
Journal of Engineering Education Transformations, Volume 33, January 2020, Special issue, eISSN 2394-1707

219

Design for Requirements Engineering
Prakash Hegade

School of Computer Science and Engineering, KLE Technological University, Hubballi-580031

prakash.hegade@kletech.ac.in

Abstract: Requirements engineering is a fundamental and

critical part of the software development process as every

further step is influenced by it. Requirements engineering

refers to the process of defining, documenting, and

maintaining the project requirements. Interviews,

brainstorming, task analysis, Delphi technique, prototyping,

etc. are some of the methods for requirements collections

where the stakeholders can be customers, business manuals,

standards, existing similar projects, experts, etc. The

modern digitized society and rapidly growing start-up

culture present several gaps in the current process that

needs immediate addressing. This paper breaks down the

requirement process, its challenges, into various facets and

discusses the methods to cover the existing gaps. Inducing

a design aspect with wireframes into requirements that play

a vital role, requirements are further drawn from

infrastructure, competitor landscape, and culture. We call

this ‘Design the Requirements’ approach. The paper

systematically compares and classifies the traditional and

our approach for a part of the restaurant application case

study. The results show that contemporary projects are

complex than what we consider to be and need a broader

horizon of rational thought processes. The approach works

towards the evolving and multifaceted modern society.

Keywords: design, requirements, wireframes

1. Introduction

The application development life cycle for any system

usually consists of planning, creating, testing, and

deploying. A system can be composed of software,

hardware, or a mixture of both software and hardware. A

software development life cycle to be in specific essentially

consists of requirements collection, design, implementation,

testing, and post-implementation reviews. The phases of the

software development life cycle come with respective

milestones, deliverables, and documentation to trail and

administer each of the phases.

Prakash Hegade

School of Computer Science and Engineering, KLE

Technological University, Hubballi-580031
prakash.hegade@kletech.ac.in

The objective of the software development life cycle is to

produce quality software meeting customer expectations,

which is developed in the estimated time frame and cost.

The process of development is carried through various

available models depending on the software need and

requirements — the deliverables of each phase act as a feed

into the next phase.

Requirements gathering or elicitation is the first stage in the

software development process. Requirements engineering

talks about the function points to be achieved and the

constraints that need to be adhered to in building a real-

world system. It is also concerned with the relationship of

these factors to precise specifications of software behavior,

and to their evolution over time and across software

families (Zave, 1995).

Requirements engineering is usually conducted by the

experienced team members with inputs from all the

stakeholders and domain experts in the industry. Planning

for the quality assurance, requirements, and recognition of

the risks involved is also done at this stage (Dick J et al.,

2017). This stage gives a clearer picture of the scope of the

entire project and the anticipated issues, opportunities, and

directives, which triggered the project. Requirements

gathering stage needs teams to get detailed and precise

requirements. It helps companies to finalize the necessary

timeline to finish the work of that system (Pohl, 2010).

Requirements engineering is open-ended. It is

interdisciplinary. It concerns translation from informal

observations of the real world to mathematical specification

languages. For these reasons, it can seem chaotic in

comparison to other areas in which computer scientists

generally do research (Zave, 1995).

Poor requirements have a significant impact on the results

of systems or projects. The way civil engineers use

Blueprint in building construction; likewise, Requirements

are the blueprints for the software under construction.

When there are poor requirements, this can lead to poor

designs and tests, which in turn will cause delays in

Journal of Engineering Education Transformations, Volume 33, January 2020, Special issue, eISSN 2394-1707

220

development and testing (Mamoun, 2015) — with the

current trends in the change of software development

complexity, growing start-up culture, interconnected

devices, digitization and modernization present new

challenges to be tackled in the software development

process and to be precise, in requirements engineering

(Cheng and Atlee, 2007). The research question that is

considered and addressed in this paper is - Do we have

sufficient tools and techniques at disposal for requirements

engineering towards a digital society and emerging start-

ups culture?

