
Journal o f Engineering Education Transformations,
Volume 28, No.4, April 2015, ISSN 2349-2473, elSSN 2394-1707

Coding To Think: Teaching Algorithmic Thinking
from Idea to Code

Joe Tranquillo
Bucknell University
377 Breakiron Engineering Building
Lewisburg, PA 17837 USA
e-mail:jvt002@bucknell.edu

Abstract: Engineering computing is a topic that
nearly all engineering departments include in their
curricula. Yet, the pedagogical goals of a computing
course are necessarily split between code as a means
of learning higher level math, code as a specific tool in
design and research, and code as a way to learn
algorithmic thinking. Learning more advanced
applied math is typically learned through the
traditional lecture/homework/test format, whereas
learning the syntax of a particular language is most
often taught through short programming assignments.
This paper introduces Coding to Think as a way to
teach algorithmic thinking that builds off of the
Writing to Think movement in the Humanities. This
technique is very well suited to long-term proj ects as it
provides an opportunity to focus on deeper and more
complex algorithmic thinking. The semester-long
project presented is motivated by three guiding
learning outcomes: 1) To program at a level of
complexity that requires planning, iteration,
encapsulation and documentation, 2) To move from
Idea to Code (a phrase that is mentioned in class at
least once a week) and 3) To articulate and put into
practice the power of a computing language that can
do more than a calculator or Excel. The seven project
assignments that lead students from an initial idea to
final code are detailed, as well as an assessment of
outcomes, student and faculty comments, suggested
improvements and adaptations and ABET assessment
measures.

Joe Tranquillo
Bucknell University
377 Breakiron Engineering Building Lewisburg, PA 17837 USA
e-mail:jvt002@bucknell.edu

Keywords: Project Based Learning, Computational
Instruction, Introductory Programming

1. Introduction

An introduction to engineering computing is a
topic that is included in the curriculum of many
engineering departments. Yet, the philosophical
underpinnings and pedagogical goals of a computing
course are often nebulous (Cordes 1997; Craig et al.,
2008; Dunne et. al., 2005; Hambrusch 2009; O'Neill,
1996; Vergara, 2009; Wiebe, 2009). Should the course
lean toward an advanced engineering mathematics
course (e.g. linear algebra, splines, numerical
methods), with programming as a means to an end
(Hambrusch, 2009; Meyer and Jones, 2007, Miller
and Winton 2004; Musante 2006; VANTH) ? Or
should the course be designed to learn a specific
computer language, such as MATLAB, as an example
of an engineering tool (Clough, 2002; Clough et. al.,
2001; Dunne et. al., 2005; Naraghi and Litkouhi,
2001; Shiavi and Brodersen, 2002; Thomassian et. al.,
2007)? Alternatively, the course could be structured to
teach algorithmic thought processes (Dunne et. al.,
2005; Hambrusch, 2009; Musante, 2006; Von
Lockette, 2006; Wiebe, 2009; Wing, 2008; Wing,
2006). No one way is best and any computing course
should address all three to some extent. The
implementation of a computing course, however, does
need to be tailored to the objectives and backgrounds
of the students. For example, the lecture-homework-
test progression may be excellent at addressing an
applied math objective, while short programming

JGtf

mailto:jvt002@bucknell.edu
mailto:jvt002@bucknell.edu

24 Journal o f Engineering Education Transformations, Volume 28, No.4, April 2015, ISSN 2349-2473, elSSN 2394-1707

assignments may address the learning of syntax. Here
is present a semester-long project that has as its
primary aim to address algorithmic thinking.

The paper is organized in the following way.
Background is presented on how the project fits into
an overall introduction to computing course. Next is a
detailed outline ofseven project assignments followed
by a description of a class-wide programming
exercise called The Triangle Game. Student
assessment is presented as well as the ABET
assessments associated with the project. Lastly,
recommendations are made for improvements on,
and alternative implementations of, the project.

2. Background

The 15-week(l semester) project was incorporated
into a half-credit (two hours of formal lectures and one
hour of recitation per week), required second-year
undergraduate biomedical engineering course,
Introduction to Engineering Computing. A typical
undergraduate will enroll in 4.5-5 credits per
semester, totaling approximately 20-25 hours of in-
class instruction. The course wastaught five times by a
previous instructor with the objective of introducing
advanced engineering mathematics. The project was
then included by the author to address a concern that
students were not prepared for computing in later
courses. The course has been taught with the project
since that time five additional times.

