
Abstract:

Keywords:

1. Introduction

Computer programming is a compulsory
subject in most engineeringcurricula, and also in
several science curricula. For most studentsit is also
the first subject in theireducation in which they can
actually build something. Programs can bewritten to
do useful computation, and also to explore
othersubjects such as science, engineering, and even
art. Computerprogramming has the potential to
empower students and unleash theircreative abilities.

We have developed an approach to teaching
programming which emphasizesthese aspects. We
use the C++ programming language, augmented with
agraphics library and some linguistic devices we have
developed. Wehave found that our augmentations are
very useful in explaining manyprogramming
concepts such as recursion, and of course
enablevisualization and graphical interaction. In
addition to teaching thesyntax of C++ we show how
interesting programs from science,engineering,
operations research can be developed with
relativelylittle effort. We feel that this approach
improves studentparticipation, excitement, and
learning.

Our proposed curriculum has been described at length
in the book "Anintroduction to programming through
C++", recently published byMcGrawHill.

Introductory programming, C++,
pedagogy, graphics.

Most bachelors' degree programs in Computer
Science or Information Technology begin with a
course in Computer Programming. It is thefirst
encounter of the students with their major, and if
taught wellcan lead to "love at first sight". Computer
programming is also acompulsory subject in most
engineering curricula, and also in several science
curricula. Given the importance of computers to
thesestudents, a well-designed course in
programmingwill greatly help them too.

Computer programming is perhaps the first subject
in all of education inwhich a student canactually build
something. You can write programs to do
usefulcomputation, but also to explore other subjects
such as science,engineering, and even art. Computer
programming has the potential toempower students
and unleash their creative abilities, irrespective
oftheir degreemajor.

The goal of this paper is to present an approach to
introductoryprogramming education. Of course,
many approaches have been proposedin the literature
for this. These range from the classicimperative-first

AnApproach to Introductory Programming

Abhiram G. Ranade
Department of Computer Science and Engineering, IIT Bombay
ranade@cse.iitb.ac.in

Abhiram G. Ranade
Department of Computer Science and Engineering, IIT Bombay
ranade@cse.iitb.ac.in

Journal of Engineering Education Transformations ,

Volume 29 , No.3, January 2016, ISSN 2349-2473, eISSN 2394-1707

to functions-first or objects-first or models first
(Bennedsen, 08),or top-down or bottom-up. There
are approaches that recommendstaying away from
computers and learning to first reason aboutprograms
(Dijkstra 88). There also are approaches that appear
to teach programmingas a byproductwhile apparently
teaching robotics (Lawhead 02), or graphics (Cooper
et al 00, Resnick et al 09)orgeographical information
systems (Meyer 03). There are also aspects such as
thechoice of language, availability of appropriate
tools and IDEs.

A cursory glance at the different approaches
indicates that eachapproach really has its own
definition of "programming". For example,the
objects first approach seems to be oriented more
towards businessdata processing, or GUI
programming. The imperative-firstapproach seems
to be more oriented towards systems programming.
Thefunctional programming approach seems to
emphasize the elegance ofclean mathematical
notation and semantics inwriting programs.

In what follows, we first present what we think is
the "core" ofprogramming, what we believe the first
course must focus on. We thendiscuss the various
i s s u e s t h a t g o i n t o d e c i d i n g h ow t o
teachprogramming. We finally present our approach,
and also our experiencewith it.

For an introductory course, we believe that it is
appropriate todefine "programming" as the "act of
expressing in a programminglanguage the
computations that you know how to perform
manually".Thus we do not include in programming
the task of designing cleveralgorithms. But we do
include issues such as understanding thespecification
and reasoning about them. The attributes of a
programmost relevant for an introductory course are
as follows.

Generality: The same program should be able to
solve instances of different sizes. A key part of
learning to program is how to think about and describe
the computation in general, e.g. "as many iterations
are neededas the rowsof amatrix".

