
Journal of Engineering Education Transformations, Volume, No, Month 2015, ISSN 2349-2473, eISSN 2394-1707

PREDICTING PROGRAMMER QUOTIENT

Meenu Raveendran1, Dr. V. G. Renumol2
Division of IT, School of Engineering, CUSAT, Kochi, Kerala
1meenuraveendran@gmail.com
2renumolvg@gmail.com

Abstract— Computing education necessitates programming
skill. But it varies in students. How can we quantify or
measure the skill? We are yet to have a standardized
measurement system for the programming ability. The concept
of Programmer Quotient (PQ), which gives a measure of
innate programming ability, attributes a value to one’s ability
to program, just like Intelligence Quotient (IQ). This would
remain the same independent of the programming experience.
In this paper, we consider few inherent skills such as
Analytical ability, ability to synthesize etc. and try to correlate
these skills to one’s programming ability. A questionnaire was
designed and used to measure the skill in these areas. Then a
model was designed from the data collected. It can predict the
programming skills of a student from his/her inherent skills,
irrespective of the programming language.

Keywords—Programming ability, Programmer Quotient

PQ, Programming skill, Analytical ability.

Meenu Raveendran1
Division of IT, School of Engineering, CUSAT, Kochi, Kerala
1meenuraveendran@gmail.com

1. INTRODUCTION

THE primary purpose of computing education is to
impart to students a set of skills required to become a good
programmer. But both teaching and learning of programming
is considered to be really challenging by many [1].To learn
programming, it requires correct understanding of the abstract
concepts. Nature of the subject makes it difficult for many to
learn it. For teaching, the size and heterogeneous nature of the
student groups makes it difficult to design instruction, in such
a way that it would be beneficial for everyone.[3]

Students find it hard to acquire the logic of computer
programming. Many research works at the end of Introductory
Programming Course (IPC) have shown that the rate of failure
in these programming courses is relatively high [4] [5] [7].The
high dropout and failure rates in IPCs are a universal problem
that motivated many researchers to propose methodologies
and tools to help students.

Another perception of the difficulty faced by students
in programming is that not all students have the ability or the
aptitude to program well [6]. This group argues that if we can
measure this aptitude before admitting the students to a
programming course, the failure rate and the dropout rates can
be significantly reduced.Programming-related skills refer to
the ability of a person in operating a computer to perform a
task or multiple tasks. Handling a computer task with certain
level of complexity often requires computer programming
skills.[2]

This paper is based on the hypothesis that the
programming ability is correlated with other measurable
inherent skills or aptitudes of a person. But a test for
measuring programming aptitude and identifying students who
have a natural aptitude for programming has not yet been
standardized.

Mcgettricket. al, introduced a concept of Programmer
Quotient (PQ) to measure the programming ability [1]. The
proposal was to develop the concept of PQ that would remain
the same irrespective of the programming experience.

2. RELATED WORK

Research works in this field of computing education
can be broadly classified into two. In the first type, the
researchers have attempted to improve the methods of
teaching programming. Several methods and tools have been

mailto:meenuraveendran@gmail.com
mailto:renumolvg@gmail.com
mailto:meenuraveendran@gmail.com

developed to assist the students to grab the concepts of
programming. And the second category focuses on identifying
what differentiates successful programmers from non-
successful programmers. Some of the notable works are
discussed below.

A. Improvement in Methodology

A great number of works deals with how the teaching
methods or the delivery of the contents can be modified or
improved so that the students are able to grasp the underlying
concepts of programming. Simplified programming languages,
environments and simulating software have been proposed to
support teaching and self-learning different programming
techniques.

A prominent work in early days suggests that visual
way of learning programs can effectively improve the
understanding.[7] In their paper, B. Kaučič et al.[16] has
discussed a method to improve the teaching methodology for
programming so that the success rate can be improved. They
suggest that, a new generation of programming tools and
activities can help to overcome the shortcomings of previous
initiatives, and thus make computer programming more
accessible to everyone and suitable for youngsters.

In their paper M.McCracken et al[5] conducted a
multinational study of the assessment of programming skills in
first year CS students. They found that the problems observed
with programming skills seem to be independent of country
and educational system and that the most difficult part for
students seemed to be abstracting the problem to be solved
from the exercise description

Janna Holovikiet. al found in their work that students
should have certain basic abilities like mental schemas in
regard to procedural thinking and action, functional
understanding of processes, and a comfortable relationship to
technological artifacts when they start learning
programming[9].