The content of formal lectures was a mix of
advanced applied math and practical lectures. Some
unique lectures were delivered on topics such as the
role of computing in the design process. A second
lecture was delivered on how computing can be
partnered with experiments and theory in the research
process. Several cases were shown where
computation either was, or was not, a good tool to
move a research or design program forward. There
were also short lectures on good programming habits
such as how to write appropriate inline comments.
Some lecture and recitation time was used for a “live”
programming demonstration of The Triangle Game,
as described below.

The syntax of MATLAB was learned through a
text and individual weekly programming
assignments. The instructor has published a short text
that consisted of an introduction to common
programming concepts (e.g. loops, conditionals,
functions) and served as a self-guided tour of the

JEtf

MATLAB environment (Tranquillo, 2011).
Programming assignments appear at the end of each
chapter and counted for 15% of the final grade. To
evaluate students on progress through the self-guided
text, short quizzes were administered each week and
counted toward 25% of the final grade.
Professionalism (e.g. attendance, class conduct,
meeting preparation) accounted for 10% of the grade,
with the remaining 50% was allocated to the project.

3. Project Motivation

At the core of the semester-long project were two
interrelated concepts. The first was Coding to Think,
which parallels the movement of Writing to
Think(Griffith, 1982, Read Write Think). Briefly, the
philosophy of Writing to Think is to teach writing as a
process by which the writer will organize, clarify and
connect ideas. Communication to an audience is a
secondary goal. The same can be said for the engineer
and Coding to Think. The goal is to clarify constraints,
parameters, and processes; critical thought processes
vital to becoming a successful researcher or designer
(Bundy, 2002; Craig et. al., 2008; Lunt and Ekstrom
2006; O'Neill, 1996; Vergara, 2009; Wiebe, 2009).
Some previous work has been published on the idea of
Coding to Think (Wing, 2008; Wing, 2006), but no
publications were found on practical implementations
of this theoretical idea. The one possible exception
was the report of a secondary school environment
where two teachers taught separate courses on
Computing and Composition and made attempts to
highlight the similarities between the two processes
(Deeket.al.,2002).

The second concept underlying the project is how
to move from Idea to Code. Here the focus was more
on the practicalities of how to find and recognize a
computationally tractable idea and then, beginning
with a blank text file, write code that implements that
idea. The idea could be a mathematical model, an
analysis method or a graphical representation of a
complex data set. While some simple ideas may be
possible to implement in a few lines of code (similar to
the weekly programming assignments), most original
ideas require building code with a higher level of
complexity and modularity. Ittakes time and
individual practice to become comfortable writing
code at this higher level. In other words, no amount of
copying or modifying existing code or watching
another code will suffice. As such, the project was
designed to incorporate many aspects of active and
problem based learning (Astrachan, 2004; Bowen,

Journal o f Engineering Education Transformations, Volume 28, No.4, April 2015, ISSN 2349-2473, elSSN 2394-1707 25

2004; Gotfried, 2002; Said and Khan, 2004; Shiavi
and Brodersen, 2002; Steadman, 2001)and spanned
the entire semester. Although each of the references
above presents various types of projects, none are the
unique combination of being student-driven, long­
term, and targeted at the learning of algorithmic
thinking.

Semester-Long Project

The computing project presented below was
designed to focus on the learning of algorithmic
thinking. As a group project could too easily allow one
person to perform the high-level algorithmic
development leaving others to write only simple
functions, each student completed every assignment
on their own.

The parameters for the project were distributed on
the first day of class with more specifics for each of the
seven assignments given as handouts throughout the
semester (Table 1).

Table 1: Due dates and percentages for each
of the seven assignments

The central purpose of the semester-long project is
to demonstrate that you can take an idea and transform
it into working computer code. Your idea could build
upon another's idea or it could be entirely original. The
only constraints are that your specific idea cannot be
published, the topic must have some biological or
biomedical significance and the resulting computer
program must include a variety of basic programming
structures.

Although the focus of the project was on
biomedical and biological systems, what is presented
below could be easily adapted to other engineering
disciplines. Students were encouraged to revisit the
assignments listed below in an iterative fashion
(similar to the design process) and to schedule

additional meetings with the instructor as needed.
Below is a description of each assignment.

Assignment 1: Initial Abstracts and Meeting

Each student was required to clearly and briefly
communicate three distinct project ideas(l paragraph
each). Project parameters and topics were purposely
vague to allow students the maximum flexibility in
proposing projects. The only boundaries at this point
in the semester were that the projects have some
biological or biomedical significance. Students were
encouraged to choose an idea that they would find
interesting. Below are ideas provided to students on
the first day of class:

• Agent Models (e.g. Slime Molds, Ants, Boids)
• Chemical Rate Equations
• Population Biology
• Evolutionary Game Theory
• Spread of Infectious Disease
• Cellular Gene Expression
• Ecological models
• Non-linear biological models
• Models atccl.northwestem.edu/netlogo/

In general the above list would require students to
perform a numerical simulation of a mathematical
model. The list could be expanded (e.g. development
of analysis methods, signal or image processing) but
the author has found that it is more effective to start
with simple mathematical models and then follow the
interests ofthe students.

