
Journal of Engineering Education Transformations,

Volume No. 37, January 2024 Special Issue, eISSN 2394-1707

858

 Abstract—System Software is a fundamental core course for

undergraduate students of Computer Science and Engineering.

The traditional approach to teaching the System Software course

within the School of Computer Science and Engineering lacked a

meaningful connection to real-world machine architectures,

leading to disinterest and reduced engagement among

undergraduate students. This paper introduces an innovative

teaching method designed to empower students to grasp the

system programs of real systems effectively. Our approach

involves effortlessly integrating the delivery of system software

content with the Atmel AVR ATmega32 real-time machine,

which students have previously encountered in a prior semester.

Moreover, this paper provides a detailed examination of the use

of a hypothetical machine in traditional teaching methodologies.

While this method allowed for a more in-depth exploration of

system software concepts, it struggled to establish a practical link

to real machine. The novel teaching approach employed in this

study adopts a unique method that links all the system software

concepts with the practical system program of a real-time

machine. This paper also explains how the advances in

Technology has played a crucial role in considering real-time

machines as examples. And it also discusses the limitations of

teaching concepts using only hypothetical machine and concise

overview of the chosen real-time machine is provided, followed

by the observation of enhanced knowledge of system software

concepts through its integration. To measure the effectiveness of

the proposed methodology, we also gathered valuable feedback

from the students. The course result analysis shows substantial

improvement in understanding the concepts, performance and

lifelong learning of the students.

Keywords—System Software, Atmel AVR ATmega32,

Hypothetical machine. Design thinking, Problem solving

I. INTRODUCTION

System Programming holds a crucial position within

the undergraduate level computer science curriculum. The

primary objective of the System Software (SS) course is to

enhance students proficiency in system programming, a skill

highly sought after by numerous leading industries.

JEET Category—Pedagogy of teaching and Learning
This paper was submitted for review on September 10, 2023. It was

accepted on November, 15, 2023.

Corresponding author: Nagaratna D Kulenavar, School of Computer
Science and Engineering, KLE Technological University, Karnataka, India

Address: Vidyanagar,Hubballi 580031 (e-mail:

kulenavar@kletech.ac.in).

Copyright © 2024 JEET.

Traditionally, this subject has been taught using hypothetical

computer systems as a foundation.

The existing system software syllabus has several

limitations. First, it predominantly focuses on hypothetical

machines, which are rarely employed in practice. Second,

transitioning from hypothetical to real-time machines can be

challenging. Third, analyzing real-time system software is

complex, as it is developed for diverse real-time machines.

Lastly, the conventional teaching approach often employs

hypothetical machines, despite the abundance of real-time

machines in use. Therefore, to address these limitations, a

technological shift is necessary.

The revised syllabus now includes an extensive case study

highlighting the 32-bit ATMEL ATmega32 machine. This

case study effectively addresses the shortcomings of the

previous curriculum by actively engaging students in the

development of system software for real-time machines

currently in use. The outcomes of this study have

demonstrated a creative impact on students and remarkably

indicating a success rate exceeding 90%.

The course, along with its corresponding laboratory

component, is introduced at the fifth semester level and

carries a credit weightage of four. This comprehensive

course structure includes 2 In-Semester Assessment (ISA),

an End- Semester Assessment (ESA), and an extensive

course project. Notably, the questions in both the ISA and

ESA are carefully crafted to assess students' learning levels

in alignment with Bloom's Taxonomy. The course, its

delivery methods, and the evaluation techniques are all

strategically designed to address the technical outcomes

expected from the program.

In the context of teaching, the role of an instructor is

pivotal in motivating and facilitating student understanding

of the subject matter. Achieving this can be realized when

instructors can provide effective solutions to the following

critical questions:

Question 1: What innovative techniques can be introduced

to dispel students' negative perceptions and encourage the

application of suitable data structures for the implementation

of system software algorithms?

