
Experiences translating project-based Software
Engineering courses into online courses

SrividyaK. Bansal , AjayBansal
1 1

1School of Computing,Informatics,and Decision Systems Engineering,
Arizona State University, Mesa, TX, USA
srividya.bansal@asu.edu
ajay.bansal@asu.edu

1

2

SrividyaK. Bansal
School of Computing, Informatics,and Decision Systems
Engineering,
Arizona State University, Mesa, TX, USA
srividya.bansal@asu.edu

Abstract:

Keywords:

Online education has seen an enormous
growth in the last few years. In this paper we describe
the design of three project-centric Software
Engineering courses in an undergraduate software
engineering program to be delivered online.The study
examined three courses offered in face-to-face and
online environments. The course goals, structure,
learning objectives, and assessments were exactly the
same. The courses were designed with hands-on and
project-based activities in a cooperative learning
environment using a Software enterprise pedagogical
model. The paper presents a comparison of student
performance on various course outcomes, working in
teams, success/failure rates and lessons learned from
translating a face-to-face course into an online course.
These results can be useful to other educators and
institutions in how to improve student learning
outcomes and learner satisfaction in online
environments and further improve quality of online
course offerings.

Online education; learn-by-doing;
project-based learning; software engineering
education.

1. Introduction

Software Engineering (SE) profession is a fast-
growing profession in the nation's economy thereby
adding pressure on SE educators to produce industry-
ready graduates . There has been a surge in enrollment
in undergraduate computer science and software
engineering programs. In addition, online education
has seen an enormous growth in the last few years that
bring new challenges in providing high-quality online
education. SE education is rapidly evolving and
technologically challenging discipline. Research
shows that learners aremore engaged in hands-on and
active learning environments as opposed to traditional
lecture-oriented classes. Sheppard et al. suggest that
engineering curricular design shouldmove away from
a linear, deductive model and move instead toward a
networked model: “The ideal learning trajectory is a
spiral, with all components revisited at increasing
levels of sophistication and interconnection” (p. 191.

Aproject-centered undergraduate B.S. in Software
Engineering degree program was implemented in our
institution in 2009.The principal design feature of the
program is a realization of a professional spine
through a culture of project-based learning (PBL) . In
2013, our administration asked that the B.S. in
Software Engineering be offered online. The
translation of the face-to-faceprogram to online is
happening one major year at a time, so as of Fall 2015
the junior year is just being rolled out. In 2 short years
the B.S. in Software Engineering has grown to an
enrollment of 450 students, the second largest

Journal of Engineering Education Transformations ,

Volume 30 , No. 2, October 2016, ISSN 2349-2473, eISSN 2394-1707

program within our institution. Translating our
current program for full online delivery poses certain
challenges in the development and delivery of these
courses. This paper describes the translation of three
core Software Engineering courses, the delivery of
these courses for the first time as asynchronous online
courses, and the results obtained.

Our Software Engineering courses were designed
with hands-on and project-based activities in a
collaborative learning environment using a Software
enterprise pedagogical model. Studies show that
online learners are getting frustrated more and more
with collaborative learning . The study shows that the
factors leading to the frustration are time pressure,
time zone differences, communication issues, delayed
feedback, and commitment imbalance.Another study
lists factors that drive successful e-learning as learner
computer anxiety, instructor attitude toward e-
learning, e-learning course flexibility, e-learning
course quality, perceived usefulness, perceived ease
of use, and diversity in assessments being the critical
factors affecting learners' perceived satisfaction . The
goal of this paper is to advance the community's
understanding of the process of translation of a
traditional face-to-face course into an asynchronous
online course, how teaching and learning innovations
may be delivered in the context of project-centered
curricular structures and demonstrate their
adaptability. The above listed factors for successful e-
learning will be taken into consideration in course
design.

A. ResearchObjectives

The specific research questions of this study are as
follows:

(i) how does the translation of traditional face-to-face
software engineering course into online course affect
student performance?

(ii)how effective is the online software engineering
course in a project-centered curricular context?

