CO-PO Mapping and Attainment Booklet for Tier-II students with Rubrics Assessment

VA Kulkarni¹, B. B. Ahuja², MR Dhanvijay³

¹Production Department, DY Patil COE, Akurdi, Pune, Savitribai Phule Pune University, India

Abstract: National Board of Accreditation, June 2015 format has mandated Outcome Based Education (OBE) after India is full signatory member of Washington Accord in 2014. Tier-II students are facing tough competitions from Tier-I students with respect to attainment of knowledge and involvement of technical aspects and gap visible with respect to employability of students. CO-PO mapping and attainment, defined by NBA, gives substantial opportunity for Tier-II students to bridge this gap of employability. In this present paper, a case study is developed through CO-PO mapping and attainment for SE Production Students of Tier-II. The formulated rubrics assessment is indicative of continuous improvement strategy that can be easily adoptable by faculty and students across engineering streams.

Keywords: CO-PO Attainment, Tier-II, Rubrics

VA Kulkarni

Production Department, DY Patil COE, Akurdi, Pune, Savitribai Phule Pune University, India kulkarnivinay@rediffmail.com

Abbreviations: CO- Course Outcome, PO- Program Outcome, Envr-Environment, Sus- Sustainability, Ind-Individual, Comm-Communication, Proj - Project, Fin- Finance, SAP-Systems, Applications, Products, IFC - International Finance Corporation, IAPA - Industrial Accidents Prevention Association, EHS - Environmental, Health and Safety, MQL - Minimum Quantity Lubricant, AWS-American Welding Society, ECH- Electrochemical Honing, CAPP- Computer Aided Process Planning, NABARD- National Bank for Agriculture and Rural Development, AWS-American Welding Society

1. Introduction

National Board of Accreditation (NBA) had recently opted for Outcome Based Education (OBE) after India is full signatory member of Washington Accord. June 2015 format of Tier-II of NBA, based on Outcome Based Accreditation (OBA), is proposed for effecting transformation in engineering education to catalyse adaption of outcome based processes to enable the students to achieve their dream goal after completion of program. Many faculties of Tier-II are having opinion that they are constrained with curriculum set by university systems. However, university curriculum is minimum prescribed and additional efforts by faculty are always a welcome step. Due to time and intake quality constraint of students, faculty members face dilemma in adaption of additional systems and their effectiveness. NBA recommends usage of a very effective solution to attain in form of "Program Outcomes". Program

^{2,3}College of Engineering, Pune

¹kulkarnivinay@rediffmail.com

²bba.prod@coep.ac.in

³mrd.prod@coep.ac.in

Outcomes are the attributes that the graduates are expected to possess at the time of graduating. This is required to be gradually build right from admission till graduation as quality requires consistent effort. Many of companies during campus placement tests "Basic Concepts" of students related to First Year and Second Year courses. Many faculties tend to give emotional relaxation to these students of First and Second Year considering that they are juniors. Professional attributes development is then left to students in their crucial initial years. However after First Year and Second Year, students start developing Hard Facts (Examination Results) due to which students not having eligible marks (Generally > 60% in each semester) starts losing their interests in studies and become very passive in any employability efforts put in by faculty if started from third year onwards. Thus faculty role and students interests don't get mapped effectively if the efforts of developing professional skills (especially PO5-PO12), started in Final Year onwards instead of second year.

Also, with increase in number of IITs/NITs/Tier I institutions in India, it is not wise to expect these Program Outcomes to be attained by students of Tier-II on their own, without active involvement of faculty.

Through CO-PO attainment and not just mapping, it is expected that every faculty will contribute to development of students in all aspects, covered by Program Outcomes (POs).

The faculties of Tier-II therefore, are having great responsibility towards their students for development of POs amongst them.

Its normal perception, of Faculty in Tier-II, that they will modify curriculum, if authority is bestowed upon them to do so, to cover the gap between, what is been taught and what is expected in field.

Therefore, there is a need of getting this curriculum gaps and employability aspects filled through CO-PO mapping ensuring active faculty involvement in overall development of student.

With the OBE systems of NBA, all faculties are now getting great opportunity to address this aspect through CO-PO Mapping and Attainment as they can themselves plan and fill the gaps of prescribed curriculum with active or passive participation of stakeholders.

The proposed method is concentrated on COs to PO5-PO12 mapping, as they are seldom mapped with university curriculum.

