
Journal of Engineering Education Transformations, Special Issue Jan. 2018, eISSN 2394-1707

MOOCLink: An aggregator for MOOC offerings

from various providers

Chinmay Dhekne, Srividya K. Bansal

School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Mesa, AZ 85212 USA

srividya.bansal@asu.edu

Abstract: With so many online courses offered as Massive

Open Online Courses (MOOC), it is becoming increasingly

difficult for an enduser to gauge which course best fits their

needs. It would be very helpful for them to make a choice if

there is a single place where they can visually compare the

offerings of various MOOC providers for the course they

are interested in. Previous work has been done in this area

through the MOOCLink project that involved integrating

data from Coursera, EdX, and Udacity and generation of

semantically linked data. The research objective of this

paper is to devise algorithms to include data from new

MOOC providers and maintain the quality of data through

MOOCLink application, as there are lots of new courses

being constantly added and old courses being removed by

MOOC providers. We present the integration of data from

various MOOC providers and algorithms for incrementally

updating linked data to maintain their quality in order to

provide an interactive MOOC aggregator environment for

students to be engaged with up-to-date data.

Keywords: Linked Data; Semantic Web; Engineering

Education; Learning Management Systems.

1. Introduction

Online education has been gaining widespread

importance in the last 5 years. According to the New York

Times, 2012 became “the year of the MOOC”, as various

providers such as EdX, Udacity, Coursera, etc. emerged.

Multiple course providers offer courses with similar syllabi

and content. The user is spoilt for choices in terms of which

online course to choose, as there is such a fine line between

courses by different providers. The user has to scan through

multiple providers each with their own webpage and

browse through all their course offerings. Also, in many

cases, it so happens that the users want to learn a specific

topic within a domain. In such a scenario, it becomes

increasingly difficult for the user to look through the syllabi

of all courses offered by different providers before arriving

at a decision as to which provider to go ahead with. There

exists initial work in this area in the form of semantic web

(Bizer, 2009) application called MOOCLink (Kagemann,

2015; Dhekne, 2017). With MOOCLink, the user can make

an informed decision by visiting the MOOCLink website

and using the enhanced SPARQL enabled search engine,

he/she can quickly compare courses offered by various

MOOC providers, all in the one place. The aim of this

interactive aggregator system is to help users solve the

problem of looking through multiple course providers.

However, even with this integrated solution in place,

maintaining the highest level of data quality is still a

concern. Especially in the field of online education, where

course offerings are dynamic, it is all the more important

that relevant data is being displayed to the end users at all

times. The paper presents extraction and linking of data

from various course-providers to drive the MOOCLink web

application and a strategy to solve the data quality issue.

Linked data is the method of connecting and publishing

related structured data on the web (Bizer, 2009). Linked

Open Data (LOD) is being used in a number of interesting

and useful Web and mobile applications including

MOOCLink. A general architecture of the MOOCLink

application is shown in Figure 1.

Figure 1: MOOCLink - High-level Architecture

Maintenance of data quality in this paper refers to the

removal of outdated and/or irrelevant data and also the

addition of new data being constantly added by various

course providers. The focus of this paper is to “devise

algorithms to maintain linked data quality (in the domain of

online education) and evaluate the approach through the

implementation of MOOCLink web application which

serves as an aggregator of all courses that are available”.

This project focuses primarily on integrating data from 5

different course providers, publishing it as linked data and

maintaining the quality of the linked data generated.

Specifically, this paper presents the algorithms for

maintaining quality of data and experiments for evalution

of the algorithms.

mailto:srividya.bansal@asu.edu

Journal of Engineering Education Transformations, Special Issue Jan. 2018, eISSN 2394-1707

The rest of the paper is organized as follows: Related work

is presented in section 2. Section 3 presents data collection

followed by Linked data generation in Section 4. Section 5

presents the algorithms for maintaining data quality

followed by experimental results and conclusions.

