Journal of Engineering Education Transformations, Special Issue: Jan. 2015, eISSN 2394-1707

JEET

CURRICULUM DESIGN: AN EXPERIENCE IN
PRINCIPLES OF COMPLIER DESIGN COURSE

Sujatha C', Karibasappa K. G*

Dept of Computer Science and Engineering
B.V.B.College of Engineering and Technology
Hubli, Karnataka, India
lsuj ata_c@bvb.edu
“karibasappakg @bvb.edu

Abstract— Curriculum design is a challenging process which
includes content design, delivery of course, learning and
assessment methods based on the need of different stakeholders.
The content design is a process of collecting, organizing and
sequencing the lessons or content to study the course in orderly
manner. It should recognize students as an active partner in their
learning process. Generally it is concerned with reviewing,
planning, developing, implementing and maintaining of course
content design, delivery of course and assessment with high level
commitment towards the curriculum by stakeholders. In this
paper we present our experience in the content development,
delivery and assesment of the Principles of Complier Design
(PCD) course.

Keywords— Compiler, Curriculum, Content Design, Analysis
phase, Moodle assessment tool.

1. INTRODUCTION

Our previous curriculum of Computer Science and
Engineering had three Language processing related courses
namely System Software, Compiler Design and a prerequisite
course Finite Automata and Formal Languages (FAFL) for
Compilers in different semesters. The language processing
system is divided into two parts: one is front end(machine
independent) and back end(machine dependent) as shown in
Fig 1.1. The figure depicts that compiler need to be taught
before teaching the assemblers, loaders and linkers. But in the
earlier curriculum the courses were taught in the reverse order.
Looking at these issues we propose to combine the three
courses into two courses, one as PCD and another as system
software. The PCD course deals with the prerequisites needed
for compilers i,e FAFL concepts & its applications i,e the
front end of compiler (lexical, syntax & semantic analyzer,
intermediate code generator called as analysis phase) and the
system software deals with backend of compiler(synthesis
phase), assembler, linker & loader. Accordingly we proposed
to change the content and delivery approach. In this
approach, we teach the prerequisite and then followed by its
application i,e the phases of compiler that belong to front end
of compiler. Here our main focus is to teach compilers as an
application of FAFL concepts. For eg we teach regular
expressions followed by its application i,e recognition of
tokens (lexical analyzer).

Skeletal of Source Programme

!

Source s Front End
Programme
Compiler)
Target
Programme v 3
Assembler
s
Relocatable Back End
Programme \ 4

Linker

Absolute Machine Code
Fig.1.1: Language Processing System

II. LITERATURE SURVEY

ZhaoHui[1] have discussed the problems in teaching
principles of compiler and proposed solutions based on
student centric teaching approaches such as concept mapping,
problem based learning (PBL)[2], case study and e-learning
and their effectiveness in learning the course.

LISA[3] is an integrated development environment in which
students can specify, generate, compile-on-the-fly, and
execute programs in a newly specified language. Students can
experiment, test and analyze front end compiler phases such as
lexical and syntax analyzer along with attribute evaluation
strategy. LISA help the students to understand the basic
concepts of compilers in more efficient and direct way.

Marjan Mernik, Viljem Zumer [4] discussed the utilization of
software tool called LISA (Language Implementation System
Based on Attribute Grammars) for project based learning of
compiler construction. Authors expressed the benefits such as
constructive learning, active learning, learning speed and
better understanding of concept in using LISA tool.

Wang na and Zhang Shi Ming [5] have integrated compiler
technology and compiler theory and experimented the
combination of manual and automatic methods for

212

Journal of Engineering Education Transformations, Special Issue: Jan. 2015, eISSN 2394-1707

JEET

constructing lexical and syntax analyzer using Lex and Yacc
tool.

This paper presents experience of integrating finite automata,
front end of compiler and the implementation of lexer and
parser. We have used some pedagogical activities to enhance
the teaching learning process.

III. COURSE DESIGN

System software related courses are the important components
of Computer Science and engineering stream of U.G.
Programme. Courses typically deal with concepts such as,
lexer, parser, code generator, optimizer, assembler, loader and
linker. These concepts are organized in the language
processing system[6] as shown in the Fig. 1.1. These concepts
require the knowledge of automata theory which is used in the
different phases of compiler. In the previous curriculum these
concepts were taught in different courses at various levels
(semester) in the isolated way as shown in Fig 1.2..