Question 2: How can instructors guide students in the

self- design of algorithms tailored for specific real machines,

thus enhancing their grasp of the subject's core concepts?

To answer the above questions, we designed method that

encouraged the application of suitable data structures in

system software algorithms. We also employed innovative

Students Unlock the Power of Real Systems: An

Experiential Learning in System Software Course
Nagaratna D Kulenavar1, Sujatha C2, Umadevi F M3, Indira B4, G S Hanchinamani5, Jayalaxmi G.N6

1,2,3,4,5,6School of Computer Science & Engineering, KLE Technological University, Hubballi, Karnataka
1kulennavar@kletech.ac.in , 2sujata_c@kletech.ac.in , 3uma_devi_fm@kletech.ac.in
4indira_bidari@kletech.ac.in ,5gs_hanchinamani@kletech.ac.in , 6jaya_gn@kletech.ac.in

mailto:1kulennavar@kletech.ac.in
mailto:2sujata_c@kletech.ac.in
mailto:3uma_devi_fm@kletech.ac.in
mailto:4indira_bidari@kletech.ac.in
mailto:5gs_hanchinamani@kletech.ac.in
mailto:6jaya_gn@kletech.ac.in

Journal of Engineering Education Transformations,

Volume No. 37, January 2024 Special Issue, eISSN 2394-1707

859

techniques such as, interactive coding environments and

real- world case studies which helped students connect

theory with real-world applications and get a deeper

appreciation for data structures. Furthermore, we guided

students in self-designing algorithms for specific real

machines by imparting a thorough understanding of machine

architecture.

The paper is structured into several sections for coherent

organization: Section II focuses on related work, Section III

discusses conventional teaching methods, Section IV outlines

the motivation behind choosing the ATmega32, Section V

elaborates on the proposed teaching method, Section VI

presents the results, and, finally, Section VII summarizes the

conclusion and outlines paths for future work.

II. RELATED WORK

The paper Erdil (2020) showcases a pedagogical approach

known as project-based learning, which prioritizes the

practical application of computer architecture concepts

through hands-on experiences. Instead of traditional lectures

and theory-heavy coursework, students engage in projects and

real-world problem-solving to gain a deeper understanding of

computer architecture concepts.

The paper Rizki et al.,(2022) contributes to the

understanding of the complex interplay between students' self-

confidence and their mathematical problem-solving abilities,

offering insights that can be valuable for educators and

curriculum() designers in the field of mathematics education.

In the paper Hegade, P., Patil, N., & Kanthi, A. N (2022)

the concept of creating a course portfolio in partnership with

industry is explored, showcasing a forward-looking

educational approach that offers advantages to both students

and industry collaborators. It ensures that educational

programs remain relevant and produce graduates who are

well-prepared for the workforce, contributing to the growth

and success of industries.The paper Husain, M., Tarannum,

N., & Patil, N (2013).discusses novel teaching methods and

strategies employed in the programming course elective to

enhance the learning experience.

The book Beck (1985) "System Software: An Introduction

to Systems Programming" is a comprehensive textbook that

offers a thorough exploration of system software and its role

in computer systems. Written by L. L. Beck, the book

provides a valuable resource for students and professionals

seeking to understand the foundations of systems

programming. The paper Tingting Li & Zhan (2022) emphasis

systematic review to critically evaluate and synthesize the

available literature on the integration of design thinking into

K-12 education. The aim is to provide insights into the impact,

effectiveness, challenges, and best practices associated with

incorporating design thinking principles.

The paper Patil, S. S., Dange, P., Pawar, A., & Patil, S. K

(2022) discusses the "Design of a Hypothetical Machine with

Complex Addressing Modes" project that offers a unique

opportunity to enhance the understanding of system

programming through simulation. By creating an interactive

and educational platform, this project aims to empower

learners and educators in the field of system programming,

fostering a deeper appreciation for the intricacies of computer

systems and memory management. In the paper Yunus et al,

(2020) suggests Incorporating Design Thinking principles into

the teaching of programming to gifted students can enhance

their problem-solving abilities, creativity, and overall

programming skills. It also helps them apply their

programming Santos et al., (2020) knowledge to real-world

scenarios, preparing them for future challenges in technology

and innovation. The paper Hegade et al., (2021) exposes how

courses provide students with real-world exposure and

practical experience while benefiting industries through fresh

perspectives and potential talent recruitment.