2. Related Work

There are two aspects of Linked Data quality that need to

be studied and strategies devised. The first aspect is to

maintain data quality in terms of adding or replacing

missing information, coupling and de-coupling of wrong

relationships amongst data entities. The second aspect of

maintaining data quality is by making sure that the data

published on the Web, is up to-date. Approaches are

developed to ensure that there’s no outdated copy of data

(Zaveri, 2012). Lots of research and development has been

made for the first aspect of data quality. The paper

“Crowdsourcing Linked Data Quality Assessment”

explains the first aspect in detail (Acosta, 2013). This

research focuses on using crowdsourcing as a means to

maintain data quality. Analysis of the most commonly

occurring problems was done and a model was designed

which aimed to eliminate these issues. This model

consisted of two different approaches. First, a contest

which targets an expert crowd of Linked Data researchers;

Second, by means of paid microtasks published on Amazon

Mechanical Turk. The dataset for this research was

DBpedia and these two novel approaches were evaluated

against the data published on DBpedia. The results show

that crowdsourcing is an effective mechanism to eliminate

data quality issues, and this approach could potentially be

included in the Linked Data curation process.

 Another research named “Test-driven Evaluation

of Linked Data Quality” aims to solve data quality issue

using test-driven software development (Kontokostas,

2014). This research proposes that vocabularies, ontologies,

datasets should be accompanied by test-cases, which help

in maintaining a basic level of data quality. The need was

felt especially because the amount of Linked Data being

generated is huge and not all of the data is of top quality.

Some of it might have a strong structured knowledge base

at the back end but some datasets are not curated at all. This

leads to an inconsistent environment, thereby requiring a

cleansing of data using test-cases. One major advantage of

using this approach was that domain-specific semantics can

be encoded in the test-cases, in turn making it possible for

data quality to surpass normal quality heuristics.

A. Comparison of Tools (MOOC Aggregators)

 In this section, we list existing MOOC aggregators and

comparing their functionality with MOOCLink.

• Class Central: is a MOOC aggregator that aims to list

course offerings from multiple MOOC providers to help

the user make an informed decision. The user can search

by subject, or by simply searching a keyword and the

underlying system of Class Central will pull all courses

relevant to search query. MOOCLink offers various other

parameters for searching courses, i.e. by Course format

(Static/Dynamic), Course name, Course Category, etc.

• MOOC-List: provides a course list based upon providers,

universities, instructors and tags. The search by tags

mechanism is nothing but tagging each course into

domains that encompass that course. For example, a

course such as “Java Programming Fundamentals” will

have tags such as “Programming”, “Object-oriented”, etc.

Majority of search is based on the tags.

• CourseTalk: The course search on the CourseTalk

website is based on either subject name, provider or on

the basis of free/paid courses. CourseTalk has introduced

an innovative concept of leaderboards. Based on user

reviews, instructor reviews, content ratings and provider

reviews, the leaderboards are developed. This gives way

to healthy competition and it proves to be a motivational

factor to learn for the students.

• Degreed: is one of the most popular MOOC aggregator.

This aggregator keeps track of all educational data of the

user. This educational data is not limited to what the user

learns at Degreed, but it extends to the books read,

MOOC courses completed, college degrees earned and so

on. Moreover, weekly analysis of the user’s learning of

each week is also provided which helps the user to keep

track of their work throughout the week.

B. MOOCLink

MOOCLink aggregator system differentiates itself from

other MOOC aggregators by using semantic web

technologies that allows for publishing of the integrated

MOOC datasets as Linked Open Data on the cloud. This

opens up the data to the community as a whole and can be

tweaked and modified as required by the community for

other research as well. Another aspect which sets

MOOCLink apart from the above listed MOOC aggregators

is the power of MOOCLink to be able to search on a

number of search parameters. MOOCLink supports usage

of parameters such as “Search by Name”, “Search by

Category”, “Search by Course Type (Free/Paid)”, “Search

by Course Provider”, “Search by Start/End Date”, “Search

by Course Description”. The semantic data model and

MOOCLink ontology for the integrated data from different

course providers is presented in our previous work

(Kagemann, 2015; Dhekne, 2017).

3. Data Collection

For this project, data was collected from various MOOC

providers. Figure 2 provides an overview of the data

sources and their format.

Figure 2: Data Sources for MOOCLink

A. Coursera

Coursera is the first amongst the five MOOC providers

Journal of Engineering Education Transformations, Special Issue Jan. 2018, eISSN 2394-1707

from which data is being pulled for MOOCLink. Coursera

is an educational technology company that offers various

Massive online courses. These courses belong to various

domains - Physics, Medicine, Computer Science, Biology,

Business, etc. Coursera offers all courses free of cost. There

is an option to sign up for a signature track to obtain a

completion certificate, but for an additional fee. It offers an

API for developers who wish to obtain data about their

courses. This API is a catalog API that exposes all of

Coursera’s courses, instructors and partnering universities.