Ian Sommerville, quotes on his blog, “We also need to

cover practical methods, such as scenarios and stories, used

by product managers to understand what might appeal to

users. People buying software products don’t have

‘requirements,’ and conventional requirements engineering

is not very relevant” (Sommerville, 2018). This is

important for the reason that most universities teach

Software Engineering using his textbook. He also further

quotes in his article that he is not coming up with a revised

edition of the book but onto something new completely

different. This paper works at one probable approach

towards the identified goal.

The paper is further divided into the following sections:

Section 2 presents the literature survey. Section 3 presents

our methodology addressing the research question. Section

4 presents a case study. Section 5 presents results and

discussion, and final section 6 presents the conclusion and

future scope.

2. Literature Survey

Gathering requirements accurately and selecting the

appropriate technique can assist in ensuring that all the

systemic requirements are captured well. The major issues

concerning the requirements engineering that are addressed

through literature are shown in Fig 1.

Fig. 1 Requirements Engineering Issues

The shades indicate the priority of the address where the

darker shade indicates the high priority, which in fact is

‘prioritizing’ the requirements. Fig 1 shows the major

parameters that are used to evaluate and factors that affect

the collected requirements.

The research efforts in requirements have been classified

Zave, 1995). Research directions in the domain have been

studied (Cheng and Atlee, 2007). Requirements have been

social modeled on social concepts and strategic analysis of

relationships among social orders (Eric et al., 2011). Agile

and traditional requirements have been compared (Paetsch

et al., 2003). Goal-driven requirements engineering have

been devised and analyzed (Yu and Mylopoulos, 1998),

(Van et al., 2000). Scenario-based requirements

engineering have been supported (Sutcliffe et al., 1998).

Viewpoint oriented requirements definition has been

proposed to handle the requirements knowledge structure

(Kotonya and Sommerville, 1996). Requirements have

been treated as the success factor for software projects

(Hofmann and Lehner, 2001). Various dimensions of

requirements engineering have been studied (Pohl, 1994).

The role of natural language in the process has been studied

as well (Ryan, 1993). Metrics have been devised (Costello

and Liu, 1995), and communication problems have been

noted (Al-Rawas and Easterbrook, 1996).

Along with various research efforts from numerous

directions, there are also commonly used and adapted

methods. Below describes and gives a summary of the

major ones followed in the process. The list is not

exhaustive and is referenced from (Ian, 2011), (Jalote,

2012), (Nancy, 2019), (Cheng and Atlee, 2007) and

(Loucopoulos and Karakostas, 1995).

A. Brainstorming

A group discussion always does a better job than individual

contribution. Usually, brainstorming is used in identifying

all possible solutions to problems providing a means for

requirements gathering.

B. Document Analysis

Document Analysis is a vital gathering technique.

Evaluating the documentation of a present system can

promote to make the process documents. It also helps in

performing the gap analysis.

C. Focus Group

A focus group is formed with customers and user

representatives to gain product feedback. The feedback

collected usually addresses the needs, opportunities,

problems, etc. It can also be used to refine and validate the

already elicited requirements.

D. Interview

Interviews help in understanding requirements better and to

understand the perspective of each interviewee. It is helpful

Journal of Engineering Education Transformations, Volume 33, January 2020, Special issue, eISSN 2394-1707

221

in understanding user expectations. It positively benefits in

knowing the objectives and goals of the system.

E. Observation

By watching users, a process flow, normal flow,

exceptional flow, and etc. scope of improvements and

opportunities can be determined. Observation can either be

passive or active. They help in knowing the inherent

process features.

F. Survey

A questionnaire survey can be used to gather requirements.

The survey usually insists the users to choose from the

given options to agree/disagree or rate something. A well-

designed survey must provide qualitative guidance for

characterizing the market.

G. Prototyping

Prototyping can be beneficial at gathering feedback.

Prototypes are effectively done with fast sketches of

storyboards and interfaces. Prototypes in some situations

are also used as official requirements. They are also

supported by user stories and scenarios.

H. Reverse Engineering

When a project does not have enough support or notes of

the current system, reverse engineering can determine what

a system does, where we deconstruct and work on the

design.