To help students generate more ideas, the
instructor held a collaborative search session on the
second day of class. Each student was asked to write
down a few general thoughts about biological or
biomedical systems that they found interesting. These
ideas were shared with at least three other students.
These groups of students were then required to help
one another search through various books provided by
the instructor, textbooks from previous courses and
online sources (e.g.ccl.northwestem.edu/netlogo/). In
this way, each student was not only looking for
projects for themselves but also for other students.

The abstracts were a lead-in to an individual
student-instructor meeting. At this meeting the
instructor could gain a better sense of the proposed
proj ects as well as help guide students toward a proj ect
that was of the appropriate scope. In preparation for

JEtf

Assignment Due Date % of Project Grade

Initial Abstracts 3 rd week 10
Background Presentation 6 th week 15
Parametric Study 8 th week 10
Draft of Code 10 th week 15
Final Abstract 14 th week 10
Final Presentation 15111 week 20
Final Documentation Finals Week 20

The proj ect was motivated with the following text:

26 Journal o f Engineering Education Transformations, Volume 28, No.4, April 2015, ISSN 2349-2473, elSSN 2394-1707

the meeting, students were requested to be able to
answer the followingquestions:l) Is there a direction
that you favor over the others? Why?2) Are there
projects you are worried about pursuing? Why? They
were also encouraged to bring any background
information that they may have used as inspiration.
For example, some students brought mathematical
modelsthey had learned about in another class. Others
brought websites or news articles. Students were also
encouraged to prepare questions ahead of time and
reserve time during the meeting to ask questions. They
were reminded in class that a good strategy is to list
questions and then arrange them in order of
importance.

Assignment 2: Background Presentation

A few weeks after the initial meeting, all students
were required to deliver a five minute project
presentation to the class as well as a strategy for
moving from idea to code. There were four purposes
for the presentation. First, the deadline of the
presentation required the clear definition of the
project. As such, most students scheduled additional
meetings with the instructor to finalize a project topic.
Second, a background search had to be performed to
demonstrate a deep understanding of the idea to be
coded. As a five minute presentation is very short, a
requirement was for each presentation to contain
extensive notes and references in a notes section,
beyond what would be said in the presentation. Third,
all presentations were required to contain at least one
slide on an approach to programming. This could
include, but was not limited to, a discussion of the
types of data structures and functions that would be
required, a flow chart or an outline of a preliminary
algorithm. The purpose for this requirement was to
have students think early on about how they would
implement the project idea. Fourth, the presentations
allowed the rest of the class to understand the diversity
and variety of topics and approaches. Students were
instructed that an additional goal was to build excited
about their proj ect among their classmates.

Assignment 3: Parametric Study

The ability to perform controlled studies, where
one variable is changed slowly with any resolution,
while keeping all other variables constant, is one of
the major strengths of numerical simulation. All
students were required to identify at least two
variables that would be varied over an appropriate
range. The parametric study was introduced as a four-

step process and documented in a two-page memo.
The first step was to identify the parameters. There
was a class discussion on how to choose parameters of
a model that have real meaning. The second step was
to determine an appropriate range over which each
parameter should be varied as well as the resolution of
the variation. The third step was to outline an analysis
method to find the relevant properties of these data
generated. The fourth step was to develop a way to
summarize the analysis in a single figure (e.g. axes for
each parameter varied with a color at each location
indicating the results of analysis). Justification was
needed (literature sources or a rationale) for all
choices made.

Assignment 4: Draft of Code

• A few weeks after the parametric study design,
a second student-instructor meeting was held at which
time the student demonstrated progress made toward
moving from idea to code. As outlined in a class
handout, each project was required to integrate the
following programming concepts into the proj ect:

• Matrix-Vector Operations
• Loops
• Functions
• Conditional Logic
• Graphical and Data Output

As a baseline for “good” progress at this point in the
project, students were given the following criteria for
draft code:

• Define the key variables of interest
• Create data structures to hold the variables of
• interest
• Identify the key loops and conditionals needed
• Explain how the proposed algorithm will realize
• the proj ect idea

It was at this meeting that the instructor could
check that code was well documented with comments
and readable by anyone with knowledge of
MATLAB's programming keywords. It was also at
this time that the instructor could point students to
further resources. For example, students were
e n c o u ra g e d to u se M ATLAB c e n tr a l
(www.mathworks.com/matlabcentral) or online code
sources with proper citations. As in Assignment 1,
students were expected to show evidence that they had
prepared for the meeting.

