Journal of Engineering Education Transformations ,
Volume 32, No. 4, April 2019, ISSN 2349-2473, eISSN 2394-1707

OSAVA: An Android App for

Teaching a Course on Operating Systems

Pinaki Chakraborty', Udit Arora', Namrata Mukhija’, Vipra Goel', Priyanka’, Siddarth Shikhar', Rohit Takhar'

' Division of Computer Engineering, Netaji Subhas University of Technology, New Delhi 110078, India
? Division of Information Technology, Netaji Subhas University of Technology, New Delhi 110078, India

'pinaki_chakraborty 163@yahoo.com

Abstract: We have developed an Android app named
Operating System Algorithms Visualization App
(OSAVA) to visualize different types of algorithms
used in operating systems. We have used it to teach a
course on operating systems in the Spring semester of
2016,2017 and 2018. The course was attended by 243
undergraduate students and 84% of them said that
OSAVA helped them in understanding the algorithms.
The students scored 6% more marks in the exam than
the students of the previous year who were taught
without the app. We feel that implementing the tool as
a mobile app allowed the students to use it during
lectures and proved particularly helpful in its
integration in the course.

Keywords: Educational software, Android app,
operating system, algorithm visualization.

1. Introduction

Operating systems are used in computers, and in
other programmable devices like smartphones,
because they provide an efficient way of transforming
the hardware into usable computing systems. Because
of the importance of operating systems, a course on

Pinaki Chakraborty

Division of Computer Engineering,

Netaji Subhas University of Technology, New Delhi 110078, India
pinaki_chakraborty 163@yahoo.com

them is included in most undergraduate curricula in
computer science. This course is taught in different
ways in various universities. Some professors
recommend that students study the code of a simple
operating system and reengineer parts of the same.
This "build an operating system' approach of teaching
the course helps students to know the details of the
working of operating systems (Krishnamoorthy,
2002). Accordingly, operating systems purported to
be used as an instructional aid, like XINU (Comer,
2015) and MINIX (Tanenbaum and Woodhull, 2006),
have been developed. However, many professors
prefer to teach the course more traditionally using the
'chalk and board' approach (Desnoyers, 2011). In
either case, the course can be enhanced using a
visualization tool to illustrate the algorithms.

The Operating System Algorithms Visualization
App (OSAVA), as we call it, can visualize different
types of algorithms used in operating systems, viz.
CPU scheduling algorithms, deadlock avoidance
algorithm, deadlock detection algorithm, contiguous
memory allocation strategies, page replacement
algorithms and disk scheduling algorithms. These
algorithms play an important role in operating
systems. OSAVA helps students to understand the
internal working of operating systems by visualizing
these algorithms. OSAVA covers the entire curriculum
and can visualize more algorithms than the
instructional tools developed earlier to teach the
course on operating systems.

JEET

Journal of Engineering Education Transformations , Volume 32, No. 4, April 2019, ISSN 2349-2473, eISSN 2394-1707 21

2. Related Work

Over the years, professors and, as in some cases,
hobbyists have developed tools to visualize and
animate the algorithms used in operating systems.
Some of these tools can be downloaded from the Web.
However, most of them lack academic rigor and
experience of using them for teaching have not been
reported in the literature. Nevertheless, there exist a
few tools to visualize CPU scheduling algorithms and
page replacement algorithms that are worth
mentioning (Table 1). No satisfactory tool to visualize
deadlock handling algorithms and disk scheduling
algorithms are available however.

CPU scheduling algorithms are perhaps the most
important algorithms used by operating systems. A
few sophisticated tools to visualize and teach them
have been developed. Khuri and Hsu (1999)
developed a tool to visualize the multilevel feedback
queue scheduling algorithm. The tool is interactive
and has been used to teach at San Jose State
University. Students used the tool to study the effects
of parameters like time quantum and dispatch latency
on the performance of the algorithm. Suranauwarat
(2007) developed a tool to visualize first-come first-
served, shortest job first, round robin and multilevel
feedback queue algorithms for CPU scheduling. The
tool supports animation and the visualizations are

mostly self-explanatory. The tool takes care to
visualize the state of a process and the events that
change the state. Fischbach (2013) developed a tool to
visualize CPU scheduling algorithms of various
difficulty levels from first-come first-served to
multilevel feedback queue scheduling. The tool has
been used to teach at Widener University where it
helped students to study CPU scheduling in detail.