FAFL System Software

Compiler Design

Fig.1.2: Previous curriculum.

The isolated way of teaching lacks in conceptualizing and
better understanding the whole language processing system.
This drawback and swebok [7] survey motivated us to revisit
the content design of system software courses.

The content design of PCD Course in Computer science
Curriculum is based on the concept mapping with the other
courses as shown in the Fig.1.3 Preconceptions required for
PCD are taught at the lower semesters and few courses are
taught in the same semester.

Programming
Languages(C-1%,
Java - 4™ sem)

Data structures
and algorithms
(3" & 4" sem)

Discrete
Mathematics

Principles of Compiler Design
(4™ semester)

Assembly
Language
(4" sem)

Computer
organization
(3" sem)

System Software
5",

Project s 5™,6th
(7" & 8" sem)

Fig 1.3: Concept mapping of Principles of Compiler Design
with other courses in the curriculum

The new curriculum combines the Automata theory and
compiler design concepts into one course named as principles
of compiler design(PCD) as shown in Fig. 1.4.

Required FAFL
Concepts

Principles of
Compiler Design

Front End of
Compiler

Back End of
Compiler +
Preprocessor and
Debugger

A 4

System Software

Fig.1.4: Revised and Existing Curriculum.

The PCD course consists of prerequisites for compilers i,e
FAFL concepts & front end of compiler (lexical, syntax &
semantic analyzer, intermediate code generator called as
analysis phase) which is five credit course. Out of which one
credit course is fixed for self study(SS) component. The flow
of course content is organized as, the required pre requisites
from automata theory are followed by the respective phases
of the compiler. For example regular expression and
deterministic finite automata are discussed followed by the
compiler phase called lexical analyzer as an application of
regular expression. This flow helps the students to easily
understand and better learning of concepts. Course content
design & delivery is discussed in the following section.

IV. CONTENT DESIGN AND DELIVERY

The approach followed in current content design is that, the
prerequisites of compiler phases are followed by their
applications i,e front end of compiler phases. For eg the
regular expressions are followed by its application ie
recognition of tokens (lexical analyzer).

The PCD course is a five credit theory course, where four
credits are for the course content and one for the SS
component. As there is no associated lab, we also give the
practical exposure through the self study comopnent. The flow
of course content design and delivery is shown in Fig. 1.4.

Regular Expressions and DFA
{ FAFL Concepts)
Lexical Analyzer (Applications of FAFL)

b

Context Free Grammer(FAFL Concepts)
Swntax Analysis (Applications of FAFL)
Semantic Analysis (Applications of FAFL)
Intermediate Code Generation
Fig. 1.4:Concept map based Content organisation and Flow of
delivery

As the course is one of the challenging subject of CSE, we
want the students to have a regular and continous study of

213

Journal of Engineering Education Transformations, Special Issue: Jan. 2015, eISSN 2394-1707

JEET

course concepts. Hence we used few pedagogical activities
such as framing of Objective type questions of various
patterns chapter wise, quizzes, survey of compilers & tools,
implementation of lexer & parser using tools and C
implementation of parsers. Framing of questions, survey and
implementaions were the part of SS component. The activities
were in group(4-5 students in a each group), but the quiz was
an individual activity conducted using Moodle assesment tool.
Table 1 shows some samples of activities carried out on each
topic and the program outcome (PO) mapped[8].

These activities ensured the students learning and better
understanding of the concepts. It also gave an opportunity to
appreciate the automata concepts by taking the examples of
existing languages such as C rather than hypothetical
languages in the prerequisite course (FAFL). We address the
PO c for implementing the top down and bottom up parsers
,PO i for self learning to know about the various compilers
and tools used to build the compilers, PO k for knowing and
using the tools which was the extra knowledge gained. All
these activities were the part of SS component.

V. ASSESSMENT
A. Continuous Internal Evaluation(CIE)

Apart from the regular assessment in minors & semester end
exam, the students were assessed through different
pedagogical activities. All the activities except quiz were
assessed based on the evaluation parameters and rubrics. As
the quiz was conducted using the Moodle assessment tool the
analysis become easier. To conduct such online quizzes we
need a huge set of questions. This motivated us to prepare
question bank chapterwise. An attempt was made to give this
task as one of the group activity in SS component.
Chapterwise question bank of different types as mentioned in
Table 1 along with solution was created and submitted by the
team.