It is available publicly and does not need authentication

(Coursera API). Data is retrieved in JSON format. Coursera

also provides various optional parameters that can be

included in the API query, such as the “includes” parameter.

This parameter enables the developer to include other

entities such as instructor list, category list and university

list in one single call to the API endpoint.

B. edX

edX is MOOC provider founded by Massachusetts Institute

of Technology and Harvard University in May 2012. edX

offers various online courses with a very broad range of

disciplines, with some courses being offered without any

cost. edX focuses mainly on the weekly learning pattern.

Also, in addition to providing online courses, edX plays an

important role in the research for open and distant learning.

The concept of learning via edX is novel in its own way.

Each course consists of a series of videos that the student

goes through and a learning exercise at the end of every

few videos that aim to test the knowledge imparted to the

student until that point. In the earlier phase of

development done in the MOOCLink project (Kagemann,

2015), data was obtained by using screen-scraping

techniques. However, edX now provides an API endpoint

for developer use (EdX API).

C. Udacity

Udacity is a for-profit organization founded at Stanford

University with a number of free computer science classes.

The courses comprise of videos with closed captions and

integrated quizzes and follow-up homework that helps

students evaluate what they have learned in a progressive

manner. Being a for-profit organization, as was the case

with edX during the initial phase of the MOOCLink project

(Kagemann, 2015), there was no API available to obtain

data from Udacity. Hence, a web scraper was developed for

Udacity using Scrapy. The scraper was developed in

Python programming language. This was a challenge

because it was difficult to keep the development stable with

the ever-changing website design of Udacity. This pain was

alleviated when they released their own API endpoint to

obtain course catalog information (Udacity API).

D. Khan Academy

Khan academy is a non-profit organization providing free

online education. The courses are in the format of short

video lectures. Khan Academy introduced the concept of

“badges” in order to make the learning process more

competitive. There are six levels of badges and the learners

in a particular course can compete amongst themselves to

create a healthy competitive atmosphere. Khan Academy is

the first amongst new data sources added to the

MOOCLink ecosystem. Makers of Khan Academy have a

developer API in place to pull data from (Khan Academy).

E. OpenCourseWare (OCW)

OpenCourseWare (OCW) is a free and open digital

publication of courses that are created at universities and

are published on the internet. OCW has gained worldwide

recognition with over 29,000 courses available in over 70

languages. OCW is the second new data source which is

added to the MOOCLink ecosystem. OCW also provide a

developer API and their API endpoint (OCW API). As the

API is under development, it was decided that the excel

dump file would be a more stable.

4. Linked Data Generation

The process of Linked Data generation starts right from

capturing raw data from MOOC providers, building a

semantic web ontology for the system, conversion of the

raw data captured from MOOC providers into RDF data (in

TTL format) compliant with the ontology, creating and

maintaining a SPARQL endpoint (using Apache Jena

Fuseki Server), and finally executing SPARQL queries on

the generated RDF data. The entire process is depicted in

Figure 3. Data collected from the MOOC providers is in the

form of raw data files (json format, spreadsheets, or

traditional database tables) that is mapped to the semantic

data model of the system.

Karma Web is an “information integration tool that enables

users to quickly and easily integrate data from a variety of

data sources” (Szekely, 2013). Karma web has made it

possible to seamlessly convert the raw data into appropriate

RDF data in TTL format while using ontologies as a basis

for integrating information of the system. It provides a

visual representation of the raw data and enables the user to

create relationships and hierarchies between entities. Karma

Web is a very user-friendly, easy to use and robust tool that

provides integration support with hierarchical data models

such as XML, JSON, and KML. Raw JSON data from

Coursera was converted into RDF using this tool.

Apache Jena Fuseki Server is used for hosting RDF/TTL

files. It is basically a SPARQL server. There are multiple

modes in which Apache Fuseki server can work as an

operating system service, as a Java Web app, or even as a

standalone server. Apache Jena Fuseki Server provides a

intuitive graphical user interface where the user can upload

multiple RDF/TTL files upon which SPARQL queries are

performed. Another important feature of Apache Jena

Fuseki server is the “manage dataset” feature. Using this

feature, the user can create multiple datasets and choose

from them to execute SPARQL queries. Also, for a

particular dataset, the user is provided with the ability to

add and/or remove more files to the particular dataset.