Page replacement algorithms have been also
taught successfully in several universities using
purpose-built visualization tools. Khuri and Hsu
(1999) developed a tool to visualize first-in first-out,
optimal, least recently used and second chance page
replacement algorithms, and used it to teach at San
Jose State University. The tool developed by
Fischbach (2013) can also visualize page replacement
algorithms like optimal, least recently used and
second chance algorithms, and has been used to teach
at Widener University. Garmpis (2013) developed a
Web-based interactive visualization tool to teach first-
in first-out, optimal, least recently used and second
chance page replacement algorithms. The tool can
generate random reference strings that students may
use to simulate the algorithms. The tool has been used
to teach at Technological Educational Institution of
Messolonghi where students reported that it helped
them in their study in a survey conducted at the end of
the course.

Table 1. Algorithms visualized by tools developed to teach the course on operating systems.

CPU Scheduling Page Replacement Platform Language of Important
Algorithms Algorithms Implementation Feature
Khuri and Hsu Multilevel feedback First-in first-out, Desktop -based Java Allows stepwise
(1999) queue scheduling optimal, least recently simulation
algorithm used and second chance
algorithms
Suranauwarat First-come first-served, — Desktop -based Java Students can
(2007) shortest job first, round customize the
robin and multilevel algorithms
feedback queue
scheduling algorithms
Fischbach (2013) First-come first-served, Optimal, least recently Desktop -based Java Students can
multilevel feedback used and second chance design their own
queue scheduling, and algorithms algorithms
other algorithms
Garmpis (2013) — First-in first-out, Web-based Visual Basic Can be used to
optimal, least recently test the
used and second chance knowledge of
algorithms students
Our tool First-come first-served, First-in first-out, Mobile app Python Can visualize
shortest job first, optimal, least recently algorithms for
priority, round robin, used, second chance, deadlock
multilevel queue and enhanced second handling and disk

multilevel feedback
queue scheduling

chance, least frequently
used and most

scheduling also

JEET

22 Journal of Engineering Education Transformations , Volume 32, No. 4, April 2019, ISSN 2349-2473, eISSN 2394-1707

Yuan et al. (2008) used algorithm visualization tools
to teach the course on operating systems at North
Carolina A&T State University and corroborated that
visualization tools help students to learn about
algorithms used in operating systems. Although we
appreciate the visualization tools developed so far to
teach the course on operating systems, we think that
such tools can be improved in the following ways.

- Increasing the coverage. The available tools can
visualize only a few CPU scheduling algorithms
and page replacement algorithms. If a tool is able
to visualize all the important algorithms taught in
the course on operating systems then it will be far
more beneficial to students.

- Enhancing ubiquity. The visualization tools
developed so far have been implemented as
desktop- and web-based applications which
students typically use in a lab session or during
self-study after a lecture. Alternatively, if a
visualization tool is implemented as a mobile app
then students can also use it during the lectures,
just like they use calculators in mathematics
lectures.

- Improving dissemination. The tools developed so
far have been made available on the websites of the
universities where they were developed (Khuri

and Hsu, 1999; Suranauwarat, 2007; Garmpis,
2013). We think that tools should also be
disseminated through online software stores and
their source code should be made public. The
developers should use their tools to teach in
classroom and report their empirical findings in
the literature.

3. Operating System Algorithms Visualization App

OSAVA visualizes the different types of algorithms
used in operating systems as given in Silberschatz et
al. (2012). OSAVA has six modules each dedicated to
a particular type of algorithm. A module asks the user
to select one of the algorithms available in it and enter
relevant information. The module displays a brief
description of the selected algorithm and then
simulates its working. Output is provided typically as
a combination of text and illustrations. OSAVA can
visualize a total of twenty-four algorithms (Table 2).

A. CPU Scheduling Algorithms

A computer using a multitasking operating system
has multiple processes loaded in its memory at a given
time. The operating system uses a CPU scheduling
algorithm to decide which of those processes will be
executed next. OSAVA can visualize the CPU
scheduling algorithms commonly used by operating

Table 2. Modules of OSAVA.

