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Abstract: With so many online courses offered as Massive 

Open Online Courses (MOOC), it is becoming increasingly 

difficult for an enduser to gauge which course best fits their 

needs. It would be very helpful for them to make a choice if 

there is a single place where they can visually compare the 

offerings of various MOOC providers for the course they 

are interested in. Previous work has been done in this area 

through the MOOCLink project that involved integrating 

data from Coursera, EdX, and Udacity and generation of 

semantically linked data. The research objective of this 

paper is to devise algorithms to include data from new 

MOOC providers and maintain the quality of data through 

MOOCLink application, as there are lots of new courses 

being constantly added and old courses being removed by 

MOOC providers. We present the integration of data from 

various MOOC providers and algorithms for incrementally 

updating linked data to maintain their quality in order to 

provide an interactive MOOC aggregator environment for 

students to be engaged with up-to-date data.  

 
Keywords: Linked Data; Semantic Web; Engineering 

Education; Learning Management Systems. 

 
1. Introduction 

Online education has been gaining widespread 

importance in the last 5 years. According to the New York 

Times, 2012 became “the year of the MOOC”, as various 

providers such as EdX, Udacity, Coursera, etc. emerged. 

Multiple course providers offer courses with similar syllabi 

and content. The user is spoilt for choices in terms of which 

online course to choose, as there is such a fine line between 

courses by different providers. The user has to scan through 

multiple providers each with their own webpage and 

browse through all their course offerings. Also, in many 

cases, it so happens that the users want to learn a specific 

topic within a domain. In such a scenario, it becomes 

increasingly difficult for the user to look through the syllabi 

of all courses offered by different providers before arriving 

at a decision as to which provider to go ahead with. There 

exists initial work in this area in the form of semantic web 

(Bizer, 2009) application called MOOCLink (Kagemann, 

2015; Dhekne, 2017). With MOOCLink, the user can make 

an informed decision by visiting the MOOCLink website 

and using the enhanced SPARQL enabled search engine, 

he/she can quickly compare courses offered by various 

MOOC providers, all in the one place. The aim of this 

interactive aggregator system is to help users solve the 

problem of looking through multiple course providers. 

However, even with this integrated solution in place, 

maintaining the highest level of data quality is still a 

concern. Especially in the field of online education, where 

course offerings are dynamic, it is all the more important 

that relevant data is being displayed to the end users at all 

times. The paper presents extraction and linking of data 

from various course-providers to drive the MOOCLink web 

application and a strategy to solve the data quality issue. 

Linked data is the method of connecting and publishing 

related structured data on the web (Bizer, 2009). Linked 

Open Data (LOD) is being used in a number of interesting 

and useful Web and mobile applications including 

MOOCLink. A general architecture of the MOOCLink 

application is shown in Figure 1. 

 
Figure 1: MOOCLink - High-level Architecture 

Maintenance of data quality in this paper refers to the 

removal of outdated and/or irrelevant data and also the 

addition of new data being constantly added by various 

course providers. The focus of this paper is to “devise 

algorithms to maintain linked data quality (in the domain of 

online education) and evaluate the approach through the 

implementation of MOOCLink web application which 

serves as an aggregator of all courses that are available”. 

This project focuses primarily on integrating data from 5 

different course providers, publishing it as linked data and 

maintaining the quality of the linked data generated. 

Specifically, this paper presents the algorithms for 

maintaining quality of data and experiments for evalution 

of the algorithms. 
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The rest of the paper is organized as follows: Related work 

is presented in section 2. Section 3 presents data collection 

followed by Linked data generation in Section 4. Section 5 

presents the algorithms for maintaining data quality 

followed by experimental results and conclusions. 