3. Design the Requirements

The existing methods do not bridge the gaps present in the

digitized society. The software’s being developed presently

is not the same as the ones that were developed decades or

years ago. Design the Requirements (DTR) method brings

in the design aspects into the requirements phase. In the

traditional software development life cycle, the design

comes after requirements collection, which comprises of

high and low-level designs. DTR induces the design

approach into requirements to improve the requirements

collection process.

A. Design Goals

DTR has three major design goals: Current Trends, Ease of

Design, and Re-Track. The design goals of the DTR are

detailed below:

1) Current Trends: The requirements should inherently

capture the current market trends and state-of-art. The

customer might or might not be aware of, but requirements

should capture them.

2) Ease of Design: The requirements process should ease

the design phase. There should be a thin line of

demarcation between requirements and design. The process

should naturally flow from one phase to another as a

continued step.

3) Re-Track: The requirements need to be tracked and

monitored until the end of the system and as well during

post-implementation testing.

B. DTR Process

The DTR process can be seen below, as shown in Fig. 2.

Along with the traditional requirements collection process,

DTR has three additional steps through which the scenario

needs to be collected and analyzed. DTR also introduces

wireframes that bring the design aspect into the picture.

Fig. 2 DTR Process

The three major props of the DTR are shown in Fig 3

below.

Fig. 3 Three Props of DTR

1) Infrastructure: The infrastructure needs to be carefully

studied from the stakeholder. The objective of this step is to

understand where will be the product being developed get

deployed. The objective can be achieved by visiting the

places and having a walkthrough or by a recorded video

from the customer or by setting up a meeting. Table 1.

gives the checklist for infrastructure (which is a minimal

sample set only). It has a set of questions for which the

answer needs to be gathered and not limited to.

Table 1. Infrastructure Checklist Sample

Si. No. Question

1. What is the vision of the customer for the

product?

2. What is the approximate budget for the

product?

3. What is the infrastructure owned by the

customer? (Do they have a chain of stores?

Where will be the product put to use? etc.)

Journal of Engineering Education Transformations, Volume 33, January 2020, Special issue, eISSN 2394-1707

222

2) Competitor Landscape: Not only the start-ups but any

product that is being developed must also consider the

competitor landscape. It is essential to carry out the

Serviceable Market Area (SAM) and Total Market

Area(TAM) analysis. Any product that does not stand with

the current state of the art and beyond the competitor would

stand obsolete. The objective of this step is to gather all the

competitor features, compare, and co-relate by generating

the difference map and within the available limits on what

could be incorporated within the product being developed.

3) Culture: Culture plays a major role in the software

being developed. One needs to understand the roles and

responsibilities of the product. Not knowing the culture

could lead to misled objectives. Culture helps to understand

the history and know the domain well. It is necessary to

understand what will thrive and what will perish in the

given domain. Along with the requirements, the past has to

be studied, which is appropriate for the developing product.

C. Wireframes

Once we complete the three components, we then build the

wireframes. The wireframes are extended requirements for

the design. Wireframes are developed to help and

understand the requirements better. They are carried out in

the time span of 5-6 days. Wireframes help us to visualize

the product and understand the flow better. Indeed, it is yet

another way to collect the requirements. There are also

ample tools available to build simple wireframes.

Wireframes are weaker interfaces of the project that is

being developed.

After carrying out the above-mentioned process, as

explained in sub-sections B and C, we then prepare the

final requirements to document using a trackable

spreadsheet.

 Case Study

This section presents a case study and compares the

traditional and DTR approach. The case study is picked

form a real-time project being developed at Transil

Technologies. Only one requirement is considered for the

demonstration.

The project is to automate the hotel and restaurant customer

and engagement services. For the concern of privacy, the

vision and mission of the product and the details are not

mentioned. A particular requirement is selected to

demonstrate the DTR process. One of the requirements for

the user, where the user being manager of the hotel,

recorded was:

Requirement (U-015): The user shall be able to bill the

customer ordered food.

Following the DTR approach,

Following observations were recorded with respect to three

components:

 With respect to infrastructure, the additional

requirement captured were: there were two

kitchens in the hotel, they had a take-home service,

and the hotel had three dining rooms, and these

aspects had to be considered for billing.