B. Factors Affecting Programming Ability

In Predictors of Success in a First Programming
Course, [11] Simon et al, studied the relationship of
programming ability with that of one’s spatial visualization,
behavioral aspects and Attitude. It has been found that, the
behavioral aspects like searching a phone book has clear
association with one’s ability to program well. The learning
approach also has a positive correlation on the effectiveness.

In two related papers Dehnadi, Richard et al. reported
that the students can be classified based on the mental models
they used to solve the questions: i) Consistent and ii)
Inconsistent [6] [10]. Consistent students use the same model
to solve all questions while the inconsistent group used
different models for different questions. They found that
consistent students tend to perform slightly better than the
inconsistent students and they suggested that students can be
divided into programming sheep and non-programming goats
[6]. But in paper[10] they confirmed that this test doesn't work
if the intake is already experienced.The paper [6] claimed that
with the test used one can divide the students into 2 categories:
the programming-sheep and the non-programming goats.

But recently, the above work was retracted by the co-
author Richard Bornet [12]. While he accepts it to be true that
novices who answer ‘consistently’ in the test are more likely
to pass a programming course, he retract his claims that
Dehnadi discovered a correct way to measure the
programming skills and students can be divided into
programming sheep and non-programming goats.

Kurland et al. [7] in a pioneer work on the
development of programming skills in high school students
and found that Math and reasoning abilities have direct
correlation with the programming skills.Simon et al,[11]
studied the relationship of programming ability with that of
one’s spatial visualization, behavioral aspects and attitude.
They found that there are several factors positively correlate
with one’s programming ability. And they are logical
thinking, problem solving attention to detail, consideration of
alternatives, mathematics, knowledge of programming, ability
to learn, knowledge of computers, modularizing, and planning.

Jens Bennedsen et.al[13] claimsthat general
abstraction ability has a positive impact on performance in
computing science, but they did not find a correlation between
abstraction ability and overall performance in learning
computing science. In their work [14], Renumol et.al, has
identified a set of 8 cognitive processes through which a
student may go through while programming. In a similar
work,[15] Ambrosio, et.al, has pointed that abstraction and
command sequencing are the 2 cognitive abilities which are
identified as key to explain the difficulties the students
encounter when learning to program. Underlying the
abstraction difficulties are the student’s problem solving
abilities. Problem solving is composed of Analysis and
Synthesis.

Some of the existing papers on methods to test the
programming skills are described by David Clark [19] and
SaeedDehnadi [17]. They have tried the effectiveness of
testing the programming skills using MCQs from the
programming knowledge. David Clark in his work[19],
assessed students’ programming skills with MCQs from 4
levels of cognitive skills namely, Knowledge, Comprehension,
Application, and Problem-solving. It was found that
comprehension, application and analysis questions were good
discriminators for the students’ skill, but Knowledge questions
were not significant discriminators. In [17], Dehnadi tried to
give an objective interpretation of the results from previous
experiments using mental models for predicting success in
programming course.

In their paper, ‘Programming aptitude testing as a
prediction of learning to program’ [18], MarkkuTukiainen
et.al.devised a Programming Aptitude Test (PAT) with three
parts: Number series, figure analogies, and arithmetic
problems. Their test was considered to predict the floor limit
of performance in the first programming course for those who
had prior knowledge of programming concepts. In his thesis
work, Otto Seppala researched about the Advances in
assessment of programming skills[20], how to improve
existing assessment techniques and tools so that we can more
accurately assess students’ programming skills and give them

better feedback. He used visual feedback, reading and tracing
of the code to improve the programming skills of students.

As these works suggested there may be few factors
which distinguish the successful programmers from others.
The paper is a preliminary effort to identify some of these
factors which contribute to PQ. The objective of this work is
to create a model to predict the programming ability of a
student by assessing his/her cognitive skills. The resultant
model is expected to predict the programming ability with a
certain level of accuracy

3. OVERVIEW OF THE SYSTEM
The programming ability of a person might depend

on numerous factors ranging from one’s gender or the type of
education one has had. In this project we concentrate on
various cognitive and aptitude skills of the students and their
effect in their PQ such as analytical ability, ability to
synthesize, inductive and deductive reasoning, translation,
decision making and problem solving skills. The effects of
gender, family background, emotional condition or any other
similar aspects on one’s PQ are not considered.