 

2. Related Work 

There are two aspects of Linked Data quality that need to 

be studied and strategies devised. The first aspect is to 

maintain data quality in terms of adding or replacing 

missing information, coupling and de-coupling of wrong 

relationships amongst data entities. The second aspect of 

maintaining data quality is by making sure that the data 

published on the Web, is up to-date. Approaches are 

developed to ensure that there’s no outdated copy of data 

(Zaveri, 2012). Lots of research and development has been 

made for the first aspect of data quality. The paper 

“Crowdsourcing Linked Data Quality Assessment” 

explains the first aspect in detail (Acosta, 2013). This 

research focuses on using crowdsourcing as a means to 

maintain data quality. Analysis of the most commonly 

occurring problems was done and a model was designed 

which aimed to eliminate these issues. This model 

consisted of two different approaches. First, a contest 

which targets an expert crowd of Linked Data researchers; 

Second, by means of paid microtasks published on Amazon 

Mechanical Turk. The dataset for this research was 

DBpedia and these two novel approaches were evaluated 

against the data published on DBpedia. The results show 

that crowdsourcing is an effective mechanism to eliminate 

data quality issues, and this approach could potentially be 

included in the Linked Data curation process.   

 Another research named “Test-driven Evaluation 

of Linked Data Quality” aims to solve data quality issue 

using test-driven software development (Kontokostas, 

2014). This research proposes that vocabularies, ontologies, 

datasets should be accompanied by test-cases, which help 

in maintaining a basic level of data quality. The need was 

felt especially because the amount of Linked Data being 

generated is huge and not all of the data is of top quality. 

Some of it might have a strong structured knowledge base 

at the back end but some datasets are not curated at all. This 

leads to an inconsistent environment, thereby requiring a 

cleansing of data using test-cases. One major advantage of 

using this approach was that domain-specific semantics can 

be encoded in the test-cases, in turn making it possible for 

data quality to surpass normal quality heuristics.  

 

A. Comparison of Tools (MOOC Aggregators) 

 In this section, we list existing MOOC aggregators and 

comparing their functionality with MOOCLink.  

• Class Central: is a MOOC aggregator that aims to list 

course offerings from multiple MOOC providers to help 

the user make an informed decision. The user can search 

by subject, or by simply searching a keyword and the 

underlying system of Class Central will pull all courses 

relevant to search query. MOOCLink offers various other 

parameters for searching courses, i.e. by Course format 

(Static/Dynamic), Course name, Course Category, etc. 

• MOOC-List: provides a course list based upon providers, 

universities, instructors and tags. The search by tags 

mechanism is nothing but tagging each course into 

domains that encompass that course. For example, a 

course such as “Java Programming Fundamentals” will 

have tags such as “Programming”, “Object-oriented”, etc. 

Majority of search is based on the tags. 

• CourseTalk: The course search on the CourseTalk 

website is based on either subject name, provider or on 

the basis of free/paid courses. CourseTalk has introduced 

an innovative concept of leaderboards. Based on user 

reviews, instructor reviews, content ratings and provider 

reviews, the leaderboards are developed. This gives way 

to healthy competition and it proves to be a motivational 

factor to learn for the students.  

• Degreed: is one of the most popular MOOC aggregator. 

This aggregator keeps track of all educational data of the 

user. This educational data is not limited to what the user 

learns at Degreed, but it extends to the books read, 

MOOC courses completed, college degrees earned and so 

on. Moreover, weekly analysis of the user’s learning of 

each week is also provided which helps the user to keep 

track of their work throughout the week. 

B. MOOCLink 

MOOCLink aggregator system differentiates itself from 

other MOOC aggregators by using semantic web 

technologies that allows for publishing of the integrated 

MOOC datasets as Linked Open Data on the cloud. This 

opens up the data to the community as a whole and can be 

tweaked and modified as required by the community for 

other research as well. Another aspect which sets 

MOOCLink apart from the above listed MOOC aggregators 

is the power of MOOCLink to be able to search on a 

number of search parameters. MOOCLink supports usage 

of parameters such as “Search by Name”, “Search by 

Category”, “Search by Course Type (Free/Paid)”, “Search 

by Course Provider”, “Search by Start/End Date”, “Search 

by Course Description”. The semantic data model and 

MOOCLink ontology for the integrated data from different 

course providers is presented in our previous work 

(Kagemann, 2015; Dhekne, 2017).  

 

3. Data Collection  

For this project, data was collected from various MOOC 

providers. Figure 2 provides an overview of the data 

sources and their format. 