 With respect to the competitor landscape, the

requirement noted was that there has to be an

option to work with food delivery services like

Zomato, Swiggy, etc. and have a billing

integrating coming from those third party channels.

 With respect to culture, the requirement noted was

adding gift coupons to the bills during the festival

and seasonal periods.

With the considered requirements, from traditional and

from DTR, a wireframe was designed capturing the

necessary details and can be seen in Fig 4.

Fig. 4 Wireframe Design

As seen in the figure, the wireframe helped in

understanding the requirement better and capture the new

apparent requirements. After the wireframe, the ‘Send to

Kitchen’ module was introduced, which otherwise was not

a consideration. Also, the take-home delivery billing option

came into consideration, which otherwise was missing.

4. Results and Discussion

In continuation of the requirements mentioned in section 4

for the Transil project on customer engagement and

services, we here summarize the DTR approach. DTR fares

relatively better in capturing the requirements and also

helping out in the future design process. As seen in the case

study, DTR helped in identifying the new requirements that

otherwise seemed obvious and not captured.

Following is the summary of traditional vs. DTR approach.

In traditional we have a single requirement, as shown in

Table 2.
Table 2. Traditional Requirement Collection

Si.No. Requirement

1. The user shall be able to bill the customer

ordered food.

In DTR, we have the requirements captured as following,

as mentioned in Table 3, which are aggregated results from

the three props and the designed wireframe.
Table 3. DTR Requirement Collection

Si. No. Requirement : The user shall

1. be able to bill the customer ordered food.
2 be able to send the order to the kitchen
3. provide a take-away or a home delivery

service

Journal of Engineering Education Transformations, Volume 33, January 2020, Special issue, eISSN 2394-1707

223

4. be able to provide services through third-

party services
5. be able to add a gift coupon to the bill

6. be able to bill for a customer from any of the

three dining rooms

Fig. 5 Requirements Monitoring

Working towards the third design goal, the challenge is to

track the requirement over the product timeline. Though

there are many tools, it makes the process cumbersome. A

simple spreadsheet application was used for the purpose.

The sheet can be seen in Fig 5. The figure only captures

part of the sheet maintained. The spreadsheet tracks the

following information:

 Function point id and its subtasks

 Name of the activity

 User story

 Name of the function/file

 Description of the task it does

 Owner of the task

 Time taken to complete the task including start

and end date

 Phase wise user story follow-up

 Any other comments.

We usually cover various ways to track the progress of

requirements and the entire project, but all that industry

needs is a simple tool like a spreadsheet that makes the

tracking easy and captures the required user story.

Feedback was collected from developers and a customer

involved with the project, and below presented is the

analysis. The company had six developers who were

involved in the project, and the questions and results are

presented in Table 4. The rating scale used was one to five,

where one is the lowest, and five is the highest.

Table 4. DTR Developer Feedback

Si.

No.

Question Average

Score

1. Rate on the effectiveness of understanding

the system using DTR
4.33

2 Did DTR help in understanding function

points better?

3.83

3. Effectiveness of spreadsheet in tracking 4.0

the project timelines

A customer who runs hotel chains in Hubballi was visited

on two days. Day-1 was used to understand the

requirements which the customer had. Day-2 involved

explaining market trends and trigger towards DTR support.

It was challenging to get the quantifed feedback from the

customer for the process. So instead one single question

was asked to be rated on the scale of one to five where one

is lowest, and five is highest. The feedback is presented in

Table 5.

Table 5. DTR Customer Feedback

Si.

No.

Question Day-1

Score

Day-2

Score

1. How connected did you feel on each

day of discussion while we were

collecting the required data for the

project?

3 5

5. Conclusion

DTR certainly certifies to be a promising and better

approach for modern society. The results evidently show

that contemporary projects are complex than what we think

and need a broader horizon of rational thought processes.

The process is also detailed out in the ebook BluePrint for

Software Engineering (Prakash, 2019). Requirements

engineering demands this flavor in teaching pedagogy.