Journal of Engineering Education Transformations, Special Issue Jan. 2018, eISSN 2394-1707

Figure 3: Linked Data Generation Process

An alternative to Karma Web Integration technique to

convert raw data from data sources to RDF or TTL format,

using scripts for conversion. While the Karma Web is a

beautiful and easy technique to convert raw data into

RDF/TTL format, it has to be done manually and requires

human intervention. The end goal of this project is to

maintain the data quality on the MOOCLink website. Using

our own scripts, allows automation of the process of linked

data generation. As a general rule, different scripts have

been developed for different data sources. This is because

the data format of each data source is different though the

underlying semantic data model for the integrated data is

common. The same OWL file is used in all scripts. The

conversion algorithm from raw data format to RDF/TTL

format follows the following steps:

• Loading all ontology properties and classes from the

OWL file into an Apache Jena object in Java.

• Parsing raw data file and dividing each data object into

two HashMaps, i.e. a property map and a class map.

Property map contains all properties of a particular

course and class map contains all classes that are present

in that course.

• Jena object, Property map and the class map together are

loaded into the Apache Jena library for Java and the

appropriate RDF/TTL file is generated.

5. Maintaining Quality of Linked Data

This section will focus on maintenance of Linked Data

quality. The web of today is extremely dynamic and

information presented and viewed by the user at a point of

time may become irrelevant within a day or even earlier

than that. To be able to cope up with the dynamic nature of

data, we need strategies so that the users are interacting

with the latest copy of data. MOOCLink application is a

MOOC aggregator that must provide users latest data on

course offerings. We propose two algorithms for

maintaining Linked Data Quality in this project:

• Naïve Batch Update

• Incremental Update

Figure 4: Naive Batch Update Approach

A. Naïve Batch Update Algorithm

This approach is a simplistic and traditional way of

maintaining data quality shown in figure 4. The first step is

to pull new data from the MOOC provider. This process of

data extraction from MOOC provider is explained in detail

in section 5. Once new data is extracted from a MOOC

provider, it is converted into an appropriate JSON format

with proper indentation. The indentation makes sure that

the JSON document is human readable if there’s a need for

a manual override during the working of the system. The

next step is to locate the previous copy of JSON data on the

server. MOOCLink app is hosted in Apache Tomcat server.

This file resides under the “data” folder on the Tomcat

server. Once the file is located, it is replaced by the new

JSON file. The next step is to convert this “new” but raw

JSON data into RDF/TTL file format. This is a crucial step

because all SPARQL queries will be executed on the

RDF/TTL data, and not the raw JSON data. The conversion

from JSON to RDF/TTL is performed as explained in

previous section. Once the file is converted to RDF/TTL

file format, it completely replaces the old RDF/TTL file

residing on the Apache Jena Fuseki Server. Once this

change is done, the same process is followed for other

MOOC providers.

B. Incremental Update Approach

The difference between the Naïve Batch update and the

Incremental update is in the factors taken into consideration

before obtaining updated Linked Data. In case of the

former algorithm, simple replacement of the old JSON data

with the newly obtained JSON data is done. Figure 5

depicts steps in this approach.

Figure 5: Incremental Update approach

In the first step of the incremental update approach, the

original JSON file residing on the server is compared with

the new JSON file. This is done using Hash Maps, as this

data structure fits in perfectly to satisfy the requirement and

also has a faster retrieval time (O(1)). Two levels of Hash

Maps are created, i.e. one on the class level, and the other

on the property level of a class. As seen in figure 5, an

outer Hash Map is created for each class, i.e. “Course”,

“Category”, and so on. Also, for each of these Hash Maps,

there is an inner Hash Map created with key being the

property of that class and value being the data associated

with that property. For example, in case of the “Course”

class, an outer Hash Map is created with key-value pair as:

 <course_ID>, <Hash Map<String, String>>

Journal of Engineering Education Transformations, Special Issue Jan. 2018, eISSN 2394-1707

The inner Hash Map contains the key-value pairs such as

(<Course_ID>, “123”), (<Course_desc>, “description”) and

so on. This process ensures that all the new JSON data is

captured in these Hash Maps. Once this data is captured,

the old JSON file residing on the system server is parsed,

object-by-object, and each class and each property of that

class is compared with the new JSON file stored in Hash

Map format. A “Course Change Counter” and “Course

Add/Delete Counter” is maintained to be incremented

whenever a course change or course addition/deletion is

encountered between the two sets of data respectively.