 

 
Figure 2: Data Sources for MOOCLink 

A. Coursera 

Coursera is the first amongst the five MOOC providers 
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from which data is being pulled for MOOCLink. Coursera 

is an educational technology company that offers various 

Massive online courses. These courses belong to various 

domains - Physics, Medicine, Computer Science, Biology, 

Business, etc. Coursera offers all courses free of cost. There 

is an option to sign up for a signature track to obtain a 

completion certificate, but for an additional fee. It offers an 

API for developers who wish to obtain data about their 

courses. This API is a catalog API that exposes all of 

Coursera’s courses, instructors and partnering universities. 

It is available publicly and does not need authentication 

(Coursera API). Data is retrieved in JSON format. Coursera 

also provides various optional parameters that can be 

included in the API query, such as the “includes” parameter. 

This parameter enables the developer to include other 

entities such as instructor list, category list and university 

list in one single call to the API endpoint.  

B. edX 

edX is MOOC provider founded by Massachusetts Institute 

of Technology and Harvard University in May 2012. edX 

offers various online courses with a very broad range of 

disciplines, with some courses being offered without any 

cost. edX focuses mainly on the weekly learning pattern. 

Also, in addition to providing online courses, edX plays an 

important role in the research for open and distant learning. 

The concept of learning via edX is novel in its own way. 

Each course consists of a series of videos that the student 

goes through and a learning exercise at the end of every 

few videos that aim to test the knowledge imparted to the 

student until that point.   In the earlier phase of 

development done in the MOOCLink project (Kagemann, 

2015), data was obtained by using screen-scraping 

techniques. However, edX now provides an API endpoint 

for developer use (EdX API). 

C. Udacity 

Udacity is a for-profit organization founded at Stanford 

University with a number of free computer science classes. 

The courses comprise of videos with closed captions and 

integrated quizzes and follow-up homework that helps 

students evaluate what they have learned in a progressive 

manner. Being a for-profit organization, as was the case 

with edX during the initial phase of the MOOCLink project 

(Kagemann, 2015), there was no API available to obtain 

data from Udacity. Hence, a web scraper was developed for 

Udacity using Scrapy. The scraper was developed in 

Python programming language. This was a challenge 

because it was difficult to keep the development stable with 

the ever-changing website design of Udacity. This pain was 

alleviated when they released their own API endpoint to 

obtain course catalog information (Udacity API). 

D. Khan Academy 

Khan academy is a non-profit organization providing free 

online education. The courses are in the format of short 

video lectures. Khan Academy introduced the concept of 

“badges” in order to make the learning process more 

competitive. There are six levels of badges and the learners 

in a particular course can compete amongst themselves to 

create a healthy competitive atmosphere. Khan Academy is 

the first amongst new data sources added to the 

MOOCLink ecosystem. Makers of Khan Academy have a 

developer API in place to pull data from (Khan Academy).  

E. OpenCourseWare (OCW) 

OpenCourseWare (OCW) is a free and open digital 

publication of courses that are created at universities and 

are published on the internet. OCW has gained worldwide 

recognition with over 29,000 courses available in over 70 

languages. OCW is the second new data source which is 

added to the MOOCLink ecosystem. OCW also provide a 

developer API and their API endpoint (OCW API). As the 

API is under development, it was decided that the excel 

dump file would be a more stable. 

 

4. Linked Data Generation 

The process of Linked Data generation starts right from 

capturing raw data from MOOC providers, building a 

semantic web ontology for the system, conversion of the 

raw data captured from MOOC providers into RDF data (in 

TTL format) compliant with the ontology, creating and 

maintaining a SPARQL endpoint (using Apache Jena 

Fuseki Server), and finally executing SPARQL queries on 

the generated RDF data. The entire process is depicted in 

Figure 3. Data collected from the MOOC providers is in the 

form of raw data files (json format, spreadsheets, or 

traditional database tables) that is mapped to the semantic 

data model of the system.  