The paper Kulkarni, Nitya N., NirmalaPatil, K. G.

Karibasappa, & MeenaMaralappanavar (2018) discusses how

case study illustrates and how discrete mathematical structures

play a crucial role in solving real-world problems, especially

in complex systems. The paper Pörn et al., (2021) suggests

that domain knowledge of programming is the most critical

factor contributing to both a high perception of preparedness

and a positive attitude. Teachers' perspectives on

programming span a wide spectrum, ranging from a narrow

focus on its association with elementary step-by-step thinking

to more advanced reasoning that links programming to

fundamental aspects of computational thinking and broader

educational objectives. Authors Kelly & J. Gero (2021)

encourages innovative solutions that are not only functionally

robust but also genuinely meet the needs of the end-users. This

integration of methodologies can be particularly valuable in

fields such as user experience design, software development,

and product design, where user satisfaction and efficient

problem-solving are essential.

System software knowledge is a fundamental prerequisite

for mastering system programming. Skill in system

programming can be cultivated by exploring into subjects

such as System Software, Compiler Design, Finite

Automata, and Formal Language, among others. The System

Software course includes the study of various machine

architectures and the development of a deep understanding

of Assemblers, Loaders, Linkers, and Macro processors. An

assembler serves as a language translator, offering insights

into the foundational translation processes that support

nearly all programming languages, such as C, C++, Java,

and more. Subsequently, for task execution to take place,

programs must be loaded into memory, a vital function

performed by system software known as the loader.

System software, including assemblers and loaders, plays a

crucial role in computer science education. Computer

science engineers must possess a thorough grasp of these

elements. Therefore, the computer science

curriculum(Sujatha, C., & Karibasappa, K. G (2015)

incorporates system software to provide students with the

necessary knowledge and skills related to assemblers,

loaders, and essential system-related functions, equipping

them for success in the practical application of their

education.

Journal of Engineering Education Transformations,

Volume No. 37, January 2024 Special Issue, eISSN 2394-1707

860

III. CONVENTIONAL TEACHING

Traditionally, when teaching system software concepts as

noted by Beck (1985), educators frequently employed

hypothetical machines like the Simplified Instructional

Computer (SIC) and Simplified Instructional

Computer/extended (SIC/XE). These machines, along with

simulators, were chosen over real assemblers such as Turbo

Assembler (TASM), Microsoft Macro Assembler

(MASM), Netwide Assembler (NASM), and others.

As every machine has its own architecture, hence every

machine will have its own system software which needs to

be explored by students. Whenever they will develop new

system software definitely that machine will not be a

hypothetical. But existing syllabus includes only

hypothetical machine shown in Fig 1.

The paper (Erdil,2020). showcases a pedagogical approach

Fig 1: Flow of conventional teaching

Later hypothetical machine is replaced by real time

machines to know practical and existing problems while

designing and implementation of system software like

assemblers, loaders, linkers and macro processor. First we

explored with 8086 machine, then replacing 8086 with 8051

machine architecture, since 8051 architecture was studies in

previous semester. Now, system software again is taught

using hypothetical machine to illustrate all features like

addressing modes Patil, S.S et al.,(2022) instruction formats,

instruction set and input/output operations. Along with the

case study of a real time machine to design and implement

real time assemblers to unlock the power of real systems.

Limitations and Challenges of Conventional teaching:

1. Limitations:
 Adaptation to other real time machine was difficult.
 Facing obstacles while attempting to analyze the

codebase of the existing system software.