2. Methodology

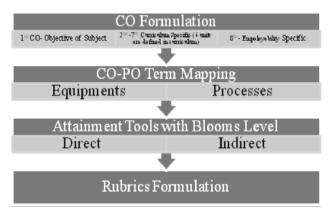


Fig 1: Methodology of CO-PO Attainment Resulted set of documentations are termed as booklet.

The methodology followed in this research framework is as per following.

3. CO Formulation

COs are knowledge and skills that are formulated for each course. These COs are mapped to POs and attainment of each PO is calculated by various tools considering set target levels [1]. COs should be drawn in such a way that they should be generic enough to state the outcomes rather than speaking very much specific about the syllabi set by the BOS/University [2]. Case Study of Manufacturing Process of SE Production S/W course in Savitribati Phule Pune University is taken into consideration.

Table 1. COs and Blooms Level

CO No.	Course Outcomes	CO/Curriculum Description	Targeted Blooms' Level
CO1	Evaluate	Objective to evaluate Manufacturing Processes	B5
CO2	Organize	Casting	B4
CO3	Apply	Forming	В3
CO4	Develop	Welding	В6
CO5	Organize	Lathe	B4
CO6	Appraise	Milling and Drilling	B5
CO7	Draw	Grinding	B4
CO8	Justify	Development of Employability Skills related to manufacturing like performance analysis of machines/equipment	В5

Considering these backgrounds, COs are formulated on the basis of Blooms verb and Targeted Blooms Level.

4. CO-PO Mapping

The course and program outcome (CO-PO) assessment includes all data of tests, labs, assignments, course exits and exams imported from an instructor's course file along with Blooms level [3].

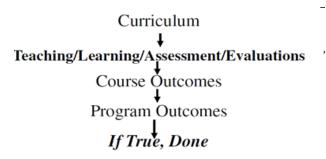


Fig 2: CO-PO Attainment Motive [3]

Important points in consideration for CO-PO Mapping and Attainment are listed below.

- 1) Each CO can be identified to address a subset of POs
- 2) Based on the number of COs and the terms (Equipment/Processes) dedicated to them, it is possible to identify either the strength of mapping (1, 2 and 3) to POs or attained targeted blooms level.
- 3) Based on strength of selected POs, a CO-PO matrix can be established.
- 4) CO-PO mapping should be done in such a way that, all stakeholders' participation is ensured.
- 5) Stakeholders listing can be Internal (Faculty, Student) and External (Employer, Industry, Alumni, Tier-I Faculty, Conference/Journal Papers/Authors)
- 6) For attainment, learning of students should be measured and evaluated. Based on students learning (Active/Passive), direct (active) and indirect (passive) assessment methods are required to be formulated. [4]
- 7) If classroom like environment is created for studying of specific module/course along with university like evaluation, it can be then augmented as direct attainment with 80% claim [4].
- 8) Indirect attainment also can be claimed to be 20%

- for curriculum and raised up to 50% for feeling up gaps in curriculum [5].
- 9) For CO mapping to PO5 to PO12, faculty should refer journal and conference papers, employer's website, campus placement papers, preplacement talks, GATE/IES/UPSC/competitive exam test papers, offline campus recruitment procedures, desirable profiles required by employers etc, specific to their subject.
- 10) Various indirect assessment tools like Focused listing, application cards, standardized tests, list, empty outline, memory matrix, minute paper, muddiest points, one sentence summary, pro-con grind, chain listing, punctuation pauses etc should be evaluated and used judiciously for mapping and attainment.
- 11)Each CO should be mapped with specific employment opportunity through off- campus opportunities like employment news and job portals like naukri.com
- 12) Faculty should ensure that all COs should be mapped with at least one subset of each POs. e.g. CO1 should be mapped with at least one subset of PO6 (safety, health, legal and culture).
- 13) Every course in curriculum should form CO-PO matrix instead of formulating in similar subject. Even, two different faculties teaching same subject should form different CO-PO matrix as it is indicative of the learning process to be inculcated in students.

Table 2 and 3 indicates CO-PO term mapping and set of evaluation methods through equipments/processes.