These counter variables are also used in the “provider score”

module that is described later in this section. The next step

of this process is to update the changes to the original

JSON file. The old JSON file is parsed and the changes,

which are again captured in the Hash Map data structure in

the previous step, are updated in the original JSON file.

The last two steps of the Incremental update approach is

same as the Naïve batch update, that is conversion to

RDF/TTL and reflecting the changes on the web

application.

Figure 6: JSON comparison in Incremental Update approach

C. Decision Maker Module

The Decision maker module is responsible to identify one

of the approaches described based on a “Threshold” value

that is calculated using various factors. Figure 7 presents

the steps in the “decision maker” module. The first step in

this process is to extract new data from each MOOC

provider as presented in section 5. When a fresh copy of

raw data is obtained from the MOOC provider, the next

step is to take this new copy of data and compare it with the

previous raw data of the same MOOC provider residing on

the project server. While comparing the new data and the

old data, the system looks at two parameters: Percentage

change and Provider Score.

The “percentage change” parameter tells how much

percentage of data has been changed in the new data file as

compared to the older version of data. For example, if 100

courses are retrieved in the first run, and in the next run,

100 courses are retrieved but it is found that out of the new

100 courses, 36 courses have changes in them. These

changes may be changes to “course name”, “course

description”, “category”, etc. This shows that the

percentage change is 36%. It also signifies that the

remaining 64 courses are unchanged. The “provider score”

parameter helps to rank various MOOC providers in

descending order of their score. This parameter is helpful in

the real-world where unlimited amount of bandwidth is not

a reality. There are bandwidth limitations in terms of how

much amount of data can reside on the system server and/or

how much amount of data can be downloaded using the

services of your Internet Service Provider (ISP). While the

latter is not much of a concern in an industry setting, the

former is a real-world issue. Coming up with a provider

score for each MOOC provider will ensure that if there

arises a bandwidth constraint, then the system is in a

position to target only those MOOC providers that have a

greater provider score than the others. This will, in turn,

make sure that maximum number of data updates is done in

each run of the check for Data Quality. The provider score

is calculated based on three factors: (i) size of data (number

of courses retrieved from the data source); (ii) number of

Courses added or deleted; (iii) number of course details

modified. Based on these factors, each data source is

ranked. The next parameter is “threshold”. This parameter

will decide when to use the Naïve batch update vs

Incremental update. The threshold value is defined as the

“percentage change at which one approach becomes better

than the other in terms of efficiency”.

Figure 7: Decision Maker module

As seen in figure 7, the threshold value is responsible for

deciding whether to update data using Approach 1 or

Approach 2. A master threshold value was evaluated after

extensive experimentation on the data sets. The process of

evaluation of the master threshold value is presented in the

next section. Once the master value is obtained, it is

compared with the change percentage of the current run. If

the change percentage is less than the master threshold

value, then the “Incremental Update approach” is used. On

the other hand, if the change percentage is greater than the

master threshold value, then the “Naïve approach” is used.

Figure 8: MOOCLink - System Design

Journal of Engineering Education Transformations, Special Issue Jan. 2018, eISSN 2394-1707

Figure 9: MOOCLink Webapp screenshot

D. Web Application Development

MOOCLink is hosted on Apache Tomcat 8 Server. The

GUI is developed in Javascript and HTML with Bootstrap

3.0 library. The most important feature of the MOOCLink

application is the “Search” bar. The user can search for any

course or even keywords and the underlying SPARQL

query engine will search throughout the RDF triples and

return a list of courses with an exact or at least a partial

match with the keyword. Figure 8 and 9 shows the

MOOCLink system design and web application screenshot.

6. Experimental results

In order to evaluate search results obtained through

MOOCLink, “precision” and “recall” values of the results

were used. By definition, precision is defined as “the

fraction of documents retrieved that are relevant to the

user’s information need” (Zhu, 2004). On the other hand,

Recall is defined as “the fraction of documents that are

relevant to the query and are successfully retrieved” (Zhu,

2004). In reference to this project, precision would give us

the percentage of courses that are retrieved by the

MOOCLink system and are relevant to the information

queried by the user. Recall would give us the percentage of

courses that are relevant to the user query and are retrieved

using MOOCLink. Table 1 presents a summary of the data

loaded into MOOCLink in terms of the number of semantic

RDF triple, size of data and number of courses. Table 2

presents the precision and recall values for each provider.