(iii) what are the challenges in delivering a hands-
on software engineering course online?

B. PaperOutline

The remainder of the paper is organized as follows:
related work and background is presented in Section
2. Section 3 presents the course description and design
of three Software engineering courses used in this
study. Section 4 presents the translation of course
design for online delivery. Results are presented and
discussed in section5 followed.

2. RelatedWorkandBackground

Online courses and degree program offerings are
becoming widespread and controversial. Faculty
opinions and research exist both for and against the
online model. There are varying interpretations of
online as well, from “blended” models to new
“massively open online courses” (MOOCs). In this
study we consider online delivery to be a course
whose experience is delivered entirely online with
zero in-person interaction (instructor-to-student and
student-to-student), but it may allow for synchronous
or asynchronous activities and communication. For
Software Engineering courses, the challenge is
facilitating team-oriented practice, project activities
and ensuring students stay in synch in what is a time-
sensitive deliverymodel.

Cognitive Apprenticeship Model (CAM) presents
a theory that assumes people learn from one another,
through observation, imitation, and modeling . CAM
describes four dimensions that constitute a learning
environment: content, method, sequencing, and
sociology. Our course design takes these four
dimensions into consideration. Burge presents her
reflection of MOOC's experience and describes how
taking several MOOCs has given her a better
understanding of student motivation, time
commitment issues, and student perception of
grading. She describes how she is using those insights
in her regular classroom teaching and describes how
this knowledge can be used back into our own courses
. Studies have been conducted on instructional
activities that have online discussions on social
networking sites and concluded that the
characteristics of learners and their individual
differences have to be taken into consideration during
the design of an instructional activity . An
investigation on online collaborative learning
experiences identified important factors that were
crucial for building teamwork trust . Relationship
conflicts, lack of communication, and low levels of
individual accountability seemed to be the top factors
for virtual teams failing to work collaboratively. We
have attempted to address these factors in our course
design.

A. Background

The Software Enterprise is a blended pedagogical
model that combines traditional lecture with newer,
forward-thinking techniques in problem-based and
project-based learning . This model leads students

58 Journal of Engineering Education Transformations , Volume 30 , No. 2, October 2016, ISSN 2349-2473, eISSN 2394-1707

through a modular series of lessons that combine
foundat ional concepts wi th sk i l l s -based
competencies. The Software Enterprise has been in
use at the author's institution since 2004, and now
forms the "project spine" that runs the full four years
of B.S. in Software Engineering degree program. The
primary goal of the Enterprise is to move students
rapidly from foundational concepts to industry best
practices, so students completing the degree program
are prepared to meaningfully contribute to the
profession without any additional training. The
Enterprise pedagogy takes studentsfrom introduction
of a concept to scalable practice in a real project in the
span of a two-to-three week "sprint." This is in
contrast to typical degree programs that introduce a
concept with toy problems in one course and then
expect students to synthesize the multiple concepts in
a capstone project (culminating experience) in a
different course (perhaps years later).

B. SoftwareEnterpriseDeliveryModel

The Software Enterprise is an innovative
pedagogical model for accelerating a student's
competencies from understanding to comprehension
to applied knowledge by co-locating preparation,
discussion, practice, reflection, and contextualized
learning activities in time . In this model, learners
prepare for a module by doing readings, tutorials, or
research before a class meeting time. The class
discusses the module's concepts, in a lecture or
seminar-style setting. The students then practice with
a tool or technique that reinforces the concepts in the
next class meeting. At this point students reflect,
which helps to internalize the concepts and elicit
student expectations, or hypotheses, for the utility of
the concept. Then, students apply the concept in the
context of a team-oriented, scalable project, and
finally reflect again to (in)validate their earlier
hypotheses. These activities all take place in the span
of a single two-three week sprint, resulting is a highly
iterative methodology for rapidly evolving student
competencies (Fig 1).The Software Enterprise was
derived from existing theoretical model called Kolb's
Experiential Learning Cycle represented as a four-
stage cycle (Concrete experience, reflective
observation, abstract conceptualization, active
experimentation) where learner is exposed to all
stages . Software Enterprise was derived from Kolb's
learning cycle by assembling best practices such as
preparation, reflection, practice (labs), and project-
centeredlearning in a rapid integration model that
accelerates applied learning.