http://www.mathworks.com/matlabcentral

Journal o f Engineering Education Transformations, Volume 28, No.4, April 2015, ISSN 2349-2473, elSSN 2394-1707 27

Assignment5: Final Abstract

Two weeks before the end of the course each
student turned in a one page abstract that summarized
the project idea, methods, results, conclusion and
future work. This abstract was included in a program
booklet distributed at thefinal presentations
(Assignment 6). More specific guidelines were
distributed in a class handout along with examples of
real computational abstracts from the Biomedical
Engineering Society Conference.

Assignment 6: Final Presentation

During the last week of class each student
delivered an eight minute talk followed by two
minutes of questions. Minimum requirements for the
presentation were:

• One slide reminding the class of the idea
• One algorithm slide with appropriate snippets of

code or a flow chart
• One methods slide with a description of varied

parameters and analysis methods
• One slide summarizing results
• One slide on conclusions, including the

significance of results, major limitations and
future directions

Although not required, it was suggested that
students give a short live demonstration. As in
Assignment 2, extensive notes were expected to
supplement the presentation.

Assignment?: Proj ect Documentation

During finals week, all documents related to the
projects were turned in electronically. These
documents included all written work, all presentation
slides (with notes) and a final working copy of all
MATLAB code. In addition, aone-page users manual
and one-page self-reflection were included. The
objective of the users manual, code and presentations
were to allow someone unfamiliar with the project
(but familiar with MATLAB) to not only understand
the proj ect, but build upon it. The obj ective of the self-
reflection was to identify the successful processes
followed in finishing the project as well as processes
that would be performed differently if the proj ect were
repeated.

5. Example Projects

Below are short summaries of three projects.

Abiomechanics injury project simulated the effect
of cyclic loading, as in athletic training. The
simulation was derived from a differential equation
based model of the lower extremities and included the
option of dynamic spring constant that varied
depending upon the duration and magnitude of load
applied. A separate function integrated load over time
in various segments to quantify the potential for
injury. A user interface and built-in anthropomorphic
table allowed a user to run simulations for a specific
individual. The same user interface also allowed for
the load cycles to be changed to simulate various
sports and training schedules.

A population genetics project simulated ten genes
on homologous chromosomes, two alleles for each
gene, one on each chromosome. A fitness function
took into account lethal alleles and carrying capacity.
A reproduction function allowed two individuals with
a fitness above a certain threshold to create a new
individual with a new genotype. Also in the
reproduction function was the possibility for
mutation.

A disease propagation proj ect simulated the spread
of H1N1 on a hypothetical college population. A
consultation with the director of health at our
university yielded some experimental data of the
spread ofHlNl at our institution and a few others. The
model included simulations of the impact of various
scenarios including no intervention, a large
university-wide party, and the aggressive quarantine
that was implemented at our university.

Live Coding: The Triangle Game

A concern of the instructor was that the project
assignments, no matter how detailed, would not
convey to the students how to move from idea to code.
One of the more successful portions of the course was
a series of “live” coding sessions, whereby the class
cooperatively moved from idea to code. Although not
explicitly related to the project, the instructor found
that these demonstrations greatly helped make
expectations clear as well as highlighted good
algorithmic thought processes, inline commenting
and debugging techniques. Below is a description of
the Triangle Game, an invention of the author
(Tranquillo, 2014). There are, however, a number of

JEtf

28 Journal o f Engineering Education Transformations, Volume 28, No.4, April 2015, ISSN 2349-2473, elSSN 2394-1707

excellent ideas in the references that could easily be
adapted to be live coding demonstrations (Baibak and
Agrawal, 2007; Gotfried, 2002; Lu et al., 2010;
Maase, 2007; Miller and Winton, 2004; Musante,
2006; Myszka, 2006; Steadman, 2001).

The Triangle Game begins with everyone in the
class walking around a large empty space. Each
student secretly chooses two other students to track in
the space. On a signal, each person follows one simple
rule: attempt to make an equilateral triangle with your
two targets. As each person attempts to make a
triangle, the room becomes a dynamic whirlwind of
repositioning. Sometimes the game will go on
indefinitely. Other times, everyone will find a point
where many stable triangles form and motion ceases.
If the game is replayed, the results may be completely
different. Surprisingly even without any barriers, the
game typically remains bounded. As a classic example
of an emergent system, no one player can cause the
end result and the dynamics are governed by one very
simple rule. As the game is very intuitive, it seems on
the surface to be very easy to simulate on a computer.