Module Algorithms Visualized Hlustration Output Pedagogical Utility
CPU scheduling First-come first-served, shortest job Gantt chart Turnaround time, Can be used to solve
algorithms first, priority, round robin, multilevel waiting time, response numerical questions

queue and multilevel feedback queue time, throughput and involving large number
scheduling algorithms CPU utilization of processes
Deadlock Banker’s algorithm — Safe sequence Can be used to solve
avoidance numerical questions
algorithm involving large number
of processes and resource types
Deadlock Variant of Banker’s algorithm — List of deadlocked Can be used to solve
detection processes numerical questions
algorithm involving large number
of processes and resource types
Contiguous First fit, best fit and worst fit Memory map — Can be used to solve
memory strategies numerical questions
allocation involving large number
strategies of processes
Page First-in first-out, optimal, least Memory map Number of page faults Can be used to solve
replacement recently used, second chance, and page fault ratio numerical questions
algorithms enhanced second chance, least involving large number
frequently used and most frequently of page faults and frames
used page replacement algorithms
Disk scheduling First-come first-served, shortest Trace of the path ~ Number of cylinders Can be used to solve
algorithms seek time first, SCAN, C-SCAN, followed by read/ traversed by read/ numerical questions
LOOK and C-LOOK disk write head write head involving large number

scheduling algorithms

of disk accesses

JEET

Journal of Engineering Education Transformations , Volume 32, No. 4, April 2019, ISSN 2349-2473, eISSN 2394-1707 23

systems. The user has to enter the arrival time and the
CPU burst time of the processes. The user then needs
to select the CPU scheduling algorithm to be
visualized. When shortest job first and priority
scheduling algorithms are selected, the user needs to
specify whether non-preemptive or preemptive
scheduling is to be performed. If priority scheduling is
used, then the user also needs to enter the priority of
each process. In case of priority scheduling, OSAVA
can also visualize the concept of aging in which the
priority of a process is incremented every time it waits
in the ready queue for a predefined amount of time. If
round robin scheduling is used, then the user needs to

specify the time quantum. When multilevel queue
scheduling and multilevel feedback queue scheduling
are selected, then first-come first served and round
robin algorithms are used for intra-queue scheduling
and preemptive priority scheduling algorithm is used
for inter-queue scheduling. Details of the queues are
to be entered by the user. Finally, the user has to enter
the dispatch latency which is considered to be
negligible if the user chooses not to enter a value.
OSAVA simulates the selected CPU scheduling
algorithm and displays a Gantt chart showing the time
intervals when the different processes executed on the
CPU. OSAVA then displays a timeline representing

In Round Robin Scheduling, the processor is allocated to a process for a small
time quantum. The processes are logically arranged in a circular queue,
It is a preemptive algorithm.

GanttChart: D P1 DL P2 DL P3 D%L P3

1

Time: 01 910 6

17

2
5

2

268

29

Timeline -

Process

Dispatch Latency: 0
P1: 1
Dispatch Latency: 9
P2: 10
Dispatch Latency: 16
P3: 17
Dispatch Latency: 25
P1: 26
Dispatch Latency: 28
P3: 29
P3: 37

Start/resume time

Suspend/termination time

1
9 Details
10
16 Details
17
25 Details
26
28 Details
29
37 Details
45 Details

Average turnaround time: 27.67 ms

Average waiting time: 14.33 ms

Average response time: 7.33 ms

Throughput: 0.07 processes/ms

CPU Utilization: 88.89%

Fig. 1. Sample output of the module to visualize CPU scheduling algorithms. Here the module is
visualizing round robin scheduling with a time quantum of 8 ms and dispatch latency of 1 ms.

JEET

24

Journal of Engineering Education Transformations , Volume 32, No. 4, April 2019, ISSN 2349-2473, eISSN 2394-1707

the execution of the processes. The turnaround time, assumed that a process generates its first response to
waiting time and response time of a particular process the user as soon as it starts executing. The average
can be viewed by tapping on the 'Details' button next turnaround time, the average waiting time and the
to it. To calculate the response time of a process, it is average response time of the processes are then

Memory state

Size

Memory state

Size

Memory state

Size

Memory state

Size

Memory state

Size

Memory state

Size

In the Best Fit Algorithm, a process is loaded in the smallest hole that is
large enough for the process

At time T = Oms, process P1 requests for a memory slot

50

At time T = Sms, process P2 requests for a memory slot

50

At time T = 10ms, process P1 leaving memory

50

Attime T = 12ms, process P3 requests for a memory slot

50

At time T = 15ms, process P2 leaving memory

30

At time T = 20ms, process P3 leaving memory

Fig. 2. Sample output of the module to visualize contiguous memory
allocation strategies. Here the module is visualizing the best fit strategy.