 Complexity in understanding other machine

architectures.
 Unable to practice assembly language programs on

established assemblers like KEIL, MASM, TASM,
Atmel AVR ATmega32, and others.

2. Challenges:

 Time to learn existing machine architectural

features.
 Complexity in the design of pass1 and pass2 of

two pass assembler algorithm for a real-time
machine.

IV. REASONS FOR SELECTING ATMEL AVR

ATMEGA32 MACHINE

In the existing syllabus system software is taught using two

hypothetical machine architectural features to cover all

concepts which are prerequisite to design any real time

system software like assemblers, loaders, linkers and

macro processor. Atmega32 is covered in Microcontroller

course which is prerequisite for system software course.

Also self-learning the architectural features for real time

machine requires more time and writing of assembly

language programs (ALP’s) which are inputs to system

software are machine dependent , so students need to write

different ALP’s to overcome this we need the course where

the real time machine architectural features are taught, so

that the students can directly start the design of system

software, no need to learn architectural features because

goal here is to design system software not to learn machine.

V. PROPOSED METHOD

In the past, computer systems were often viewed as black

boxes, and people had limited insight into their inner

workings. To facilitate the teaching of system software design

and implementation, hypothetical machines with features

resembling those found in real-world systems were used. This

approach aimed to simplify and advance the learning process

for system software development. This approach is highly

effective as it enables students to systematically grasp

essential concepts by working with model machines as part of

their learning process. However, it's important to acknowledge

that numerous real-time machines already exist, and students

often study these architectures in various subjects such as

Computer Organization as mentioned in paper Nayak et

al.,(2021). Given the availability of these real machines,

there's merit in teaching system software using a real-time

machine. This approach allows students to address real-time

problems in case studies and adapt to technological

advancements effectively. Hence, recognizing the need for a

technological shift is crucial. Hence, both hypothetical

machines and real-time machines have their significance in the

curriculum, as illustrated in Figure 2. This combination

provides students with a well-rounded understanding of

system software, encompassing both theoretical foundations

and design of system software.

Fig 2: Flow of current teaching

Now, our proposed syllabus includes Atmel AVR ATmega32

real time machine as a case study to demonstrate design and

development of system software like assemblers and loaders

to illustrate the applying of knowledge in any real time

machines.

The AVR machine is a low-power CMOS 8-bit

microcontroller with 32 Kbytes In-System Programmable

Flash Program memories with enhanced RISC architecture

and optimizes power consumption versus processing speed. It

Journal of Engineering Education Transformations,

Volume No. 37, January 2024 Special Issue, eISSN 2394-1707

861

supports rich instruction set. The resulting architecture not

only enhances code efficiency but also achieves throughput

speeds that can be as much as ten times faster compared to

traditional CISC microcontrollers. The Atmel AVR

ATmega32 comes equipped with a comprehensive set of

program and system development tools, including C

compilers, macro assemblers, program debugger/simulators,

in-circuit emulators, and evaluation kits.

 Teaching system software through the proposed

methodology has enabled students to gain a deep

understanding of the subject within the system domain. This

approach has motivated them to independently design system

software for the Atmel AVR ATmega32 machine, ultimately

empowering them to become expert System Programmers, as

illustrated in Fig 3.

Fig 3: System software programmer requires the knowledge of coding skills

and design thinking with team work

In our approach, students designed pass1 and pass2 of two

assemble algorithm for Atmel AVR ATmega32 machine that

are shown below

Algorithm 1: Pass1 of Two Pass Assembler
 Begin

 store #[OPERAND] as the starting address

 initialize LOCNCTR to the starting address

 append this line to the output file
 take the next line from ALP file

End {end for if ORG}

 else
 Set LOCNCTR to zero

 while OPNCODE != 'END' do

 Begin
 if this line is not a comment line then

 Begin

 if there is a symbol in the LABL field then
 Begin

 search SYMBOLTAB for LABL

 if LABL is found in SYMBOLTAB then
 Set an error flag

 else

 Add (LABL, LOCNCTR) into SYMBOLTAB

 End {end for if symbol}

 search OPNCODE in OPCTAB

 if OPNCODE is found in OPNTAB then
 Begin

 if OPNCODE is 'CALL' or 'JMP' or 'LDS' or 'STS'