3. CourseDescriptionandDesign

In this project we studied three courses from our
B.S. in Software Engineering program. The first
course is an introductory programming course, that
introduces problem- solving to freshman (1st year)
students, titled “CST100: Object-Oriented Software

Development”. The second and third courses are core
Software Engineering courses, introduced during the
sophomore (2nd) year of the degree program, titled
“SER215: Software Enterprise I” and “SER216:
Software Enterprise II”. All of these courses have
been developed for online delivery in addition to in-
person delivery. This section describes the course
goals, learning objectives (designed using an
outcomes-based education model called PC3
model),course structure, and design.

A. CST100:Object-Oriented SoftwareDevelopment

Object-Oriented Software Development
(CST100) is a freshman course in the Software
Engineering program that introduces problem solving
with a state-of-the-art programming language.
Expressions, statements, basic control flow, and
methods are the broad topics introduced to students.
Students are also exposed to data, data aggregation,
and usage. This course uses a structured personal
software development process to implement solutions
representative of common computing applications.
Development kits are used for some of the course
activities. Basic concepts of object-oriented analysis,
design, and programming using Python are covered.
The students in the class study basic Python variables,
expressions, arrays, statements, loops, functions,
methods, and classes. Game development using a
Python development kit called Pygame was

Figure 1 : Software Enterprise Delivery Model

59Journal of Engineering Education Transformations , Volume 30 , No. 2, October 2016, ISSN 2349-2473, eISSN 2394-1707

introduced. A project-based pedagogical model is
used for delivery of all our courses in Software
Engineering program. Students in this course worked
on a game project using Pygame. The learning
objectives are as follows:

· CO1: Apply the concepts of sequence, selection,
and iteration by constructing algorithms and formal
code for problem solving

· CO2: Use variables and composite data structures
to store and manipulate data by constructing
algorithms and formal code to solve problems

· CO3: Use modular programming techniques such
as functions and objects by constructing algorithms
and formal code to solve problems

· CO4:Understandconcepts of objects and types

· CO5:Apply a disciplined problem solving process
to the construction of algorithms and formal code to
solve problems

· CO6: Configure a software development
environment for the construction of formal code to
solve problems

B. SER215: SoftwareEnterprise I

Software Enterprise I: Personal Software Process
(SER215) is designed to expose students to practical,
real-world considerations in software development. It
is a required/core course for B.S in Software
Engineering program. Students learn in a hybrid
lecture-lab-project environment, which exposes them
to concepts and accelerates conceptual understanding
in a project context. Lab assignments provide an
opportunity for students to develop and enhance a
defined process for their own work. Students are
introduced to Software Engineering, software
development life cycle (SDLC) models, object-
oriented programming, personal software process,
effort estimation and tracking, Defect estimation and
tracking.The learning objectives are as follows:

· CO1: Design a software solution using object-
oriented design principles of encapsulation,
information hiding, abstraction, inheritance, and
polymorphism.

· CO2: Develop a software solution in an object-
oriented programming language employing standard
naming conventions and making appropriate use of
advanced features such as exception handling, I/O
operations, and simpleGUI.

· CO3: Use object-oriented design tools such as

UML class diagrams to model problem solutions and
express classes and relationships such as inheritance,
association, aggregation, and composition.

· CO4: Use personal software process for individual
development productivity through time estimation
and tracking.

· CO5: Use personal software process for individual
development quality through defect estimation and
tracking

· CO6:Demonstrate teamwork

Students in this course worked on a java-based game
project that involved building a board game using
object-oriented designand personal software process.