Journal of Engineering Education Transformations , Volume 32, No. 4, April 2019, ISSN 2349-2473, eISSN 2394-1707

In Least Recently Used Page Replacement Algorithm, the page that
has not been referenced for the longest period of time is replaced

Framel Frame2 Frame3 Framed

Page number referenced

Memory state

Page fault

Page number referenced

Memory state

Page fault

Page number referenced

Memory state

Page fault

Page number referenced

Memory state

Page fault

Page number referenced

Memory state

Page fault

Page number referenced

Memory state

Page fault

Page number referenced

Memory state

Page fault
Total number of page faults: 5

Page fault ratio: 0.714

Fig. 3. Sample output of the module to visualize page replacement algorithms. Here the module
is visualizing the least recently used algorithm with 4 memory frames allotted to a process.

JEET

26 Journal of Engineering Education Transformations , Volume 32, No. 4, April 2019, ISSN 2349-2473, eISSN 2394-1707

calculated. The throughput of the system and the CPU
utilization are also displayed (Fig. 1). OSAVA
displays more information about the processes than
the earlier tools (Khuri and Hsu, 1999; Suranauwarat,
2007; Fischbach, 2013) but in a more compact format.

B. Deadlock Handling Algorithms

In context of operating systems, a deadlock is a
situation where two or more processes are waiting
indefinitely because the resources they have requested
for are being held by one another. Operating systems
may use three techniques to handle deadlocks, viz.
deadlock prevention, deadlock avoidance, and
deadlock detection and recovery. The Banker's
algorithm is a well known deadlock avoidance
technique and can be visualized by OSAVA. The user
has to enter the number of resources of different types
that have been allocated to the processes and the
maximum number of resources of each type that the
processes can request for. The user also needs to enter
the number of resources of each type that are currently
free. Finally, the user needs to specify a process that is
now requesting for more resources and enter the
number of resources of each type the process is
requesting for. It is assumed that the system is initially
in a safe state, i.e. there is no possibility of a deadlock.
OSAVA uses the resource-request algorithm to
determine the state in which the system will be in if the
requested resources are granted to the process. Then
OSAVA uses the safety algorithm to find a safe
sequence, i.e. a sequence in which the processes
should be executed so that they can be allocated the
resources they need. The matrices and vectors
involved in the calculation are displayed to enhance

pedagogy.

Instead of using the deadlock avoidance algorithm,
operating systems may choose to detect deadlocks as
they occur and recover from them. The algorithm to
detect deadlocks is similar to the Banker's algorithm
and can be visualized by OSAVA as well. The user has
to enter the number of resources of different types that
have been allocated to the processes and the number of
resources of each type that are currently free. The user
then needs to enter the number of resources of each
type that the processes are now requesting for. OSAVA
tries to find a sequence in which the processes can be
allocated the resources they are requesting for without
causing a deadlock. If such a sequence cannot be
found, then OSAVA lists the deadlocked processes. C.
Memory Management Algorithms

JEET

An operating system may use a contiguous memory
allocation scheme wherein a process is loaded in a
contiguous block of memory. OSAVA can visualize
three common contiguous memory allocation
strategies, viz. first fit, best fit and worst fit. The user
has to enter the size of the memory, and arrival time,
turnaround time and memory requirement of each
process. OSAVA then visualizes a memory allocation
strategy and displays a map of the memory whenever a
process arrives or terminates. Such a memory map
shows which parts of the memory are occupied by the
different processes and which parts are free (Fig. 2).

Most operating systems use pure demand paging to
implement virtual memory. Such operating systems
must use a page replacement algorithm to select a page
to be swapped out from the memory in case of a page
fault. The commonly used page replacement
algorithms can be visualized by OSAVA. The user has
to enter the number of frames in the memory that have
been allocated to a process and a reference string.
OSAVA then visualizes the selected page replacement
algorithm. It shows which page is residing in which
frame after each memory access. OSAVA also
calculates the total number of page faults and the page
fault ratio (Fig. 3). The user interface of OSAVA is
simpler and more intuitive to use than those of the
earlier tools (Khuri and Hsu, 1999; Fischbach, 2013;
Garmpis, 2013) for visualizing page replacement
algorithms.

D. Disk Scheduling Algorithms

A hard disk is used as the secondary storage device of
a typical computer. Operating systems use an
algorithm to schedule the requests to access the
different cylinders in the disk in order to decrease the
average access time. The common disk scheduling
algorithms can be visualized by OSAVA. The user has
to enter the number of cylinders in the disk, the current
position and the direction of movement of the
read/write head. OSAVA simulates a disk scheduling
algorithm, and displays a trace of the path followed by
the read/write head and the count of cylinders
traversed (Fig. 4).