 then
 Add 4 {instruction length} to LOCNCTR

 else

 Add 2 {instruction length} to LOCNCTR
 End

 else if OPNCODE is 'DB' or 'DD' or 'DQ' or 'DW' then

 Begin
 Compute the length and add it to LOCNCTR

 End {end for if BYTE}

 else if OPNCODE = 'BYTE' then
 Begin

 Compute the length in bytes and add it to LOCNCTR

 End {enf for if BYTE}

 else
 Error to indicate an invalid operation code

 End {end for if not a comment}

 append this line to the output file
 read the next line from ALP

 End {end for while not END}

 append the last sline to the output file
 Compute (LOCNCTR - starting address) as the length of the program

End {end of Pass 1}

The ability to design this type of algorithm in the

field of computer science is a valuable skill for

students and it can be applied in a wide range of

projects across various fields. This design skill is a

foundation of computer science, facilitating

innovation, efficiency, and developing system

programs like

 Operating System (OS The operating system

(OS) serves as a foundational system program

responsible for resource management and

delivering essential services to support

software applications.

 Device Drivers: Device drivers are essential

system programs that enable the operating

system to establish communication with and

effectively manage hardware devices.

 Compiler: A compiler serves as a system

program responsible for converting high-level

programming languages like C and C++ into

machine code, which is then capable of

execution by the computer's central processing

unit (CPU).

 Interpreter: Interpreters, which encompass

programs such as Python interpreters and

JavaScript engines within web browsers, are

system programs designed to directly run

high- level programming language code

without the requirement of prior compilation.

 Linker: A linker serves as a system program

responsible for combining object files, which

contain compiled code, along with libraries, in

order to produce a combined and executable

program.

 Loader: A loader is responsible for loading

executable programs into memory for

execution.

Algorithm 2: Pass2 of Two Pass Assembler
Begin:
 read first line of the assembly program (from the output of Pass1)

 if OPNCODE = 'ORG' then
 Begin

 append to the output file

 read the next line of the assembly program
 End {end for if ORG}

 initialize ‘Text record’ and other necessary variables

 while OPNCODE != end_stmt do
 Begin

 if there are no ‘comment line’ then

 Begin
 check OPCTAB for OPNCODE

 if OPNCODE is present in OPCTAB then

 Begin
 if any symbol present in the OPERAND column then

Journal of Engineering Education Transformations,

Volume No. 37, January 2024 Special Issue, eISSN 2394-1707

862

 Begin

 search SYMLTAB for OPERAND
 if OPERAND is present in SYMLTAB then

 set symbol address equal to operand address

 else
 Begin

 set zero as address of operand

 and set error flag
 End

 End

 else
 set zero as address of operand

 gather the object code of instruction

 if the object code cannot be accommodated within
 the existing ‘Text record’ space then

 Begin

 append the ‘Text record’ to the object program
 create a new ‘Text record’

 End

 append the object code to the ‘Text record’
 End {end for if opcode found}

 else if OPNCODE = 'BYTE' then

 convert the constant to object code
 append the listing line

 End {end for if not comment}

 read the next input line from ALP
 End {end for while not END}

 append the final ‘Text record’ to the object pgm
 append the ‘End record’ to the object pgm

 append the last listing line

End {Pass 2}

This methodology gives more practical knowledge, improves

design thinking ability Vrana et al.,(2021), coding skills, easy

to analyze existing system software code, adaptation from one

machine to other machine, improve the quality of

understanding level of students which assist them during their

placement. The merging of Hypothetical and real time Atmel

AVR ATmega32 machine for the design and development of

system software worked very successfully till end of the

semester. One sample ALP code which is input for the

assembler is example for Hypothetical and Real machines is

as follows in fig 4

Fig 4: Example of Hypothetical and Real machine input for

 assembler design

.