Table 1: Linked data in MOOCLink

 Table 2: Precision and Recall of search queries

 The recall values for Coursera and OCW are

comparatively low due to the non-availability of access to

the entire course catalog via the API’s provided by the

respective MOOC providers. For Coursera, a “pagination”

parameter has been added to the API call that did not return

all courses at the time of these experiments. OCW provides

an Excel dump file complete Course Catalog information.

Unfortunately, they don’t have a mechanism in place to

automate the updating of this Excel dump file as and when

new courses are added on OCW. As a result, recall value

was low as result comparison was done against an updated

OCW course dataset with course information that was not

present in Excel file used for computation in MOOCLink.

For evaluation of maintenance of data quality, data was

manually generated for 4 sets of experiments with different

percentage of change in data from original data: 10%, 50%,

60%, and 90%. For each dataset both algorithms were

executed. To ensure that all data files are being downloaded

at the same download speed, a third party application called

“Net Limiter” was used to keep the download speed

uniform for each run of the experiment for both approaches.

Results of these experiments show that the “master

threshold value” is at 55%. It is observed that when the

“percentage change” of the data of any MOOC provider is

greater than 55%, then the Naïve batch update is more

efficient. On the contrary, if the “percentage change” is less

than 55%, then the Incremental update approach fares

better as shown in figure 10.

Figure 10: Results of Incremental update approach

7. Conclusions & Future Work

This paper presents an MOOC aggregator system for online

education through integration of data from various MOOC

providers and publishing it as Linked Open data thereby

contributing to the community effort of LOD for data

interchange on the web. Algorithms are presented to ensure

that the integrated data is updated to maintain its quality.

Future work includes incorporation of more MOOC

providers and presenting a user-friendly interface for visual

“Course Comparison” to better illustrate similarities and

differences. The course comparison feature would help

0.00

200.00

400.00

600.00

800.00

Naïve
Batch
update

Incrementa
l with 90%
change

0.00

5000.00

10000.00

15000.00

20000.00

Naïve
Batch
update

Incrementa
l with 90%
change

Journal of Engineering Education Transformations, Special Issue Jan. 2018, eISSN 2394-1707

users to understand differences in various MOOC offerings

and help them choose the most appropriate course.

References
Zaveri, A., Rula, A., Maurino, A. (2012). Quality Assessment

Methodologies for Linked Open Data: A Systematic Literature Review
and Conceptual Framework. Journal of Semantic Web, pp. 1 - 33.

Kagemann, S., & Bansal, S. (2015). MOOCLink: Building and utilizing

linked data from Massive Open Online Courses. Intl. Conference on
Semantic Computing (ICSC), pp. 373–380.

Acosta, M., Zaveri, A., et al. (2013). Crowdsourcing Linked Data Quality
Assessment. Intl. Semantic Web Conference (ISWC), pp. 260–276.

Kontokostas, D., Westphal, P. (2014). Test-driven evaluation of linked
data quality. World Wide Web Conf. (WWW), pp. 747–757.

Coursera: https://api.coursera.org/api/

EdX API: https://www.edx.org/api/v2/report/course-feed/rss

Udacity API: https://www.udacity.com/public-api/v1/courses

Khan Academy: http://www.khanacademy.org/api/v1/topictree

OCW API: https://github.com/ocwc/ocwc-data

Szekely, P., Knoblock, C. (2013). Connecting the Smithsonian American

Art Museum to the Linked Data Cloud. The Semantic Web: Semantics and
Big Data: 10th International Conference, Montpellier, pp. 593–607.

Dhekne, C., & Bansal, S. (2017). Linking and Maintaining quality of data

about MOOCs using Semantic Computing. Intl. Conference on Semantic
Computing (ICSC), pp. 81–84.

Bizer, C., Heath, T., Berners-Lee, T. (2009) “Linked data-the story so far,”
Intl. journal on semantic web & information systems, vol. 5, #3, pp. 1–22.

Zhu, Mu. "Recall, precision and average precision." Dept. of Statistics and

Actuarial Science, University of Waterloo, Waterloo 2 (2004): 30.

https://www.edx.org/api/v2/report/course-feed/rss