C. SER216: SoftwareEnterprise II

Software Enterprise II: Testing and Quality (SE2)
is designed to expose students to software testing and
quality in software engineering. Students learn
concepts, tools, and methods in testing and quality
management; various testing activities including unit,
integration, system, and acceptance testing;white box
and black box testing; code coverage; creation of a
Software test plan; teamwork and communication in a
hybrid lecture-lab-project environment. Projects are
team-based and include multiple deliverables and
presentations, with a specific emphasis on testing,
validation, and quality assurance. The learning
objectives are as follows:

· CO1: Define basic terminology of Software
testing (e.g., fault, error, failure, debugging, test case)
and activities in testing lifecycle (e.g., unit,
integrations, system, acceptance testing)

· CO2: Compare various approaches for Integration
testing

· CO3: Model Use case, Class, State, and Activity
diagrams usingUML

· CO4: Create a software test plan in the IEEE
format and conduct testing for a given Software
product

· CO5:Evaluate variousSoftware testing tools

· CO6: Communicate effectively in writing a
technical document, evaluating, and presenting
software testing tools, andproject presentation

· CO7: Demonstrate working effectively in small
teams

Students in this course worked projects that involved
working withexisting java codebase with a focus on
Software testing. They created design models using

60 Journal of Engineering Education Transformations , Volume 30 , No. 2, October 2016, ISSN 2349-2473, eISSN 2394-1707

Table 1 : Experiment Design

UML, software test plan, executed their test plan to
identify defects and enhancements, fixed the source
code and implemented enhancements in the existing
codebase.

The design for the online courses was kept the
exact same as the face-to-face courses. The Software
Enterprise pedagogical model was used. As the
deliverymodewas completely online, the preparation
phase had to be done completely by the students
themselves using the materials provided. Discussion
boards replaced in-class discussions as shown in
figure 2.

A. CourseTools

The tools used for course delivery online were as
follows:

· Blackboard: was used as the primary learning
management system through which all interactions
happenedandcoursematerialswere shared.

· Blackboard Discussion forums: were used to
discuss various aspects of the course.

· CATME: software tool was used to help with team
formation through their team-maker survey as well as
for peer review for projects.

· Facebook Group: was used informally by the
students to discuss the course and socialize. The
instructor teamdid notmonitor this page.

· Google Hangout: was used by teams to meet and
communicate with each other. This was also used to
hold office hours during the 7.5-week semester.

· GitHub: was used by some teams to share their
repository andcode among teammembers.

· Respondus Lockdown browser: was used to
administer the exams.

4. Descriptionof the Study

B. Setup of theStudy

The study was conducted with CST100, SER215
andSER216 thatwere offered face-to-face and online.
Number of students in the online course was double
than that of the face-to-face with the exception of
SER216 - follow-on to SER215 (shown in table 1).
The number of online students reduced in SER216
and mostly the A and B grade scorers of SER215
returned to SER216 the subsequent semester. Others
did not take SER216 immediately and instead
registered during a later semester. The courses were

taught with the exact same materials and assessments
in both sections (taught by the authors). The same
instructor and teaching assistantwere assigned to both
courses. The one big difference was the course
duration. Online courses are 7.5-week courses while
face-to-face are 15-week courses and hence double
the material is taught to students every single week.
Project sprints had to shrink down to 1-week sprints
insteadof being 2-3week sprints.

A. Data Collection

The data collected for this study included the
following:

· Student Performance Data: The grades of the
students for each learning objective of the coursewere
collected for both face-to-face and online. The format
used for this is the faculty course assessment report
(FCAR) . FCAR presents a methodology that allows
instructors to write assessment reports in a
standardized format for use in both course and
programoutcomes assessment.

· Course evaluation data: the institution collects this

Figure 2: Software Enterprise pedagogy for online delivery

61Journal of Engineering Education Transformations , Volume 30 , No. 2, October 2016, ISSN 2349-2473, eISSN 2394-1707

data from students in an anonymous manner to
evaluate faculty andmake improvements to future.

· Course failure and dropout rates: For each course
in this study, the number of students who passed,
failed, andwithdrewwas tracked.

· CATME Peer review: Students were sent out a
survey to review their peers on their project teams.
This review was incorporated into their grades for the
project.

· CATME Team-maker survey: A survey was sent
out to get student demographic information, their
working style, location, background, etc. in an
anonymousmanner.This data was used byCATME to
form teams.

