrence to give

instructors a live map of class-wide pain points. The limitations

and next steps are Single-course setting, English-only prompts,

and reliance on network access limit generality and the future

work is to pre-run static checks, tracing-aware prompts,

institution-hosted models, and auto-citations to MATLAB docs

for high-risk suggestions.

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

 10

F. Student Satisfaction

Survey results (5-point Likert scale):

TABLE VI

SURVEY RESULTS

Statement Mean

Helped me understand errors better 4.6

Enabled faster debugging 4.4

Would prefer similar feedback in future 4.7

G. Survey Questions

1) Post-Intervention

The feedback I received was clear and understandable.

The feedback helped me resolve errors faster.

I am more confident in debugging MATLAB code after this

activity.

The system’s feedback improved my understanding of

programming concepts.

I would like to use this feedback system in other

programming courses.

2) Feedback Questions

What did you find most helpful about the feedback you

received?

Was the feedback format (text, examples, explanations)

appropriate for your needs?

Did you feel the feedback was relevant to your error

context?

Were there any cases where the feedback was unhelpful or

misleading?

How would you rate the timing of the feedback delivery?

Would visual aids or code annotations improve the

feedback?

Did the feedback help you learn concepts beyond just fixing

the immediate error?

How does this feedback compare to asking a peer or

instructor?

What additional features would you like in such a system?

Would you recommend this system to other students?

TABLE VII
SURVEY RESULTS(POST-INTERVENTION)

Statement
Strongly

Agree (%)

Agree

(%)

Neutral

(%)

Disagree

(%)

Strongly

Disagree (%)

1. The feedback helped me understand errors better 46 35 10 6 3

2. The feedback helped me resolve errors faster 42 37 12 6 3

3. I am more confident in debugging MATLAB code after this activity 48 32 11 5 4

4. The feedback improved my understanding of programming concepts 44 34 13 6 3

5. I would like to use this feedback system in other programming

courses
50 30 10 7 3

TABLE VIII
FEEDBACK RESULTS(POST-INTERVENTION)

Statement
Strongly

Agree (%)

Agree

(%)

Neutral

(%)

Disagree

(%)

Strongly

Disagree (%)

1. The feedback format (text, examples) was appropriate 47 33 12 5 3

2. The feedback was relevant to my specific error context 49 31 11 6 3

3. The feedback timing was appropriate 46 36 9 6 3

4. Visual aids or code annotations would improve the feedback 39 35 15 7 4

5. The feedback helped me learn concepts beyond fixing the immediate

error
43 34 12 7 4

6. The feedback was accurate and rarely misleading 41 37 12 7 3

7. The feedback provided clear, actionable steps to fix my error 48 34 10 5 3

8. This feedback was as helpful as asking a peer or instructor 38 36 15 7 4

9. I would like additional features (e.g., richer examples, links) 35 40 15 6 4

10. I would recommend this system to other students 50 30 10 7 3

CONCLUSION

Turning MATLAB’s terse exceptions into targeted, line-level

coaching changed how students debug. With the real-time

assistant in place, learners fixed more errors on the first try,

needed less time per fix, and carried fewer misconceptions into

later tasks. Gains were not limited to quick patches: test scores

and normalized learning gains improved, and repeated error

patterns declined, showing better retention of rules such as

indexing, dimensions, and function scope. The system’s design-

capture – compress - query - parse - display, proved robust in

lab use and added minimal friction to the normal run-edit cycle.

This work has three practical takeaways. First, precise,

MATLAB-specific language in feedback matters as much as

speed; short fixes plus why-it-failed explanations yield durable

learning. Second, keeping students inside the toolchain reduces

context switching and encourages immediate experimentation.

Third, lightweight logs give instructors a live map of where the

class struggles. This work is first of its kind and it uses a proxy

server to fetch errors and correction from MATLAB to OpenAI

Journal of Engineering Education Transformations, Volume 39, January 2026, Special Issue 2, eISSN 2394-1707

 11

correspondingly and vice versa. Limitations include a single-

course setting, English-only prompts, and reliance on

networked inference. Next steps are adding static checks before

runtime, tracing-aware prompts, local or institution-hosted

models for privacy, and guardrails that auto-cite MATLAB

docs for high-risk suggestions. Even with these caveats, the

evidence supports adopting real-time error coaching in

MATLAB courses to raise both speed and depth of learning.