Table 2: CO-PO Term Mapping

	Related	PO Terminologies									
CO No.	Equipments/ Processes	5 (Modern)	6 (Society)	7 (Envr & Sus)	8 (Ethics)	9 (Ind,Team)	10 (Comm)	11 (Proj, Fin)	12 (Life Long, Learning)		
1	Manufacturing Processes	SAP	Safety Manual	Carbon Emission	Business Ethics	Gauge R & R	Profit and Loss Statement	Indexed in BSE	IIT Bombay M.Tech Course		
2	Casting	Mould flow in NX software	IFC Safety Guidelines	IFC Envrn Guidelines	Tenza Casting Pdf	Casting operations	Casting Inspection Reports	Casting Projects	Future Developme nt in Foundry		
3	Forming	Formability Analysis in NX	IFC Steel Mill Guidelines	IFC Envrn Steel Mill Guidelines	Tata Steel Ethical Policy	Formability Analysis	Forming Limit Diagram	Research projects in Formability	Research in Rolling		
4	Welding	NX Tips & Triks: Welding assistant	IS 818:1968	Procedia Paper Env and Sustainability	AWS: QC 1 2007 Code of Ethics	Welding Team Work	Weld Inspection Report	Cost of Welding Electrodes	Newer Trends in weld Shielding		
5	Lathe	Retrofitting Kits	Enterprise 1330 Safety Manual	EHS Sandvik	Code of Conduct in Kirloskar	Lathe operations	Maintenance Checklist	Finances by NABARD	Newer Cutting Tools like PCBN		
6	Milling & Drilling	Sandvik CoroMill & CoroDrill	IAPA Safety Assessment	IAPA Envrn Assessment	Code of Conduct in Sandvik	Gear Milling Operations	Drill Bit Selection Guide	Tool Cost	Drilling Inserts		
7	Grinding	ECH- Procedia	Inspection Checklist IAPA	MQL Grinding	KMT Grinding code of conduct website	Buffing Operations	Grinding Wheel coding	Grinding Time Calculations	Research in Honing		
8	Performance of Machines/Equipm ents/Men	САРР	Zero Accidents, Safe working practices	Energy Efficiency Calculations	Timely Reporting, Handover and Takeover Procedures	Men Manageme nt, Work Allocation	Reporting with Cross Functional Department	Delays, Machine Breakdowns, Productivity Calculation	MIS Preparation and Updations		

Table 3: CO-PO Attainment through assessment

_				Assessment Tool		Assessment Question		Blooms Level	
Sr. No.	CO-PO Mapping	Learning Parameter	Stakeholder Participation	Direct/ Indirect	Name of Tool	with maximum blooms attainable level	Assessment By	Targ eted	Achie vable
1.	CO1-PO5	SAP	Employer	Indirect	Focused Listing	1) Long form of SAP, 2) SAP applications 3) Different modules of SAP 4) Most suitable module for MP subject (B5)	Faculty	B5	В5
2.	CO2-PO5	Mould flow in NX	Employer	Indirect	Empty outline	Parameters Affecting Mould Flow in NX Software Capabilities of NX, 3) Steps in Mould Flow Analysis in NX	Faculty	B5	B5
3.	CO3-PO5	Formability Analysis in NX	Industry	Indirect	Pro-Con List	List Pro-Con for using NX software for formability analysis	Faculty	B5	B5
4.	CO4-PO5	NX Tips & Tricks: Welding assistant	Industry	Indirect	Minute Paper and Muddiest Point	Watch the Video on You Tube and select trips and tricks for welding	Bright Student	B5	B5
5.	CO5-PO5	Retrofitting Kits	Industry	Indirect	List	Justify Specifications of Retrofitting Kits for Lathe Machine w.r.t controller, servos, displays, cost and taxation Alumni		B5	B5
6.	CO6-PO5	Sandvik CoroMill & CoroDrill	Employer	Indirect	List	Judge specifications of Coro Mill and Coro Drill w.r.t speed, feed, doc and other technical information with conventional tool	Bright Student	B5	B5

				Assessment Tool		A		Blooms Level	
Sr. No.	CO-PO Mapping	Learning Parameter	Stakeholder Participation	Direct/ Indirect	Name of Tool	Assessment Question with maximum blooms attainable level	Assessment By	Target ed	Ach ieva ble
1.	CO7-PO5	ECH (Electrochemi cal Honing)- Procedia	Journal	Indirect	One Sentence Summary	Read procedia research paper, P.S. Rao, P. K. Jain, D. K. Dwivedi, "Electro Chemical Honing (ECH) of External Cylindrical Surfaces of a Titanium Alloys", Procedia Engineering ((2015) and critically weigh resources used	Faculty	B5	B5
2.	CO8-PO5	CAPP	Industry	Indirect	Focussed Listing	1) Long form of CAPP 2) CAP applications 3) Types of CAP used for MP subject	Faculty	B5	B5

n table 2, different CO-PO mapping is obtained through equipments/processes. e.g. In CO1, students are expected to learn different manufacturing process as objectives and PO5 is IT related tools.