Karma Web is an “information integration tool that enables 

users to quickly and easily integrate data from a variety of 

data sources” (Szekely, 2013). Karma web has made it 

possible to seamlessly convert the raw data into appropriate 

RDF data in TTL format while using ontologies as a basis 

for integrating information of the system. It provides a 

visual representation of the raw data and enables the user to 

create relationships and hierarchies between entities. Karma 

Web is a very user-friendly, easy to use and robust tool that 

provides integration support with hierarchical data models 

such as XML, JSON, and KML. Raw JSON data from 

Coursera was converted into RDF using this tool.  

Apache Jena Fuseki Server is used for hosting RDF/TTL 

files. It is basically a SPARQL server. There are multiple 

modes in which Apache Fuseki server can work as an 

operating system service, as a Java Web app, or even as a 

standalone server. Apache Jena Fuseki Server provides a 

intuitive graphical user interface where the user can upload 

multiple RDF/TTL files upon which SPARQL queries are 

performed. Another important feature of Apache Jena 

Fuseki server is the “manage dataset” feature. Using this 

feature, the user can create multiple datasets and choose 

from them to execute SPARQL queries. Also, for a 

particular dataset, the user is provided with the ability to 

add and/or remove more files to the particular dataset.  
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Figure 3: Linked Data Generation Process 

An alternative to Karma Web Integration technique to 

convert raw data from data sources to RDF or TTL format, 

using scripts for conversion. While the Karma Web is a 

beautiful and easy technique to convert raw data into 

RDF/TTL format, it has to be done manually and requires 

human intervention. The end goal of this project is to 

maintain the data quality on the MOOCLink website. Using 

our own scripts, allows automation of the process of linked 

data generation. As a general rule, different scripts have 

been developed for different data sources. This is because 

the data format of each data source is different though the 

underlying semantic data model for the integrated data is 

common. The same OWL file is used in all scripts. The 

conversion algorithm from raw data format to RDF/TTL 

format follows the following steps: 

• Loading all ontology properties and classes from the 

OWL file into an Apache Jena object in Java. 

• Parsing raw data file and dividing each data object into 

two HashMaps, i.e. a property map and a class map. 

Property map contains all properties of a particular 

course and class map contains all classes that are present 

in that course. 

• Jena object, Property map and the class map together are 

loaded into the Apache Jena library for Java and the 

appropriate RDF/TTL file is generated. 

 

5. Maintaining Quality of Linked Data 

This section will focus on maintenance of Linked Data 

quality. The web of today is extremely dynamic and 

information presented and viewed by the user at a point of 

time may become irrelevant within a day or even earlier 

than that. To be able to cope up with the dynamic nature of 

data, we need strategies so that the users are interacting 

with the latest copy of data. MOOCLink application is a 

MOOC aggregator that must provide users latest data on 

course offerings. We propose two algorithms for 

maintaining Linked Data Quality in this project: 

• Naïve Batch Update 

• Incremental Update  

 
Figure 4: Naive Batch Update Approach 

A. Naïve Batch Update Algorithm 

This approach is a simplistic and traditional way of 

maintaining data quality shown in figure 4. The first step is 

to pull new data from the MOOC provider. This process of 

data extraction from MOOC provider is explained in detail 

in section 5. Once new data is extracted from a MOOC 

provider, it is converted into an appropriate JSON format 

with proper indentation. The indentation makes sure that 

the JSON document is human readable if there’s a need for 

a manual override during the working of the system. The 

next step is to locate the previous copy of JSON data on the 

server. MOOCLink app is hosted in Apache Tomcat server. 

This file resides under the “data” folder on the Tomcat 

server. Once the file is located, it is replaced by the new 

JSON file. The next step is to convert this “new” but raw 

JSON data into RDF/TTL file format. This is a crucial step 

because all SPARQL queries will be executed on the 

RDF/TTL data, and not the raw JSON data. The conversion 

from JSON to RDF/TTL is performed as explained in 

previous section. Once the file is converted to RDF/TTL 

file format, it completely replaces the old RDF/TTL file 

residing on the Apache Jena Fuseki Server. Once this 

change is done, the same process is followed for other 

MOOC providers.  