Topic Activity Sample PO
addre
ssed

Regula e Concept Different Question

Expression Mapping types:

and Finite | o Objective type | Multiple choice.fill in

Automata Question the blanks, match the
framing. nearest,

o Quiz True/false, complete
the missing part,
reasoning

Lexical e Concept Compilers for
Analyzer Mapping different programming
o Survey on | paradigms: functional,
compilers & | logic,object oriented, | .
tools procedural, scripting, | 1% ¢
e Implementatio fourth generation etc.
n lexer & | Recognize C and C++
parser using | tokens
tool
o C
implementaion
of parsers
e Quiz
CFG o Concept Different ~ Question
Mapping types:
Multiple choice.fill in

e Objective type | the blanks, match the
Question nearest,
framing. True/false, complete
o Quiz the missing part,
reasoning
Syntax e Concept Implement to validate
Analyzer Mapping arithmetic ~ expression
o Survey on | using LL(1) parser.
compilers &
tools
e Implementatio
n parser using
tool
o C
implementaion
of parsers
e Quiz
Symantic e Concept Different Question
Analysis Mapping types:
e Objective type | Multiple choice,fill in
Question the blanks, match the
framing. nearest,

o Quiz True/false, complete
the missing part,
reasoning

Intermedia | e Concept Different ~ Question

te Code Mapping types:

generation e Objective type | Multiple choice,fill in
Question the blanks, match the
framing. nearest,

o Quiz True/false, complete
the missing part,
reasoning

Table 1: Chapter wise pedagogy Activities and POs addressed

The questions & solutions were reviewed and modified if
required by the factuly. This activity not only made the
students to study regularly, clarify the concepts but also
hepled to build the question bank which could also be used in
preparation for competative exams. The moodle tool helped us
to analyze the scores of students and also analyze the quality
of questions[9].

The Fig 1.4 (a) & (b) shows the number of students acheiving
grade ranges and statistics for each question. The graph (a)
shows the sample of grade ranges scored by set of students. In
the graph (b) the two parameters facility index and
discriminate efficiency help to anayzle the questions. Facility
index is the mean score of students on the item (question).

As per the [9] the percent range 11-20 indicates difficult
question, 35-64 indicates a right question for the average
student,66-80 is fairly easy question. From the graph b) we
observe that 9(36%) questions are average, 12(48%) are fairly
easy and 4(16%) are difficult questions. The discriminate
efficiency statistic attempts to estimate how good the
discrimination index is relative to the difficulty of the
question.

214

Journal of Engineering Education Transformations, Special Issue: Jan. 2015, eISSN 2394-1707

JEET

Participants.

S &L EE

58S EF 8

s I |

L ul I
S ETS
s & & &

8
>
&

g 88 F S s Y Y8 F e @
Grade

& s &
o
S 5

FEFS S g
§ & § & &

&

Fig. 1.5.(a) # students achieving grade ranges

100

%

0
B

7

]

e

40

®

: ‘

10

o I I I- I -
-10

e
E)

a0

@ > Y 6 o A ® ® 8 2 & o F 5 5 A & o 5 &

W Faciliy index

B Discriminative effcien

Fig 1.5.(b) Statistics for question positions

Discrimination index is the correlation between the weighted
scores on the question and those on the remaining. It indicates
how effective the question is at sorting out able students from
those who are less able. A question which is very easy or very
difficult cannot discriminate between students of different
ability, because most of them get the same score on that
question. Maximum discrimination requires a facility index in
the range 30% - 70%. From the graph b) we observe that
14(56%) is very good discrimination, 5(20%) is adequate.
Other 6(24%) is weak which indicates difficulty level of
question is more. These statistics can help the faculty to grade
the quality of question paper.

B. Semester End Exam. (SEE)

We have analyzed the results of compiler course and automata
theory taught in isolated for 2011-12 batch, whereas the
integrated syllabus of automata theory and front end of
compiler taught in 2012-13 & 2013-14. In the current batch
the change in content flow and pedagogical activities were
adopted.

ey

Resull Analy sis
2014

W 2013
2012

50
40
30
200
10

Mumber of Students

Grades

Fig. 1.6: Comparison of Result Analysis of previous three
years

From Fig.1.6 we observe that results in 2013-14 have more
number of A grades and B grades as compared to 2011-12 and
2012-13. The integrated approach and practice of pedagogical
activities helped in achieving the good results.