Matching the structure of computations to the
structure of the program: A program may perform
millions of arithmetic operations, however its textual
size will typically be much smaller. The key to

making programs compact is to understand the
patterns in the computation, and match those patterns
by the constructs (iteration, recursion) in the
programming language.

Naturalness/readability: A program is not only to
be executed on the computer, but also to be read by
other programmers. Thus it needs to be easy to
understand.

Extensibility: Once we write some code, it is often
desirable to build up on it, or modify it to suit other
purposes. Our expression and our programming
language should facilitate such reuse.

We do not include speed in the above list. Surely,
our program mustrun fast. Speed is more an issue for
analgorithmdesign course.

We believe that there will be general agreement on
the points madeabove. The key pedagogical question
then is:

How dowe get to the heart of a subject quickly and
keep the focus on it rather thanget lost in the details?"

Using languages such as C++ to teach
programming seems to require usto first talk about a
lot of technical details before we can doanything
interesting. Consider the standard introductory
program:

#include<iostream>

using namespace std;

intmain(){

cout<< "Helloworld!" <<endl;

}

To a beginner almost all the words in this except
"Hello" and "world" must appear like some
mysterious mumbo jumbo --potentially leading to
intimidation or to boredom. And on top of it,the
program accomplishes precious little. Programming
in a language such as C++ seems to require us to
master a lot of conceptually trivial information.
Indeed, a well-known textbook of introductory
programming, very commonly used in India,devotes
several initial chapters on such information and
includesawhole chapter on printing statements before

2. The "core"of computerprogramming

฀

฀

฀

฀

฀

27Journal of Engineering Education Transformations , Volume 29 , No.3, January 2016, ISSN 2349-2473, eISSN 2394-1707

anything ofconsequenceor excitement is attempted.

Contrast this with approaches in which programming
is taught in a language such as Scheme (Abelsonand
Sussman 96). In the very first lecture, a studentcanget
to program interesting computations, e.g. finding
squareroots, greatest commondivisors.

Over the yearsmany languages havebeen invented
to ease teaching ofprogramming. Some of them such
as Logo (diSessa and Abelson81,Papert 80) contain
graphics primitivesand were actually designed to
teach children to program. They arecharacterized by
simple syntax and small number of primitives.
Schemeappears similar, but is actually a full-fledged
language that has beenused for developing complex
projects. However, even Scheme hasn'tfound
universal favour with educators who often consider
suchlanguages to be "not real".

At the other end of the spectrum we have
approaches that teach objectoriented programming --
p o s s i b l y b e c a u s e p r o f e s s i o n a l
programmerssupposedly only use object oriented
programming. But this is notconsidered easy, even by
the proponents of the approach. The reasons are
several. For example, organizing simple introductory
programs into classes is often very artificial and
verbose. Expectinga student to actually develop
classes very early requiresunderstanding function
a b s t r a c t i o n (f o r d e v e l o p i n g
memberfunctions/methods) even before control
structures are understood.This can appear
unmotivated and overwhelming.

We never write programs in a vacuum -- programs
are always written tosolve problems from some
domain. The domain could bebasic mathematics, or
day-to-day life. If you wish to write moreinteresting
programs, you need to deal with more interesting
domains.

To help in this, one popular idea is to teach
programming inconjunctionwith some application,
e.g. robotics (Lawhead et al 02), or graphics.
TheScratch system (Resnick et al, 09) uses 2
dimensional graphics, while theAlice system (Cooper
et al, 00)uses 3 dimensional graphics from which to
draw programming examples. A geographical

information system has also been used as a domain.
(Meyer03).

These approaches are attractive also because they
force the student towork alongside an existing system.
This is useful because in themodern workplace
programmers hardly develop programs for scratch,
butrather work to enhance or modify existing
programs.

A drawback of the approach is that the domain
chosenmaynot appeal toevery student, or learning the
domain (e.g. robotics principles, 3dgraphics
principles) may place additional learning burden on
thestudent.

The first point is that real life examples are very
important in learning. We could even say that if we
cannot give goodreal life motivating examples, there
is no point in teaching anythingincluding language
constructs. The term "real life" in this contextshould
not be taken to mean "commercially important", but
should be understood more as "what can be drawn
from the experience of the student,based on what she
has learned so far, say till junior college, and is
learning right now".