B. Incremental Update Approach 

The difference between the Naïve Batch update and the 

Incremental update is in the factors taken into consideration 

before obtaining updated Linked Data. In case of the 

former algorithm, simple replacement of the old JSON data 

with the newly obtained JSON data is done. Figure 5 

depicts steps in this approach.  

 
Figure 5: Incremental Update approach 

In the first step of the incremental update approach, the 

original JSON file residing on the server is compared with 

the new JSON file. This is done using Hash Maps, as this 

data structure fits in perfectly to satisfy the requirement and 

also has a faster retrieval time (O(1)). Two levels of Hash 

Maps are created, i.e. one on the class level, and the other 

on the property level of a class. As seen in figure 5, an 

outer Hash Map is created for each class, i.e. “Course”, 

“Category”, and so on. Also, for each of these Hash Maps, 

there is an inner Hash Map created with key being the 

property of that class and value being the data associated 

with that property. For example, in case of the “Course” 

class, an outer Hash Map is created with key-value pair as: 

 <course_ID>, <Hash Map<String, String>>  



Journal of Engineering Education Transformations, Special Issue Jan. 2018, eISSN 2394-1707 

 

   

The inner Hash Map contains the key-value pairs such as 

(<Course_ID>, “123”), (<Course_desc>, “description”) and 

so on. This process ensures that all the new JSON data is 

captured in these Hash Maps. Once this data is captured, 

the old JSON file residing on the system server is parsed, 

object-by-object, and each class and each property of that 

class is compared with the new JSON file stored in Hash 

Map format. A “Course Change Counter” and “Course 

Add/Delete Counter” is maintained to be incremented 

whenever a course change or course addition/deletion is 

encountered between the two sets of data respectively. 

These counter variables are also used in the “provider score” 

module that is described later in this section. The next step 

of this process is to update the changes to the original 

JSON file. The old JSON file is parsed and the changes, 

which are again captured in the Hash Map data structure in 

the previous step, are updated in the original JSON file. 

The last two steps of the Incremental update approach is 

same as the Naïve batch update, that is conversion to 

RDF/TTL and reflecting the changes on the web 

application. 

 
Figure 6: JSON comparison in Incremental Update approach 

C. Decision Maker Module  

The Decision maker module is responsible to identify one 

of the approaches described based on a “Threshold” value 

that is calculated using various factors. Figure 7 presents 

the steps in the “decision maker” module. The first step in 

this process is to extract new data from each MOOC 

provider as presented in section 5. When a fresh copy of 

raw data is obtained from the MOOC provider, the next 

step is to take this new copy of data and compare it with the 

previous raw data of the same MOOC provider residing on 

the project server. While comparing the new data and the 

old data, the system looks at two parameters: Percentage 

change and Provider Score. 

The “percentage change” parameter tells how much 

percentage of data has been changed in the new data file as 

compared to the older version of data. For example, if 100 

courses are retrieved in the first run, and in the next run, 

100 courses are retrieved but it is found that out of the new 

100 courses, 36 courses have changes in them. These 

changes may be changes to “course name”, “course 

description”, “category”, etc. This shows that the 

percentage change is 36%. It also signifies that the 

remaining 64 courses are unchanged. The “provider score” 

parameter helps to rank various MOOC providers in 

descending order of their score. This parameter is helpful in 

the real-world where unlimited amount of bandwidth is not 

a reality. There are bandwidth limitations in terms of how 

much amount of data can reside on the system server and/or 

how much amount of data can be downloaded using the 

services of your Internet Service Provider (ISP). While the 

latter is not much of a concern in an industry setting, the 

former is a real-world issue. Coming up with a provider 

score for each MOOC provider will ensure that if there 

arises a bandwidth constraint, then the system is in a 

position to target only those MOOC providers that have a 

greater provider score than the others. This will, in turn, 

make sure that maximum number of data updates is done in 

each run of the check for Data Quality. The provider score 

is calculated based on three factors: (i) size of data (number 

of courses retrieved from the data source); (ii) number of 

Courses added or deleted; (iii) number of course details 

modified. Based on these factors, each data source is 

ranked. The next parameter is “threshold”. This parameter 

will decide when to use the Naïve batch update vs 

Incremental update. The threshold value is defined as the 

“percentage change at which one approach becomes better 

than the other in terms of efficiency”.  