VI. RESULTS

The main goal of the present study was to explore the

students’ perspective on the design of real time system

software and motivation as an important addition to

experimental studies in the computer science education field.

This exploratory case study found following evidences:

Student Feedback: Students were asked the following

questions as part of the feedback on the course delivery and

importance.

The Questionnaire is as follows:

 Does System Software sound more interesting after

had attended this course?

 Do you think that applying knowledge on real time

machine in system software course is effective?

 Should the implementation of algorithms be done on

real machine or hypothetical machine?

 Has case study approach improved your thinking

and design skills?

 Have you accomplished the tasks effectively?

The conceptual mappings between the questions and

categories are: questions 2 and 4 cater to challenge category;

questions 1, 3 and 5 cater to responding phenomena category.

Fig 5: Plot of student feedback responses

The above graph showed in Fig 5 was the feedback given by

students based on the questionnaire. Majority of the students

strongly agree for their interest in the subject and applying of

knowledge on real time machines based on questions 1 and 2.

In the questions 3 and 4, students agree that there was an

improvement in their design skills and implementation. . All

students have completed the course project effectively that is

evident through question 5. Based on the error graph, it is

evident that there is room for improvement in the

effectiveness of the method employed. This aspect will be

carefully addressed and considered in our future work.

Course Performance: Course project was carried out by

making teams of 4 members. Each team was assigned either

an assembler or a loader on 32-bit ATMEL ATmega32

machine. The below graph represents student’s course

project performance on three different attributes:

Hypothetical machine, real machine and integration of both

carried out in 3 different semesters and assessed for 20

marks. As it is evident from the statistical results, the third

approach that is integration of both hypothetical and real

Journal of Engineering Education Transformations,

Volume No. 37, January 2024 Special Issue, eISSN 2394-1707

863

machine gave improved performance compared to the other

two approaches.

Shettar et al., (2020) authors express importance of

assessment of individual contributions in a team project can

enhance team performance, promote fairness, and provide

valuable insights for team members' growth and

development. It's essential to strike a balance between

quantitative data analysis and qualitative feedback to create a

comprehensive assessment process. Individual contribution

was assessed through the interaction with students in the

course activity development.

The overall results of the proposed approach demonstrate

that machine and adaptation has played a crucial role in

promoting the comprehensive development of students, with

the majority expressing high levels of satisfaction as shown

in Fig 6.

Fig 6: Plot of student performance in the course project

VII. CONCLUSION AND FUTURE WORK

This research paper explored three distinct teaching

approaches for the implementation of system software

algorithms. These approaches resulted in the acquisition of

practical knowledge, enhanced critical thinking skills, and

facilitated the adaptation of existing software code from one

machine to another. Overall, the proposed approach

contributed to enriching the quality of teaching and the

understanding level of students.
The proposed teaching methodology, which centered

around real-time ATMEL AVR ATmega32 based system

software, was introduced for undergraduate students. This

approach effectively conveyed the significance of the system

software course within the domain of system-side

knowledge. As a result, which motivated the students to

independently design assemblers and loaders, highlighting

the practical importance of the subject matter.

The future directions for this research involve optimizing

the proposed teaching methodology, potentially by

incorporating parallel activities to enhance its efficiency

within the given timeframe. Additionally, exploring more

advanced processors beyond the Atmel AVR ATmega32 for

the development of system software. There's also potential

for integration with the Principles of Compiler Design

course, allowing for the generation of ATMEL AVR

Assembly Language Programs, which serve as input for the

assembler, is another aspect of this potential integration.

REFERENCES

Erdil, D. (2020). A project-based learning approach to

teaching computer architecture. EAI Endorsed

Transactions on E-Learning, 6(19), 162289.

doi:10.4108/eai.13-7-2018.162289

Rizki, N., Laila, A. R. N., Inganah, S., & armayanti, R.