Second, it is important to keep the fun in learning.
Students shouldlike what they learn. This will
happen, for example, if they can workwith pictures or
develop games. Rather than fight the fun
lovingnature of students, we think it is better to
channel that energyconstructively.

Our approach is based on the following ideas: (a)
Stress the usage of programming language constructs
in real lifeproblems rather than the syntax and abstract
semantics, (b) Usegraphics (as well as high school
math including geometry) as a domainfor illustrating
programming concepts as well as a source
ofinteresting programming exercises, (c) Keep the
focus on theinteresting ideas, from the first day of the
course.

We use the C++ language, augmented with a
library we developed, simplecpp. The biggest
component of simplecpp is a two-dimensional
graphicslibrary. Two kinds of graphics are supported:
so-calledturtle graphics andmore standard coordinate

3. Instructional vs. professional languages

4. Programming in the context of anapplication

5. Motivational aspects

6. Ourapproach

Journal of Engineering Education Transformations , Volume 29 , No.3, January 2016, ISSN 2349-2473, eISSN 2394-170728

based graphics. Turtle graphics is adapted from Logo
(diSessa and Abelson, 81,Papert 80). The basic idea
in turtle graphics is:students get to program the on-
screenmovement of a symbolic animal,the turtle. The
turtle has a pen that draws on the screen as theturtle
moves, so that the purpose of turtle graphics is to
move around the turtle so that interesting pictures get
drawn. In addition, we have moreconventional
graphics which allows students to create and
manipulateon-screen shapes. It is possible to create
reasonably excitingdrawings and animations, e.g.
Hilbert space filling curves, the snake game, bouncing
balls, planets rotating around the sun and so on.

Another important component of simplecpp is a
repeat statement. The repeat statement has the form:

repeat(count)

{statements to be repeated}

As you might guess the statements to be repeated
are repeated asmany times as the value of count. A
repeat statement is translatedinto a for loop using C++
preprocessor macros which getloaded automatically.
The main reason for defining this statement isthat it
can be introduced in the very first lecture! The
standardlooping statements in C++ are far too
complex and need substantialpreparation before they
can be introduced. Therepeat is easily understood,
and using it students can start writing interesting
programs fromday 1.

A. The first lecture in the course

The first lecture in any course is extremely
important: it is important to introduce the core ideas
rather than bore students with unnecessary detail.
Thefirst lecture sets the tone for the course: to a
student it signals whether the course will have
interesting ideas, orwhether it will just be lot of boring
information.

Here is the first program that we show to students
in the firstlecture.

#include<simplecpp>

main_program{

turtleSim();

forward(100); left(90);

forward(100); left(90);

forward(100); left(90);

forward(100);

wait(5);

closeTurtleSim();

}

Several things are to be noted. First we only
include the simplecpp library, which in turn includes
iostream and issues using commands. Thus we only
need to explain to the studentswhywe need to include
simplecpp, other explanations can comelater in the
course. Next, we have a macro main_program
whichexpands to intmain(), so we don't need to
explain what int and main mean and why main has
parentheses () following it. Thiswill get explained
later -- after we discuss functions, when the students
canunderstand everything.

The body of the program is perhaps most
interesting. It opens theturtle simulator window,
which already has a turtle at the center ofthe screen (a
red triangle, as is customary). The command
forward(100) causes the turtle to move forward 100
pixels. Thecommand left(90)causes the turtle to turn
left by 90 degrees.Thus the above code causes the
turtle to draw a square (because of itspen). After that
the programwaits for 5 seconds, and thenterminates.

Note that the first program creates expectations in
minds of students, e.g. "Can I draw other kinds of
polygons?" Some students might alsoask if they need
to write 50 forward statements if they wish todraw a
50 sided polygon. The repeat statement can then be
introduced. Indeed the second program of the first
lecture could be

main_program{

turtleSim();

repeat(10){

forward(100); right(36);

// will drawa decagon.