REFERENCES

Azaiz, I., Kiesler, N., & Strickroth, S. (2024). Feedback-

generation for programming exercises with GPT-4. In

Proceedings of the 2024 ACM Conference on

Innovation and Technology in Computer Science

Education V.1 (pp. 31–37). ACM.

https://doi.org/10.1145/3649217.3653594

Becker, B. A. (2016). An effective approach to enhancing

compiler error messages for novice programming

students. Computer Science Education, 26(2–3),

148–175.

https://doi.org/10.1080/08993408.2016.1225464

Becker, B. A., Glanville, D., & Goslin, K. (2018). Do

enhanced compiler error messages help students?

Proceedings of the 49th ACM Technical Symposium

on Computer Science Education (SIGCSE), 860–865.

https://dl.acm.org/doi/10.1145/3159450

Estévez-Ayres, I., Pazos, J., Rodríguez, P., & Muñoz-Merino,

P. J. (2024). Evaluation of LLM tools for feedback

generation in a university programming course.

International Journal of Artificial Intelligence in

Education, 34, 1299–1326.

https://doi.org/10.1007/s40593-024-00387-x

Jadud, M. C. (2006). Methods and tools for exploring novice

compilation behaviour. ACM SIGCSE Bulletin,

38(3), 1–5. https://dl.acm.org/doi/10.1145/1140124

Keuning, H., Jeuring, J., & Heeren, B. (2018). A systematic

literature review of automated feedback generation

for programming exercises. ACM Transactions on

Computing Education, 19(1), 3:1–3:43.

https://doi.org/10.1145/3231711

Lohr, A., Jablonski, D., Körber, M., van Breugel, B., &

Matter, S. (2024). Let them try to figure it out first:

When and how to integrate LLM feedback for

student code. In Proceedings of ITiCSE 2024 (pp.

455–461). ACM.

https://doi.org/10.1145/3649217.3653530

Marceau, G., Fisler, K., & Krishnamurthi, S. (2011).

Measuring the effectiveness of error messages

designed for novice programmers. Proceedings of

SIGCSE 2011, 499–504.

https://doi.org/10.1145/1953163.1953230

Meyer, O., Ji, K., Wang, J., Leibowitz, N., Qi, P., & Wang, Q.

(2024). Can AI-generated feedback increase

university students’ text revision? Computers &

Education: Artificial Intelligence, 6, 100280.

https://doi.org/10.1016/j.caeai.2024.100280

Pan, Z., Biegley, L. T., Taylor, A., & Zheng, H. (2024). A

systematic review of learning analytics–incorporated

instructional interventions on learning management

systems. Journal of Learning Analytics, 11(2), 52–72.

https://doi.org/10.18608/jla.2023.8093

Paulsen, L., Nygård, S., Håklev, S., Mattek, A., & Rosé, C. P.

(2024). Student-facing learning analytics dashboards

in higher education: A systematic review. Education

and Information Technologies, 29(6), 7081–7111.

https://doi.org/10.1007/s10639-023-12401-4

Rivers, K., & Koedinger, K. R. (2017). Data-driven hint

generation: Lessons learned in developing a self-

improving Python programming tutor. International

Journal of Artificial Intelligence in Education, 27(1),

37–64. https://doi.org/10.1007/s40593-015-0070-2

Ruan, F., Zhang, J., & Wu, R. (2024). Comparing feedback

from large language models and from a rule-based

system for introductory programming exercises. In

Proceedings of ITiCSE 2024 (pp. 657–663). ACM.

https://doi.org/10.1145/3649217.3653495

Santos, E. A., & Becker, B. A. (2024). Not the silver bullet:

LLM-enhanced programming error messages are

ineffective in practice. In Proceedings of the 2024

Conference on United Kingdom & Ireland

Computing Education Research (UKICER) (pp. 1–7).

ACM. https://doi.org/10.1145/

Steiss, J., Nückles, M., & Renkewitz, F. (2024). Comparing

the quality of human and ChatGPT feedback on

student writing: A randomized field study.

Computers & Education, 212, 104980.

https://doi.org/10.1016/j.compedu.2024.104980

Watson, C., & Li, F. W. B. (2014). Failure rates in

introductory programming revisited. ACM

Transactions on Computing Education, 14(2), 1–28.

https://doi.org/10.1145/2602488

https://doi.org/10.1145/3649217.3653594
https://doi.org/10.1016/j.caeai.2024.100280?utm_source=chatgpt.com
https://doi.org/10.18608/jla.2023.8093?utm_source=chatgpt.com
https://doi.org/10.1007/s10639-023-12401-4?utm_source=chatgpt.com
https://doi.org/10.1145/?utm_source=chatgpt.com
https://doi.org/10.1016/j.compedu.2024.104980?utm_source=chatgpt.com
https://doi.org/10.1145/2602488