VI. CONCLUSION

Authors combine the automata theory concepts and analysis
phase of compiler as a PCD course. Her€ our focus is on the
application of automata theory. We have practiced few
pedagogical activities that ensured students learning and better
understanding of the course, the practical exposure also added
to the knowledge gained by the students. The Moodle tool
made us easy to conduct, evaluate and analyze the quizzes and
questions which help to improve the teaching & learning
process. The quiz statistics helped us to analyze the students
scores and the quality of question paper.

References

Zhaohui Li, “ Exploring Effective Approaches in Teaching Principles of
Compilers,” The China Papers Nov 2006.

Khoumsi, A. and Gonzalez-Rubio, R. “Applying a Competency and
Problem-Based Approach for Learning Compiler Design,” Journal of
STEM Education, Vol 7 , issues 1,2, 2006.

Mernik Marjan, Leni¢ Mitja, Avdicausevi¢ Enis, Zumer Viljem, “LISA:
an interactive environment for programming language development,”
Horspool N. (ed.). [1Ith International Conference Compiler
Construction, LNCS No. 2304, pp. 1-4, 2002.

Marjan Mernik, Viljem Zumer, “An Educational Tool For Teaching
Compiler Construction,” IEEE Transactions On Education, Vol. 46, No.
1, February 2003.

Wang na and Zhang Shi Ming, “The Progress of Construction of
Compiling technology course based on different methods”, Third
International conference on Science and Social Research ICSSR-2014
Alfred V Aho, Monica S. Lam, Ravi Sethi, Jeffrey D Ullman: Compilers
- Principles, Techniques and Tools, 2nd Edition, Pearson, 2007.
ISO/IEC TR 19759:2005, Software Engineering - Guide to the Software
Engineering Body of Knowledge. International Organization for
Standardization, Geneva, 2005.

National board of Accreditation New Delhi-110003: Manual for
Accreditation of Undergraduate Engineering Programs. I edn .

(11

[2]

[31

[4]

[51

[6]

[71

[8]

[9] http://docs.moodle.org/dev/Quiz_report_statistics

215

Journal of Engineering Education Transformations, Special Issue: Jan. 2015, eISSN 2394-1707 JEéf

APPENDIX

Sample Questions framed by the students

Match with appropriate choices

Memory PushDown Automata

Intermediate

Node

Nonterminals (Variables)

S>(VUT)" Production
S->B Unit Production

A.

o QO ® >

Which of the following statement is true?
SLR parser is more powerful than LALR parser.

LALR parser is more powerful than Canonical LR
parser.

Canonical parser is more powerful than LALR
parser.

The parsers SLR, Canonical LR & LALR have the
same power.

Let G be the grammar of the language L, if G does not
derive any terminal the language is called

Ambiguous language

Null language

Unambiguous language

Formal Language

Set of prefixes of right sentential forms that can appear
on the stack of a shift reduce parser are called

Viable prefixes
sentential forms
handles

none of the given options

[

e Regular expression ‘r’ may contain characters that
have special meanings. Such characters are
called .

An is a transition that may occur without
consuming any input characters.

e Regular expression for all strings of lower case letters
that either begin or end in ‘a’ is
a) ala-z]*a b) a?[a-z]*a
¢) ala-z]*a? d) a?[a-z]*a/a[a-z]*a?

e Consider a grammar S—=>(S) | a. Let the number of
states in SLR(1), LR(1) and LALR(1) parser for the
grammar be nl,n2 and n3 respectively. The following

relationship holds good.
A. nl<n2<n3
A. nl<n3<n2
B. nl=n2=n3
C. nl>n3>n2

e For the assertion and a reason given below. Indicate your
answer by choosing one of the options below.

Assertion: Finite automaton can’t check whether the string

is a palindrome.

Reason: Finite automaton has finite number of states and the

capacity to remember arbitrarily long amount of information.

Assertion Reason
A. True True
B. True False
C. False True
D. False False

216