Results from the data collected are shown in tables
below.

· Figure 3 shows the success rate, failure rate, and
dropout rate for all 6 courses. Both online and in-
person offerings of CST100 have a 10% dropout rate.
Being the first programming course a number of
students are deterred by the cognitive nature of this
course. Online offering of SER215 has a failure and
dropout rate of around 10% much higher than in-
person. This is the first core course in the Software
enterprise sequence where students are exposed to
teamwork for the very first time in the curriculum.
Online students most likely don't understand the
amount of work involved in computing and software
engineering courses. For all our SE online courses the
syllabus clearly states that about 18 hours per week of
work is expected. But most students have full time
jobs and families and are enrolled in multiple 3-credit
courses during the same semester thereby resulting in
a lower success rate. The drop and failure rate is much
lower for the remaining courses.

5. ResultsAndDiscussion

Figures 4 and 5 present the student performance data
for SER215 face-to-face and online delivery. The
results showpercentage of students who fell under the
excellent, adequate, minimal, and unsatisfactory
levels. The four categories are defined in the FCAR .
The results indicate that for objectives 4, & 5 the
results are almost similar for both course offerings
(objectives related to PSP). Learning objectives 1 and
3 were mostly related to Technical outcomes of the
program and results show that online students
performed better. This raises concerns about the
validity of these scores and the possibility thatstudents
might be getting external help for assignments and
exams.Another reason could be that a large part of the
online student population are already working in the
industry and have programming experience and are in
this program to get a formal degree. Objective 6
associated with teamwork has better performance in
f2f than online and poses challenge of how to
effectively conduct projects inonline courses.

· Figures6 and 7 present student performance data
for SER216 face-to-face and online delivery. Success
rate for course objectives involving teamwork are
lower for onlinewhereas students performed better on

Figure 4 : SER215 (face-to-face) Student performance

Figure 5 : SER215 (online) Student performance

Figure 3 : Course success, failure, dropout rates

62 Journal of Engineering Education Transformations , Volume 30 , No. 2, October 2016, ISSN 2349-2473, eISSN 2394-1707

the technical objective similar toSER215.

· Table 2 shows course evaluations.The face-to-face
courses have higher ratings than online in spite of
having the exact samematerial and instructor for SER
215& 216 that involve teamwork. Ratings dropped in
SER215 (online) but got better in SER216 (online) –
the follow on course which most likely indicates that
students got used to the pedagogical model,
instruction style, and project-based learning by the
time theygot to next semester.

The main challenges identified with translation of
course design for online education can be categorized
as follows:Assessment of teamwork: Implementing a
project-based course online is not trivial because of
the nature of collaborative work that relies on people
working together. It becomes much easier when
students are in front of each

6. Challenges andLessonsLearned

other in class rather than
having to synchronize meeting times and meet with
team members virtually to work on the project.

Figure 6 : SER216 (face-to-face) Student Performance

Figure 7 : SER216 (online) Student Performance

Table 2 : Course Evaluation data

Through the team maker survey we found that a
number of students had a full schedule and hardly had
enough time for the course and to interact with the
team. The student population taking online courses is
different from those in f2f courses. So a detailed
analysis of student population and learner behavior in
the online collaborative learning environments might
bringnew insights.

Communication: All communication is virtual
through email, discussion boards and occasional
hangout/skype office hours. It is easier to motivate
students to perform on the team and complete their
tasks when instructor meets them in class. In online
courses students can chose to interact or not on
discussion boards unless discussions are also part of
the assessment vehicle. In order to have good
interaction in an online class, it might be useful to
enforce participation in discussion boards in some
way.

Student engagement:The level of student engagement
and motivation is low for many students in online
courses probably because of a number of
commitments and full time job. Students takemultiple
courses during the same semester that makes it worse.
The course is already at a fast pace because of the 7.5-
week duration unlike the face-to-face course. So for
future offerings of the online course, instructor has to
explore new innovative ways of keeping online
learners engaged in class.