29Journal of Engineering Education Transformations , Volume 29 , No.3, January 2016, ISSN 2349-2473, eISSN 2394-1707

}

}

The turning angle, 36 degrees, is easily calculated
from the high school geometry theorem "The exterior
angles of a polygonaddup to 360 degrees."

We have found that the students spontaneously
understand nested repeatstatements, e.g. as in the
programbelow.

main_program{

turtleSim();

repeat(4){

repeat(10){forward(5); penUp();

forward(5); penDown();}

left(90);

}

}

Many students correctly guess that thiswill cause a
square to bedrawn, usingdashed lines.

Notice that on the very first daywe can accomplish
many things using the above ideas. Wecan create a
great amount of excitement. We can force students
tothink algorithmically: they need to figure out the
turning angles.They also need to use repeatstatements
properly to draw complex figures. This requires
matching the pattern in the drawingwith the pattern of
repeat statements in the program. This isof course a
very fundamental programming activity! And we
havegot toin on day 1.

Most students will have already heard that a circle
is a limiting case of an n sided polygon, as n becomes
large. On a 1000 by 1000 pixel screen, choosing
n=100 is enough to draw reasonably nicelooking
circles. Thus we can ask students to draw patterns
involving circles too.

B. Utility of repeat and graphics

The repeat statement and graphics are useful for
providinginteresting exercises for several initial

weeks. For example, after discussingdata types and
ass ignment statements , we can wri te a
programcontaining code such asthe following

inti=1;

repeat(40){

forward(i*10);

left(90);

i = i+ 1;

}

As you might guess, this draws a spiral. Note that
without therepeat, this codewould have towait for the
looping constructs to betaught.

Graphics is useful in explaining difficult concepts
such asrecursion. That is because many pictures have
a recursive structure. A simple example is a tree -- it
consists of smallertrees on top of a trunk. It can be
easily drawn using a recursivefunction. Here is
perhaps the simplest possible recursive function for
drawing trees.

void tree(int levels){

if(levels> 0){

forward(levels*10);

left(15);

tree(levels-1);

right(30);

tree(levels-1);

left(15);

forward(-levels*10);

}

}

Thiswould have to be called as, say,tree(5).

Touse graphical objects in the coordinate graphics

Journal of Engineering Education Transformations , Volume 29 , No.3, January 2016, ISSN 2349-2473, eISSN 2394-170730

system, it isnecessary to use constructors andmember
functions. For example, hereis the code for creating a
rectangle andmoving it.

Rectangle r(xc,yc,L,H);

// center coordinates, Length,Height

r.move(deltax, deltay);

This can be explained to students even without
explaining objects:"the first statement creates a
rectangle namedr, the secondstatement moves it."
Thus the students get introduced to constructorsand
the dot notation well before object-oriented
programming isintroduced.

The graphics functionality is implemented using a
class hierarchy. Thus the graphics library itself can
serve as an example when discussing object oriented
programming.

C. Overall pedagogical approach

We use a simple principle in introducing new ideas:
first presenta real life motivating example in which
the new idea is needed. Weuse this in introducing
l oo p i ng s t a t emen t s , f u n c t i o n s , o b j e c t
orientedprogramming, practically everything. Once
the students understand whysomething is needed, we
feel they have less difficulty in remembering,
understanding and applying it. We also try to give
graphical uses - pictures oftenhelp rememberingmore
than text.

We develop substantial programs for applications
drawn from math,science, engineering, operations

research, and even topics that are more like Art.We
thus believe that our treatment better integrates
programmingwith the math and science skills (not to
mention general worldlyskills!) that the students
already have. We feel this synergisticallybenefits the
learning of computer programming and the other
sciences.We also find that this appeals to our audience
which includes nonCS/ITmajors.

Finally, we do not teach as per any ideology (e.g.
objects first), butgo by increasing order of complexity
of constructs. Thus we beginwith the imperative
subset of C++, then talk about functions anddiscuss
some of the functional programming related ideas.
Classdesign comes last, though we do introduce
graphics classes for useearly on.