OSAVA has been implemented in Python. It can be
downloaded from the Google Play online app store
(https://play.google.com/store/apps/details?id=org.n
sit.osava&hl=en) and installed on all mobile phones
that use the Android operating system. OSAVA is free

Journal of Engineering Education Transformations , Volume 32, No. 4, April 2019, ISSN 2349-2473, eISSN 2394-1707 27

In C-SCAN scheduling, the r/w head scans back and forth across the disk servicing
requests as it reaches each cylinder.
On reaching the end, the r/w head immediately returns to
the beginning without servicing any request on the return trip.

Path of the read/write head:

40

Total number of cylinders traversed: 91

Fig. 4. Sample output of the module to visualize disk scheduling algorithms. Here the module is
visualizing the C-SCAN algorithm. The dashed line represents the movement of the read/write head
from the innermost cylinder to the outermost cylinder without stopping.

and open-source (https://github.com/osava-
nsit/osava), and does not require connecting to the
Internet.

4. Instructional Use of OSAVA

We have used OSAVA to teach the course on
operating systems in Spring 2016, Spring 2017 and
Spring 2018 semesters at Netaji Subhas University of
Technology. On the three occasions, the course was
attended by 60, 56 and 127 undergraduate students,
respectively. OSAVA was distributed among the
students at the beginning of the semester. The course
was taught using the 'chalk and board' approach. After
teaching an algorithm, the instructor (the first author)
presented the students with a set of numerical
questions based on the algorithm. The students were
first made to solve the questions by hand and then
cross-check their answers using OSAVA in the class.
The answers were then analyzed in the class and the
instructor used them to explain the internal working of
operating systems to the students. Figs. 1-4 show

some of the questions that were actually solved in the
class. Following this approach, it was possible to
solve numerical questions involving large number of
processes and representing different conditions in the
class.

Students became familiar with OSAVA when CPU
scheduling algorithms were taught in the class. The
instructor continued using OSAVA to teach about
deadlocks, memory management, virtual memory and
secondary storage management over the semester.
The students were particularly keen in using OSAVA
to study the comparatively more difficult algorithms
like multilevel queue scheduling, multilevel feedback
queue scheduling, Banker's, second chance, C-SCAN
and C-LOOK algorithms. Many students later
reported that they have also used OSAVA for self-
study in the days before the exam when an instructor
was not available to help them. We used two
techniques to assess the benefits of OSAVA, viz.
collecting feedback from the students and analyzing
the scores they obtained in the exam.

JEET

28 Journal of Engineering Education Transformations , Volume 32, No. 4, April 2019, ISSN 2349-2473, eISSN 2394-1707

Table 3. Student feedback (N = 243).

Agree Disagree No
Opinion
1. Did OSAVA help you in understanding the algorithms? 204 30 9
2. Is OSAVA easy to use? 214 25
3. Are the outputs of OSAVA presented logically? 231 9 3
4. Did OSAVA enhance the overall learning experience? 194 38 11
A. Student Feedback deviation of scores of students.

A survey was conducted at the end of the semester.
The students were asked if they felt that OSAVA
helped them in understanding the algorithms, was
easy to use, presented the outputs logically and
augmented the overall learning experience. Out of the
243 students who attended the course, 84% felt that
OSAVA helped them to better understand the
algorithms used in operating systems, 88% agreed that
OSAVA was easy to use, 95% felt that OSAVA
produces outputs in scientific and self-explanatory
formats, and 80% felt that OSAVA enhanced the
course as a whole (Table 3). In their feedback, several
students also remarked that they would like using
similar mobile apps for studying other courses that use
complex algorithms.

B. Analysis of Exam Results

The students were awarded a score out of 100 by
the instructor at the completion of the course. We
compared the scores obtained by the students who
attended the course in Spring 2016, Spring 2017 and
Spring 2018 with of those who attend the course in
Spring 2015 (Fig. 5). It may be noted that the course
was taught in Spring 2015 by the same instructor to a
class of 60 students but without OSAVA. The
instructor took care to keep the format and the level of
difficulty of the questions similar in the three years.
We observed that the average score of the students
increased by more than 9% (P < 0.01) from 2015 to
2016-18. We also observed that the standard deviation
fell by about 6% during the same period. There was an
overall improvement in the quality of answers written
by the students.

5. Discussion
In our opinion, it was possible to successfully

assimilate OSAVA in the course because of its
following three properties.Fig. 5. Mean and standard

JEET

-Comprehensiveness. OSAVA visualizes all the
algorithms that are typically taught in the course on
operating systems. This is in contrast to the earlier
tools that concentrated only on a few important
algorithms (compare Tables 1 and 2). OSAVA takes
into account all variants and parameters of the
algorithms. OSAVA helped students to practice
numerical questions, learn more about the
algorithms and score better in the exam. Students
often used OSAVA to compare the different
algorithms.