Instructor satisfaction & Student Self-Efficacy: As
part of this study data was not collected on instructor
satisfaction with the delivery of the course and course
outcomes as well student self-efficacy of the concepts
that they have learnt. As future work we will
implement these to learn more on what works in the
online environment andwhat does not.

63Journal of Engineering Education Transformations , Volume 30 , No. 2, October 2016, ISSN 2349-2473, eISSN 2394-1707

Teacher-Student interaction: Tracking teacher-
student interaction and correlating it with student
success ratemight also be useful to explore as a future
direction. It can be done through Blackboard learning
management system.

This paper presented the authors experiences
translating project-based Software Engineering
courses into online courses for complete
asynchronous delivery. This study confirms that the
exact translation of a traditional course to an online
course can help maintain the quality of course and
student performance. Challenges arise when
instructional activities more hands-on training and
team-based projects. Effectiveways for administering
team-based projects online, improving student
teacher interaction, keeping students motivated and
engagedare tobe explored.

Andhare, K., Dalrymple, O., & Bansal, S. (2012).
Learning Objectives Feature for InstructionalModule
Development System. Presented at the PSW
American Society for Engineering Education
Conference, SanLuisObispo, California.

Bansal, S., Bansal, A., & Dalrymple, O. (2015).
Outcome-based Education Model for Computer
Science Education. Journal of Engineering Education
Transformations, 28(2&3), 113-121.

Bansal, S., Dalrymple, O., & Bansal, A. (2015).
Building Faculty Expertise in Outcome-based
Education Curriculum Design. In Proceedings of
Frontiers inEducationConference (FIE).

Burge, J. (2015). Insights into Teaching and Learning:
Reflections on MOOC Experiences. In Proceedings
of the 46thACMTechnical Symposium on Computer
ScienceEducation (pp. 600-603).

Capdeferro, N., & Romero, M. (2012). Are online
learners frustrated with collaborative learning
experiences?The InternationalReview of Research in
Open andDistributedLearning, 13(2), 26-44.

7. Conclusions andFutureWork

References

Cary, K. A. (2008). The software enterprise:
Practicing best practices in software engineering
education. International Journal of Engineering
Education, 24(4), 705.

Estell, J. K. (2009). Streamlining the assessment
process with the faculty course assessment report.
International Journal of Engineering Education,
25(5), 941.

Gary, K., Lindquist, T., Bansal, S., & Ghazarian, A.
(2013). A project spine for software engineering
curricular design. In Software Engineering Education
andTraining (CSEE&T), 2013 IEEE26thConference
on (pp. 299-303).

Kolb, D.A. (2014). Experiential learning: Experience
as the source of learning and development. Pearson
Education.

Lin, P.-C., Hou, H.-T., Wang, S.-M., & Chang, K.-E.
(2013). Analyzing knowledge dimensions and
cognitive process of a project-based online discussion
instructional activity using Facebook in an adult and
continuing education course. Computers &
Education, 60(1), 110-121.

Mager, R. F. (1997). Preparing Instructional
Objectives: A critical tool in the development of
effective instruction 3rd edition. The Center for
EffectivePerformance, Inc.

Phase, I. I., & others. (2005). Educating the Engineer
of 2020::Adapting Engineering Education to the New
Century.NationalAcademiesPress.

Sheppard, S. D., Macatangay, K., Colby, A., &
Sullivan, W. M. (2008). Educating engineers:
Designing for the future of the field (Vol. 2). Jossey-
Bass.

Sun, P.-C., Tsai, R. J., Finger, G., Chen, Y.-Y., & Yeh,
D. (2008). What drives a successful e-Learning? An
empirical investigation of the critical factors
influencing learner satisfaction. Computers &
Education, 50(4), 1183-1202.

Tseng, H. W., & Yeh, H.-T. (2013). Team members'
perceptions of online teamwork learning experiences
and building teamwork trust: A qualitative study.
Computers&Education, 63, 1-9.

64 Journal of Engineering Education Transformations , Volume 30 , No. 2, October 2016, ISSN 2349-2473, eISSN 2394-1707