Therefore, if students know about SAP software, attainment is achieved with respect to targeted blooms level.CO1 mapping with all POs is shown in table 2.

		% Students									
Sr. No	Rubrics Criteria	Does not meet expectations		Meets Expectations		Exceeds Expectations		Inspiring			
	\	2016-2017	2017-2018	2016-2017	2017-2018	2016-2017	2017-2018	2016-2017	2017-2018		
1	Extent of Completion	10		60		15		15			
2	Justified the purpose	25		25		45		5			
3	Completed for sake of compulsion	20		40		30		10			
4	Involvement of Student	46		27		20		7			
5	Students used multiple and varied sources	35		40		20		5			
6	Used Key points, facts and data	40		45		10		5			
7	Originality of Data	55		30		8		7			
8	Attainment in CO1-POs	22		28		40		10			
9	Attainment in CO2-POs	20		30		25		25			
10	Attainment in CO3-POs	22		20		32		26			
11	Attainment in CO4-POs	30		19		27		14			
12	Attainment in CO5-POs	34		18		23		25			
13	Attainment in CO6-POs	24		26		26		24			
14	Attainment in CO7-POs	24		36		14		16			
15	Attainment in CO8-POs	22		32		23		23			
	Instructions: Write Set of POs										
16	Weakly attained CO-PO by Students	PO9		PO4		PO12		PO10			
17	Strongly attained CO-PO by Students	PO5		PO6		PO8		P11			
18	Moderately attained CO-PO by students	PO3		PO2		PO9		PO7			

Similar to table 2, other tables for PO6 to PO12 is prepared for participation of remaining stakeholders.

For a case study, discussed in paper and after analyzing rubrics following conclusions can be drawn.

1) More emphasis has to be given for inculcating originality habits amongst the students, involvement

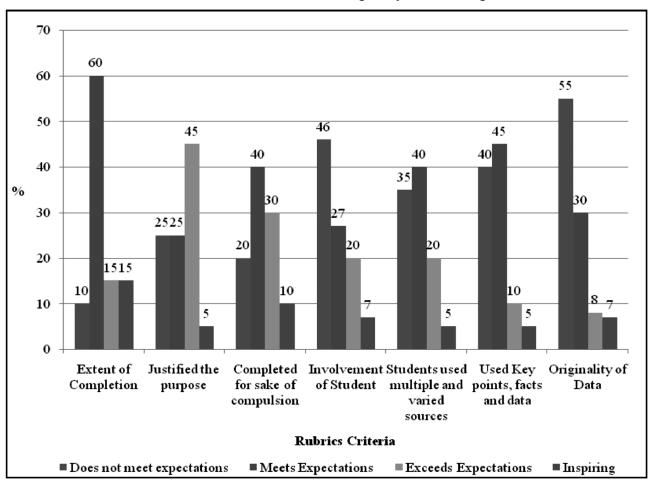


Fig 3: Rubrics for CO-PO Attainment

From figure 3, it is evident that, 60% of students are completing the CO-PO attainment work and showing their strong willingness to excel, which is quite encouraging. The involvement of students with respect to originality of data used, key points and facts, justifying the purpose have to be worked for.

5. Conclusion

CO-PO attainment reflects faculty insight towards development of students with professional skills. Each faculty is recommended to carry out CO-PO mapping and attainment for each subject. For attainment, students were asked to submit this completed booklet as mini project as part of term work and oral submission.

- of students along with completed for sake of compulsion.
- 2) Students have well taken concept of CO-PO mapping and attainment booklet, as gap filling strategy between curriculum and actual field expectations.
- 3) Extent of completion of booklet and use of key points, facts and data are notable encouraging responses from students. This also indicates applicability of Outcome Based Education (OBE) as students are welcoming any extra efforts for achievement of desirable outcomes.

References

- [1] Dr. L.S.Admuthe, Deepali Yoginath Loni, Course Outcome-Program Outcome Mapping Matrix & Attainment -Issues and Model Based Solutions for Tier II Category Journal of Engineering Education Transformations, Vol 29, No Spl Iss (2016)
- [2] Kiran B. Malagi, V. Kumar Swamy, B. S. Anami, A Novel Method for Attainment Measurement of CO's and PO's for Tier-II Institutions, Journal of Engineering Education Transformations, Vol 29, No Spl Iss (2016)
- [3] NBA Training Manual, NBA Website
- [4] Training Text Material, NBA, Orientation workshop on Outcome Based Accreditation
- [5] Emphasis on How to prepare the SAR and effect improvements during the process, NBA Training