Our approach was developed while the author was
teaching theintroductory programming course at IIT
Bombay. The secondoffering ofthe coursewas taught
with a draft of a bookwritten as per the ideasdiscussed
here. About an year ago the book was published by
McGrawHillEducation (Ranade 2014).

The book has been used in the introductory
programmingcourse in two offerings last year. It is
currently being used thethird offering at IIT Bombay,
and is also being used in VishwakarmaInstitute of
Technology, Pune. The book was also used in
variousofferings of a Massively Open Online Course
(MOOC) byProf. D. B. Phatak and Prof.
SupratikChakraborty of IITBombay.

The author is happy to report that the feedback has
been very positive.

The simplecpp library isavailable from the author's
webpage and the publisher's webpage, for Unix, Mac
OS, andWindowsoperating systems.

Fig. 1Result of calling tree(5)

7. Experience

8. Concluding remarks

We believe that programming is a unique subject which
must be taughtwith excitement. We believe this can be
done without sacrificingrigour, without inventing
"teaching languages". We feel that C++ is a good language
for teaching. Its complexity neednot overwhelmnovices if
we provide some syntactic sugar(e.g. the statement)
and deemphasize obscure features. Besides being a
commercially/industrially popular language, it has evolved
over time to include the best features from other languages
(e.g. lambda expressions fromScheme/Lisp).

repeat

31Journal of Engineering Education Transformations , Volume 29 , No.3, January 2016, ISSN 2349-2473, eISSN 2394-1707

Journal of Engineering Education Transformations , Volume 29 , No.3, January 2016, ISSN 2349-2473, eISSN 2394-170732

Finally, we feel that in this age of touch screens,
graphical inputoutput is invaluable to get the learner's
attention, and is also agreat learning aid.

Harold Abelson and Gerald J. Sussman. (1996) Structure
and Interpretation of Computer Programs. MIT Press,
Cambridge,MA,USA, 2nd edition.

J. Bennedsen. (2008) Teaching and learning introductory
programming - amodel based approach. PhDThesis.

Stephen Cooper, Wanda Dann, and Randy Pausch.(2000)
Alice:A3-d tool for introductory programming concepts. J.
Comput. Sci. Coll., 15(5):107116.

E.W. Dijkstra. (1988) On the cruelty of really teaching
computing science. EWD1036.

Andrea diSessa and Harold Abelson.(1981) Turtle
Geometry: the computer as a mediumfor exploring
mathematics.MITPress, Cambridge,MA,USA.

R. Findler, J. Clements, C. Flanagan, M. Flatt, S.
Krishnamurthi, P. Steckler, andM. Felleisen. (2002)
Drscheme: a programming environment for scheme. J.
Functional Programming, 12(2):159182.

P. Lawhead, M. Duncan, C. Bland, M. Goldweber, M.

Schep, D. Barnes, andR.Hollingsworth. (2002)Aroadmap
for teaching introductory programming using LEGO. In
ITiCSE-WGR '02 Working group reports from ITiCSE on
Innovationand technology in computer science education,
pages191201.ACM.

B. Meyer. (2003) The Outside-In Method of Teaching
Introductory Programming. In Ershov Memorial
Conference, volume 2890 of Lecture Notes in Computer
Science,pages6678.

Seymour Papert. (1980) Mindstorms: Children,
Computers, and Powerful Ideas. BasicBooks, Inc., New
York,NY,USA.

Abhiram Ranade.(2014) An Introduction to Computer
Programming throughC++.McGrawHill Education.

Mitchel Resnick, John Maloney, Andr´esMonroy-
Hern´andez, Natalie Rusk, Evelyn Eastmond, Karen
Brennan, AmonMillner, Eric Rosenbaum, Jay Silver,
BrianSilverman, and YasminKafai. (2009) Scratch:
Programming for all. Communications of the ACM,

52(11):6067.

References

time to include the best features from
other languages (e.g. lambda expressions from
Scheme/Lisp).