The game was played and initial observations were
listed as a group before any attempts were made to
begin writing code. The instructor then guided
students through a process of identifying variables
(e.g. positions of each player), the geometry of finding
equilateral triangles (e.g. use of basis vectors and
rotations) and general program flow. The class then
turned to translate the collective ideas into code. In
this process it became clear that the dynamics of the
game were far from simple. For example, there are in
actuality two positions that might form an equilateral
triangle. How should an individual student decide?
Should the choice be random or the closest solution?
Also the update rules can get complicated. For
example, students discovered that the update could be
synchronous (everyone moves at the same time at the
end of an iteration) or asynchronous (pick a player at
random and move only that player).They also found
that it might not make sense to move directly to the
goal on each iteration. Again this simple realization
lead to suggestions from the class, such as to move a
constant percentage of the way to the goal or with
constant velocity. Decisions were made as a class and
then the instructor took suggestions on how to
transform the decision into code.

During the process of writing and running code,
there were comparisons made to the initial
observations. For example, the players in the first

JEtf

coded version did not remain bounded. At several
points the Triangle Game was replayed to gain more
insight. This back and forth between experiment and
coding also served as a good demonstration of how to
incorporate computing and experimental observation
to learn about the deeper dynamics of a system. In the
end the class had four different versions of the code,
all of which reproduced some key observation. It was
important that no version of the code perfectly
reproduced the experimental observations, sparking a
discussion about the validity of the simulations. It was
at this point that the instructor was able to bring up that
the reason for coding in this case was not to reproduce
the experimental results but rather was an example of
the power of Coding to Think. We collectively learned
a great deal about the dynamics of the game by
attempting to translate our ideas about the game into
code. This deeper understanding then naturally leads
to asking new, and more sophisticated, experimental
questions.

A follow-up live coding session was conducted
later in the course to build analysis tools for the results
of the game. For example, it was easy to save the
trajectories of each player and then show trends in the
statistics. Again students were asked to invent analysis
methods that would make sense. Although the class
ran out of time to properly investigate the analysis of
our results, our approach to analysis, as another
example of Idea to Code, could be expanded in future
iterations of the course.

6. Assessment

In this section, student numerical data is presented
from one of the offerings of the course, as well as
faculty observations and ABET criteria met by the
project. The Bucknell University Institutional Review
Board approved all data collection procedures. The
final section offers improvements and modifications
for instructors who might wish to adopt the proj ect.

Student Observations

Student observations were obtained through a mix
of numerical and written data from both informal
questions (Table 2) and formal University Assessment
questions (Table 3). It should be noted that the scores
in Table 2 are on a 4 point Likert scale while those in
Table 3 are on a 5 point Likert scale.

Table 2: Informal Student Evaluations (n=14) with a
Likert Scale (1-Strongly Disagree, 2-Disagree, 3-
Agree, 4-Strongly Agree)

Journal o f Engineering Education Transformations, Volume 28, No.4, April 2015, ISSN 2349-2473, elSSN 2394-1707 29

Question
Picking my own project helped me
be more invested in the project

AVG
3.8

STD
0.4

The individual nature of the project
helped me learn more

3.5 0.4

The semester-long proj ect was a good
way for me to learn algorithmic
thinking

3.5 0.8

The constraints on the project (i.e.
loops, matrices) helped me focus my
coding

3.2 0.5

The timing of assignments was
helpful in staying on track

3.7 0.3

The project was a good way to bring
together the concepts learned in class 3.5 0.8

I understand how matlab can go
beyond what is possible with excel or
a calculator

3.9 0.3

Electronic submission of work was
helpful 3.7 0.4

Table 3: Formal Student Evaluations (n=14) with a
Likert Scale (1-Strongly Disagree, 2-Disagree, 3-

Neutral, 4-Agree, 5-Strongly Agree)

Below are select student responses to the question,
“What was the best part about the proj ect?”
“The open-ended project helped connect all of the

material learned in class.”
“The outcome: I can code in MATLAB”
“Choosing out own topics was the best thing to

enable me to stay interested in the proj ect”.
“I loved how I was getting real results that could

actually be applied to real life”
“Because we did all wildly different things people

were willing to lend a hand to each other”.

Below are select student responses to the question,
“How can the project be improved?”
“It was very challenging to think about an

algorithm on my own. I wish I had even more practice
before the project”.

“This project is a time sink where I can spend 6
hours of time and have nothing to show for my work.
Maybe this is the way engineering is and the way
computing is. Then this is also the way I should be
graded”.

“The project counts a lot toward the final grade. If
it counted less we might be willing to take more risks”.