DTR extends the canvas of requirements engineering to

design, but that directly impacts the production and

management time further in the life cycle positively. DTR

needs standardization yet with respect to building the

detailed formalized design template and the process

workflow to carry out the methodology. The process also

needs to be further validated and quantified by applying on

other project developments and analyzing the collected

feedback at various steps. DTR appears to be a promising

Journal of Engineering Education Transformations, Volume 33, January 2020, Special issue, eISSN 2394-1707

224

methodology that can be adapted at the student projects and

also while teaching Software Engineering course.

Acknowledgment

I want to express my gratitude to Transil Technologies

Private Limited, Hubballi, for all the support provided for

the work. The experiments were carried out with the

industry support of collaborative projects assigned to

student teams of KLE Technological University.

References

Al-Rawas, A., & Easterbrook, S. (1996). Communication

problems in requirements engineering: a field study.

Cheng BH, Atlee JM. (2007) Research directions in

requirements engineering. In FoSE’07 2007 Future of

Software Engineering 2007 May 23-25, Minneapolis (pp.

285-303). IEEE Computer Society.

Costello, R. J., & Liu, D. B. (1995). Metrics for

requirements engineering. Journal of Systems and

Software, 29(1), 39-63.

Dennis Alan, Haley Barbara Wixom, Roth Roberta M.

2014). Systems Analysis and Design. pages 89-93. John

Wiley & Sons.

Dick J, Hull E, Jackson K (2017). Requirements

engineering. Springer.

Eric, S. K., Giorgini, P., Maiden, N., & Mylopoulos, J.

(Eds.).(2011). Social modeling for requirements

engineering. MIT Press.

Hofmann, H. F., & Lehner, F. (2001). Requirements

engineering as a success factor in software projects. IEEE,

(4), 58-66.

Ian Sommerville. (2011) Software Engineering. 9th Edition,

Addison-Wesley Publication.

Ian Sommerville (2019). What should we teach in software

engineering courses. Link:

https://iansommerville.com/systems-software-and-

technology/2018/03/18/what-should-we-teach-in-software-

engineering-courses/. 18 March 2018.

Jalote, P. (2012). An integrated approach to software

engineering. Springer Science & Business Media.

Kotonya, G., & Sommerville, I. (1996). Requirements

engineering with viewpoints. Software Engineering

Journal, 11(1), 5-18.

Loucopoulos P, Karakostas V. (1995) System requirements

engineering. McGraw-Hill, Inc.

Mamoun Eid. (2015) Requirement Gathering Methods.

umsl.edu.

Nancy Dehra. (2019) Project Planning for PM’s,

www.brighthubpm.com.

Paetsch, F., Eberlein, A., & Maurer, F. (2003).

Requirements engineering and agile software development.

In WETICE 2003. Proceedings. Twelfth IEEE International

Workshops on Enabling Technologies: Infrastructure for

Collaborative Enterprises, 2003. (pp. 308-313). IEEE.

Pohl, K. (1994). The three dimensions of requirements

engineering: a framework and its applications. Information

systems, 19(3), 243-258.

Prakash Hegade (2019). BluePrint for Software

Engineering. First Edition. Smashwords. Link:

https://www.smashwords.com/books/view/953345.

Pohl K (2010). Requirements engineering: fundamentals,

principles, and techniques. Springer Publishing Company,

Incorporated.

Ryan, K. (1993). The role of natural language in

requirements engineering. In [1993] Proceedings of the

IEEE International Symposium on Requirements

Engineering (pp. 240-242). IEEE.

Sutcliffe, A. G., Maiden, N. A., Minocha, S., & Manuel, D.

(1998). Supporting scenario-based requirements

engineering. IEEE Transactions on software

engineering, 24(12), 1072-1088.

Van Lamsweerde, A., & Letier, E. (2000). Handling

obstacles in goal-oriented requirements engineering. IEEE

Transactions on software engineering, 26(10), 978-1005.

Yu, E., & Mylopoulos, J. (1998). Why goal-oriented

requirements engineering. In Proceedings of the 4th

International Workshop on Requirements Engineering:

Foundations of Software Quality (Vol. 15, pp. 15-22).

Zave P. (1995) Classification of research efforts in

requirements engineering. In Proceedings of IEEE

International Symposium on Requirements Engineering

(RE'95) 1995 Mar 27 (pp. 214-216). IEEE.