(2022). Analysis of Mathematic Connection Ability in

Mathematics Problem Solving Reviewed from

Student's Self-Confedence. In Seminar Nasional

Teknologi Pembelajaran (Vol. 2, No. 1, pp. 111-126).

Hegade, P., Patil, N., & Kanthi, A. N. (2022).

Building a course portfolio with industry- institute

collaboration. Journal of Engineering Education

Transformations,36(S1),50–55.

doi:10.16920/jeet/2022/v36is1/22174

Husain, M., Tarannum, N., & Patil, N. (2013). Teaching

programming course elective: A new teaching and

learning experience. 2013 IEEE International

Conference in MOOC, Innovation and Technology

in Education (MITE).

 Beck, L. L. (1985). System Software: An

 Introduction to Systems Programming.

Li, T., & Zhan, Z. (2022).

 A systematic review on design thinking Integrated

Learning in K-12 education. Applied Sciences,

12(16), 8077.

Patil, S. S., Dange, P., Pawar, A., & Patil, S. K. (2022).

 Design of new hypothetical machine of complex

addressing mode for better understanding of

system programming through simulation.

Prakash Hegade, P., Patil, N. S., & Bidari, I. (2021).

 Principles of Elective Design with Industry-

Institute Collaboration. Journal of Electrical

Engineering & Technology, 34, 384.

 https://doi.org/10.16920/jeet/2021/v34i0/157184

Balakrishnan, B. (2021). Exploring the impact of design

thinking tool among design undergraduates: A

study on creative skills and motivation to think

creatively. International Journal of Technology and

Design Education, 1–14.

https://doi.org/10.1007/s10798-021- 09652-y

 J. Liedtka & Marcos Chin. (2022).

 Why Design Thinking Works.Meinel, C., & Leifer,

L. (2012). Design Thinking Research.

Understanding Innovation, 1–11.

 https://doi.org/10.1007/978-3-642- 21643-5_1

Shettar, A., Nayak, A. S., & Shettar, A. (2020). Assessing

individual contribution in a team project using

Journal of Engineering Education Transformations,

Volume No. 37, January 2024 Special Issue, eISSN 2394-1707

864

Learning Analytics.Procedia Computer

Science, 172, 1001-1006.

Nick Kelly & J. Gero. (2021). Design thinking and

computational thinking: A dual process model for

addressing design problems. Design Science.

https://doi.org/10.1017/dsj.2021.7

Pörn, R., Hemmi, K., & Kallio-Kujala, P. (2021).

Inspiring or confusing – a study of Finnish 1–6

teachers’ relation to teaching programming. 9(1),

366-396.

 https://doi.org/10.31129/lumat.9.1.1355

Santos, S. C. dos, Tedesco, P., Borba, M., & Brito, M.

(2020). Innovative Approaches in Teaching

Programming: A Systematic Literature Review.

International Conference on Computer Supported

Education,205–214.

 https://doi.org/10.5220/0009190502050214

 Nayak, A. S., Hiremath, N. D., Umadevi, F. M., &

 Garagad, V. G. (2021). A hands-on approach in

 teaching computer organization & architecture

 through project based learning. Journal of

 Engineering Education Transformations, 34, 742-

 746

.

 Sujatha, C., & Karibasappa, K. G. (2015). Curriculum

 Design: An Experience in Principles of Complier

 Design Course. Journal of Engineering Education

 Transformations, 28(Special Issue).

 Vrana, J., Johannes Vrana, Johannes Vrana, & Singh, R.

 (2021).NDE 4.0—A Design Thinking Perspective.

 Journal of Nondestructive Evaluation, 40(1), 1–24.

 https://doi.org/10.1007/s10921-020-00735-9

https://doi.org/10.1017/dsj.2021.7
https://doi.org/10.31129/lumat.9.1.1355
https://doi.org/10.5220/
https://doi.org/10.1007/