“I'd like to spend more time in class just working
on the coding in matlab. Taking notes didn't help much
at all”.

“More structure and possibly different guidelines
individualized on each proj ect”.
Although not asked, a number of students commented
on Coding to Think.

“I found that when I was going about my daily
routines, I realized that they are really just while loops.
I also started seeing the mundane decisions I make to
be if-then statements”.

“The night before everything clicked in my project
was the night I dreamt about coding in matlab. It was
scary.”
A number of comments were also targeted at the
Triangle Game demonstration.

“I hadn't coded before so an actual demo of the
thought process and good coding techniques was
really helpful”.

“It exposed how real programming is completed. It
dispelled the mystic [sic] that good programmers
simply 'know what to do' and that there are many
possible directions a large coding project can proceed
in.”

Faculty Observations
Through out the iterations of the course the

instructor made notes on interactions with students in
and out of class as well as on trends in the final
projects. In general, programming courses may have
one of the most widely distributed ranges of previous
skills. While some students had been programming
for a very long time, others have never learned to
program. The instructor found that both populations
struggled. The novice programmers struggled with
mastering the basics of algorithmic thinking. Many
did not appreciate that they would not learn to code by
simply watching the instructor in class or copying
code straight from the text. The more advanced

JEtf

Question AVG STD

The open-ended project was a
valuable part of this course

4.21 0.5

The project demonstrated the need for
higher level algorithmic thinking

4.43 0.9

Material and hands-on skills learned
in class sessions were helpful in
staying on track

4.60 0.8

The sequence of assignments and
deadlines were useful in staying on
track

4.27 1.1

30 Journal o f Engineering Education Transformations, Volume 28, No.4, April 2015, ISSN 2349-2473, elSSN 2394-1707

programmers struggled with the particulars of
MATLAB, most especially the variable number of
arguments to built-in functions. They also brought the
preconception that they already knew how to program
and were therefore frustrated that what should have
been an easy class turned out to be a great deal of
work.

In general final projects were above the level
expected. Code was well-documented, organized, and
met the overall curricular need to give students more
experience with programming. Many projects
included features not required. For example, nearly all
projects allowed for some type of user interaction,
either through command line inputs or a Graphical
User Interface (GUI). Many students included some
extra code to demonstrate how to run simple cases in
the user's manual.

Students often mentioned the Triangle Game as the
most helpful aspect of the course. As the instructor, the
live programming demonstration provided an
opportunity to reinforce the expectations for the
project and it became a reference point for the
remainder of the course. Students made the jump, with
some prompting, to discuss how similar programming
techniques could be used to model cells crawling on a
scaffold, cells, organ and organism development and
the spread of viruses and rumors on social networks.
In conversations with students, the most important
aspect of the live programming was that the instructor
had not fully programmed the task ahead of time.
Although this was largely true, the instructor did have
a detailed algorithmic outline that could be referred to
if the class stalled in developing ideas. It was also
important to spread the demonstration across multiple
sessions so that problems arising in one session could
be answered in the next session. The only significant
problem with the triangle game was that students
initially expected the instructor to continue on to
investigate all of the possible algorithmic options.
This was taken as a sign that the students were truly
engaged.

Despite the good qualities of the projects, there
was ample room for improvement. The most
significant problem was that the parametric study was
not a natural fit for all projects. More flexibility could
be built into this aspect of the project, especially if
non-modeling projects are attempted. Although many
of the projects clearly demonstrated a high level of
algorithmic thinking, few projects showed a
consideration for algorithm optimization. There were

JEtf

complaints that the project counted for 50% of the
grade. After some questioning it came out that much
of the source of this feeling was that the project was
individual. All semester-long projects to this point in
our curriculum are performed in a group. This was the
first project where individuals where solely
responsible for all work. Many of these problems
could be addressed by making slight adjustments to
the project assignments and more carefully
introducing project topics. A selection of these
possible modifications is below in the section on
Recommendations for Implementation.