-Fidelity to the textbook. OSAVA visualizes the
algorithms as described in the textbook (Silberschatz
et al.,, 2012). Same terminology, and similar
notations and diagrams have been used. This helped
in a seamless integration of OSAVA in the course.
OSAVA provides a brief textual description of the
algorithm before visualizing it. This helps students to
quickly recollect the underlying concept of the
algorithm. The modules of OSAVA present their
outputs as a combination of appropriate diagrams
and numeric results. They give students an idea of
how to answer questions in the exam. We believe that
this property gives OSAVA an edge over the earlier
tools.

-Attractiveness. Smartphones are a powerful, portable
and attractive technology. Most students now carry a
smartphone to the class which can be used to
augment the teaching-learning process. Students
appreciated the idea that an educational app is being
used to foster formal curriculum-based education.
They used OSAVA during the class hours and
beyond. A desktop version of OSAVA was also
developed and made available to the students.
However, the students invariably preferred to use the
mobile app.

Journal of Engineering Education Transformations , Volume 32, No. 4, April 2019, ISSN 2349-2473, eISSN 2394-1707 29

100

66.83+18.31

75.22+12.13

7801+ 1168
7157+11.21 T

80

60

Average Score (%)

20

0 T

Spring 2015 (without Spring 2016 (with

OSAVA) OSAVA)

Spring 2017 (with
OSAVA)

Spring 2018 (with
OSAVA)

Fig. 5. Mean and standard deviation of scores of students.

6. Conclusions

We have developed a mobile app and used it to
teach the course on operating systems for two
consecutive years. Students attending the course felt
that the app helped them in understanding the
algorithms used in operating systems better. An
analysis of the scores obtained by the students in the
exam also showed that the app helped them in
understanding the internal working of operating
systems. Although we followed the book by
Silberschatz et al. (2012), OSAVA can be used with
other textbooks as well.

We have two observations that may be of the
interest of educationists in general. First, course-
specific software tools, if designed properly, can
prove useful as instructional aids. Second, mobile
apps are more pervasive than most other forms of
software and hence, if it suits the purpose, educational
software may be implemented as mobile apps.

Acknowledgement
We thank Savita Yadav who also used OSAVA to

teach the course on operating systems and shared her
experience with us.

References

(1]

(2]

(3]

(4]

[3]

(6]

Comer, D. (2015). Operating System Design —
The Xinu Approach. 2nd ed., CRC Press.

Desnoyers, P. J. (2011). Teaching operating
systems as how computers work. Proceedings of
the Forty-second ACM Technical Symposium
on Computer Science Education, 281-286.

Fischbach, J. A. (2013). Visualization of student-
implemented OS algorithms in Java. Journal of
Computing Sciences in Colleges, 28(3), 6-13.

Garmpis, A. (2013). Alg OS — A web-based
software tool to teach page replacement
algorithms of operating systems to
undergraduate students. Computer Applications
in Engineering Education, 21(4), 581-585.

Khuri, S., & Hsu, H.-C. (1999). Visualizing the
CPU scheduler and page replacement
algorithms. ACM SIGCSE Bulletin, 31(1), 227-
231.

Krishnamoorthy, S. (2002). An experience
teaching operating systems course with a
programming project. Journal of Computing
Sciences in Colleges, 17(6), 25-38.

JEET

30 Journal of Engineering Education Transformations , Volume 32, No. 4, April 2019, ISSN 2349-2473, eISSN 2394-1707

[7] Silberschatz, A., Galvin, P. B., & Gagne, G. Operating Systems: Design and Implementation.
(2012). Operating System Concepts. 9th ed., 3rd ed., Prentice Hall.
Wiley.
[10] Yuan, X., Pioro, B., Archer, R., & Li, Y. (2008).
[8] Suranauwarat, S. (2007). A CPU scheduling Teaching operating systems using visualization:
algorithm simulator. Proceedings of the Thirty- A comparative study, In: Iskander, M. (Ed.)
seventh Annual Frontiers in Education Innovative Techniques in Instruction
Conference, F2H19-F2H24. Technology, E-learning, E-assessment, and

Education, Springer, 576-580.
[9] Tanenbaum, A. S., & Woodhull, A. S. (2006).

JEET

	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30