 
Figure 7: Decision Maker module 

As seen in figure 7, the threshold value is responsible for 

deciding whether to update data using Approach 1 or 

Approach 2. A master threshold value was evaluated after 

extensive experimentation on the data sets. The process of 

evaluation of the master threshold value is presented in the 

next section. Once the master value is obtained, it is 

compared with the change percentage of the current run. If 

the change percentage is less than the master threshold 

value, then the “Incremental Update approach” is used. On 

the other hand, if the change percentage is greater than the 

master threshold value, then the “Naïve approach” is used. 

 
Figure 8: MOOCLink - System Design 
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Figure 9: MOOCLink Webapp screenshot 

 

D. Web Application Development  

MOOCLink is hosted on Apache Tomcat 8 Server. The 

GUI is developed in Javascript and HTML with Bootstrap 

3.0 library. The most important feature of the MOOCLink 

application is the “Search” bar. The user can search for any 

course or even keywords and the underlying SPARQL 

query engine will search throughout the RDF triples and 

return a list of courses with an exact or at least a partial 

match with the keyword. Figure 8 and 9 shows the 

MOOCLink system design and web application screenshot. 

 

6. Experimental results 

In order to evaluate search results obtained through 

MOOCLink, “precision” and “recall” values of the results 

were used. By definition, precision is defined as “the 

fraction of documents retrieved that are relevant to the 

user’s information need” (Zhu, 2004). On the other hand, 

Recall is defined as “the fraction of documents that are 

relevant to the query and are successfully retrieved” (Zhu, 

2004). In reference to this project, precision would give us 

the percentage of courses that are retrieved by the 

MOOCLink system and are relevant to the information 

queried by the user. Recall would give us the percentage of 

courses that are relevant to the user query and are retrieved 

using MOOCLink. Table 1 presents a summary of the data 

loaded into MOOCLink in terms of the number of semantic 

RDF triple, size of data and number of courses. Table 2 

presents the precision and recall values for each provider. 

Table 1: Linked data in MOOCLink 

 
 Table 2: Precision and Recall of search queries 

 
 The recall values for Coursera and OCW are 

comparatively low due to the non-availability of access to 

the entire course catalog via the API’s provided by the 

respective MOOC providers. For Coursera, a “pagination” 

parameter has been added to the API call that did not return 

all courses at the time of these experiments. OCW provides 

an Excel dump file complete Course Catalog information. 

Unfortunately, they don’t have a mechanism in place to 

automate the updating of this Excel dump file as and when 

new courses are added on OCW. As a result, recall value 

was low as result comparison was done against an updated 

OCW course dataset with course information that was not 

present in Excel file used for computation in MOOCLink. 

For evaluation of maintenance of data quality, data was 

manually generated for 4 sets of experiments with different 

percentage of change in data from original data: 10%, 50%, 

60%, and 90%. For each dataset both algorithms were 

executed. To ensure that all data files are being downloaded 

at the same download speed, a third party application called 

“Net Limiter” was used to keep the download speed 

uniform for each run of the experiment for both approaches. 

Results of these experiments show that the “master 

threshold value” is at 55%. It is observed that when the 

“percentage change” of the data of any MOOC provider is 

greater than 55%, then the Naïve batch update is more 

efficient. On the contrary, if the “percentage change” is less 

than 55%, then the Incremental update approach fares 

better as shown in figure 10.  

 

 
Figure 10: Results of Incremental update approach 

7. Conclusions & Future Work 

This paper presents an MOOC aggregator system for online 

education through integration of data from various MOOC 

providers and publishing it as Linked Open data thereby 

contributing to the community effort of LOD for data 

interchange on the web. Algorithms are presented to ensure 

that the integrated data is updated to maintain its quality. 

Future work includes incorporation of more MOOC 

providers and presenting a user-friendly interface for visual 

“Course Comparison” to better illustrate similarities and 

differences. The course comparison feature would help 
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users to understand differences in various MOOC offerings 

and help them choose the most appropriate course. 
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