ABET Assessment
The ABET assessment for our introduction to

Engineering Computing course was established prior
to the adoption of the project. One of the secondary
goals of the project, was to move all previous ABET
evaluations to the project. Direct assessment was
made for the following ABET outcomes
■ 3a. an ability to apply knowledge of mathematics,
science and applied sciences
• 3e. an ability to identify and solve applied science
problems
• 3k.an ability to use the techniques, skills and
modem scientific and technical tools necessary for
professional practice.
Clearly there are a number of opportunities for
assessment that were not taken but would follow
naturally from the project (e.g. 3b, 3c, 3g, 3i, and 3j).
Recommendations for Implementation
There are a number of changes that may enhance the
effectiveness of the project. First, it may help to add an
explicit requirement of analysis and interpretation of
results. This critical part of any proj ect has historically
been lacking in the final presentations and
documentation. Although the author has added such a
requirement to the final presentation, few students rise
to the challenge. It may be that an analysis and
interpretation assignment could be added between
Assignments 4 and 5. Second, as noted above, there
could be more flexibility included in the parametric
study assignment. Some possible alternatives would
be to give students the option to focus on code
optimization, build a user interface or include more
sophisticated error checking. Third, the project was
the first time that students had to develop an
algorithmically complex set of functions. It may be
helpful, as pointed out by some students, to require an
intermediate sized mini-project half-way through the
semester. It may be that the code draft assignment
could be restructured so that each student must have
completed a sub-goal of the larger project by the time

Journal o f Engineering Education Transformations, Volume 28, No.4, April 2015, ISSN 2349-2473, elSSN 2394-1707 31

of the meeting. Fourth, additional student comments
revealed that the theoretical (e.g. applied math)
section of the course seemed disconnected from the
project and the overall goals of Coding to Think and
Idea to Code. One solution would be for short live
coding demonstrations (similar to the Triangle Game)
to solve problems that require some knowledge of
more advanced mathematics. For example, higher-
order numerical integration techniques could be
discussed in theory first and then used in a live coding
demonstration. Lastly, as correctly pointed out in one
of the student comments above, it was difficult to truly
assess debugging efforts. Some possible
recommendations are to ask students to comment on
debugging efforts as part of the self-evaluation,
keeping a coding log or turning in multiple code
versions.

Because the course is a half credit, it is expected
that students could dive more deeply into the project in
a full credit course. For example, only one chapter of
the text was assigned per week. It would certainly be
possible in a full credit course to move more rapidly
through the chapters, allowing time for a more
thorough introduction to the various MATLAB
toolboxes, a tighter link to applied mathematics, and
more live coding sessions.

The instructor had (and expects to have in the
future) small class sizes. It is not clear how this project
will scale to larger class sizes, but it may be helpful to
create project groups. A change to group projects
would necessitate more specific guidelines to ensure
that every member is taking part in generating ideas,
developing algorithms, debugging, designing
appropriate analysis and communicating results.

There are a number of ways in which the project
could be slightly altered to fit into other types of
courses. For example, in a full-credit course, the
project might work well in combination with another
course such as systems physiology. Although
MATLAB (Mathworks) was used as a basis for the
project, other high-level languages such as Python,
Java or C++ would provide the same medium for
implementing Coding to Think. In addition, the
project could easily form the basis for a graduate class
in engineering computing by simply altering the
expectations. Even more broadly, the project could be
modified for nearly any scientific discipline where
computing plays an important role (e.g. physics,
chemistry, biology).

A decision was made to focus the projects on
mathematical modeling. This decision was based
solely on the expertise of the faculty member and
could be tailored to better fit the expertise of another
instructor (e.g. signal or image processing, statistical
analysis ofbiological data). Only one student deviated
from a pure modeling project, producing anexcellent
project to demonstrate how various levels and types of
hearing loss affect the ability to recognize human-
produced speech.

7. Conclusions
Computing and simulation are playing an

increasingly important role in research and design
(Craig et. al., 2008; Dunne et al., 2005; Lunt and
Ekstrom, 2006; O'Neill, 1996; Wing, 2008). Although
programming languages will come and go, the ability
to think algorithmically is a skill that engineering
undergraduates will need,not only in their first job, but
throughout their40+ year career (Deek et. al., 2002;
Dunne et al., 2005; Vergara, 2009; Wiebe, 2009). It is
therefore important to teach algorithmic thinking as a
critical thinking skill.

This paper proposed Coding to Think as an
extension of Writing to Think, and Idea to Code as a
practical way for students to learn Coding to Think
(Wing, 2008; Wing 2006). The semester-long project
presented here is a specific implementation of these
concepts. Based upon student and faculty assessment
and observations, the project is a start toward teaching
students to think algorithmically. It will be necessary
to follow up in future courses in the curriculum to fully
realize the goal of algorithmic thinking (Craig et. al.,
2008, Lunt and Ekstrom, 2006; Wiebe, 2009). In
conclusion, the idea of Coding to Think could be
implemented in many other ways and is an idea
worthy of further investigation by others in the
engineering education community.

References
Astrachan O. (2004) Non-competitive programming
contest problems as the basis for just-in-time teaching.
Proceedings of the Frontiers in Education
Conference.
Baibak T and Agrawal R. (2007) Programming games
to learn algorithms. Proceedings of the ASEE
Conference.
Bowen J. (2004) Motivating civil engineering
students to learn computer programming with a
structural design project. Proceedings of the ASEE
Conference.

32 Journal o f Engineering Education Transformations, Volume 28, No.4, April 2015, ISSN 2349-2473, elSSN 2394-1707

Bundy D. (2002) Four steps to teaching C
programming. Proceedings of the Frontiers in
Education Conference.
Clough D. (2002) Teaching introductory computing to
ChE students - A modem computing course with
emphasis on problem solving and programming.
Proceedings of the ASEE Conference.
Clough D, Chapra S and Huvard G. (2001) A change
in approach to engineering computing for freshmen -
Similar directions at three dissimilar institutions.
Proceedings of the ASEE Conference.
Cordes D. (1997) Teaching an integrated first-year
computing curriculum: Lessons learned. Proceedings
of the Frontiers in Education Conference.
Craig A, Bullard L and Joines J. (2008) Computing
across curricula. Proceedings of the ASEE
Conference.
Deek F, Friedman R and Kim H. (2002) Computing
and composition as an integrated subject in secondary
school curriculum. Proceedings of the ASEE
Conference.
Dunne B, Blauch Aand SterianA. (2005) The case for
computer programming instruction for all
engineering disciplines. Proceedings of the ASEE
Conference.
Finlayson B. (2005) Introduction to chemical
engineering computing. Proceedings of the ASEE
Conference.
Gotfried B. (2002) Teaching computer programming
effectively using active learning. Proceedings of the
Frontiers in Education Conference.
Griffith M. Writing to think. (1982) National Writing
Project Paper No. 4 National Endowment for the
Humanities.
Hambrusch S. (2009) A multidisciplinary approach
toward computational thinking for science majors.
Proceedings of the SIGCSE Conference.
Lu Y, Zhu G and Koh C. (2010) Using the tetris game
to teach computing. Proceedings of the ASEE
Conference.
Lunt B and Ekstrom J. (2006) Changing times: The
status of computing education in the United States.
Proceedings of the ASEE Conference.
Maase E. (2007) Kangaroo thinking: Mathematics,
modeling and engineering in introductory computer
programming for engineers. Proceedings of the ASEE
Conference.
Meyer G and Jones D. (2007) Advanced modeling in
biological engineering using soft-computing.
Proceedings of the ASEE Conference.

JEtf

Miller D and Winton C. (2004) Botball kit for teaching
engineering computing. Proceedings of the ASEE
Conference.
Musante S. (2006) Strategies for teaching modeling to
students. Bioscience 54:4:299.
Myszka D. (2006) Motivating students in an
introduction to computing course by requiring
animated solutions. Proceedings of the ASEE
Conference.
Naraghi M and Litkouhi B. (2001) An effective
approach for teaching computer programming to
freshman engineering students. Proceedings of the
ASEE Conference.
O'Neill R. (1996) Role of computing: Educator's
Perspective. Proceedings ofthe ASEE Conference.
R ead Write T h ink . W ebs i te [O n l ine] .
http://www.readwritethink.org.
Said H and Khan F. (2004) Toward using problem-
based learning in teaching programming. Proceedings
ofthe ASEE Conference.
Shiavi R and Brodersen A. (2002)Comparison of
instructional modalities for a course - Introduction to
computing. Proceedings of the Frontiers in Education
Conference.
Steadman S. (2001) Enhancement of an introductory
computing course with experiential and cooperative
learning. Proceedings ofthe ASEE Conference.
Thomassian J, Kumazawa R and Kinnicutt P. (2007) A
study of freshmen students' outlook to media based
tutorials of Matlab/Java in computing for engineers.
Proceedings of the ASEE Conference.
Tranquillo, J (2011) Matlab for Engineering and the
Life Sciences, Morgan and Claypool, 2014.
Tranquillo, J (2014) Moving Analogies. Proceedings
ofthe Venture Well OPEN Conference.
VANTH. Website [Online], http://www.vanth.org.
Vergara C. (2009) Leveraging workforce needs to
inform curricular change in computing education for
engineering. Proceedings of the ASEE Conference.
Von Lockette P. (2006) Algorithmic thinking and
MATLAB in computational material science.
Proceedings of the ASEE Conference.
Wiebe E. (2009) Computing across curricula: The
view of industry leaders. Proceedings of the ASEE
Conference.
Wing J. (2008) Computational thinking and thinking
about computing. Philosophical Transactions of the
Royal SocietyA366:3717.
Wing J. (2006) Computational Thinking.
Communications of the ACM 49:3:33.

http://www.readwritethink.org
http://www.vanth.org