In this project we have identified few cognitive and
aptitude abilities for our experiment. Some of these identified
areas are part of Bloom’s Taxonomy of learning objectives.
Some are on the basis of our experience, assumptions and also
some exploratory options. We need to verify if a correlation
exists between ability in these areas and programming ability

A. Phase I: Designing the Questionnaire

For the modeling of the predictor, we have identified
the following set of factors.

1. Analytical ability – Ability to examine and break
information into parts by identifying motives or causes;
making inferences and finding evidence to support
generalizations.[21]

2. Synthesis ability – Ability to combine facts, ideas, or
information to make a new whole[21]

3. Induction – Ability to move from specific observations
to broader generalizations “(bottom up" approach)[22]

4. Deduction – Ability to move from the more general to
the more specific ("top-down" approach.)[22]

5. Translation – Ability to understand, express and re-
express the ‘same’ or ‘equivalent’ meaning in another
form[23]

6. Decision making – Ability to select a logical choice from
the available options[24]

7. Problem solving – Ability to work through details of
a problem to reach a solution [25]

Once the independent factors were identified for the
model, the questions for assessing each of these abilities were
identified. Datasets of each of these areas consisting of 50
questions were created. The questions were identified from
text books written for the purpose of measuring these skills
and also from the web.

With enough number of questions in place, the
required questionnaire was designed. The questionnaires
consists of five questions each from Analytical, Synthesis,
Induction, Deduction, Translation, Decision Making and one
question from Problem Solving. This is because; the question
in the problem solving section is descriptive type while others
are multiple choice questions.Problem solving questions
involves giving a situation to a student and asking him/her to
write down the steps that would be taken to tackle the situation
effectively. The answer given by a student is evaluated using
the guidelines from the method shown byNational Center for
Research on Evaluation, Standards, and Student Testing
(CRESST)[26]

The questionnaire is then distributed among different
sets of students – the known sample. These groups of students
formed the training groups, about whose programming ability
is already known.Thus their programming ability can be
quantified by a value, which we call the programmer quotient.
The questionnaire was distributed among several training
groups belonging to undergraduate engineering programs in
Information Technology and Electronics & Communication
Departments.

B. Designing theModel

The questionnaires answered by the students with
different PQs are evaluated and the results are analyzed. Then
we tried to correlate or map the aptitude abilities to the
programming ability. Analysis of the questionnaire evaluation
gives us a general trend of the factors that might contribute to
the programming ability of students.

By analyzing the data from the questionnaires, a
model for Programmer quotientis built using statistical data
analysis tools. We assume PQ to be a variable dependent on
several independent variables. Thus the subjective assessment
is translated to an objective assessment, which gives a
quantitative value for the programmer quotient. The model
thus predicts the PQ of a student, based on the assessment of
the questionnaire answers.

This model is then tested on other student groups.
The test groupswere given the questionnaire and their answers
were evaluated. The data is then put to the model and the
model predicts their PQ.

4. RESULTS

Different sets of questionnaires were created and distributed

among known sample of students and the answers were
analyzed. Multiple regression analysis was done on the data
collected to develop the model.

A. Method

Data was collected from a known sample of nearly
100 students. The students were from undergraduate
programmes of Information Technology and Electronics &
Communication in School of Engineering, Cochin University
of Science & Technology, India.

Questionnaires were distributed among the students
and theirprogramming ability was known from their practical
work, viva voce and usage of algorithms/logics in solving

various problems assigned in their practical sessions. Inputs
regarding their programming ability were also taken from the
teaching and lab faculty, to arrive at the final Programmer
Quotient assigned for the students.

The data was then stored in MS Excel. Then using
the multiple regression analysis technique, a model was
generated. For each sample of students, the model was
generated and also, the model was generated for each of the
variable.

The finally generated model of the form Y = b0 + b1
X1 + b2 X2 + …,,……… + bkXk is given by:

PQ = 1.08 + 0.64 * X1 – 0.42 * X2 + 0.02 * X3 + 0.76 *
X4 + 0.04 * X5 + 0.29 * X6 + 0.17 * X7

Where X1 – Analytical Ability
X2 – Synthesis Ability
X3 – Inductive Ability
X4 – Deductive Ability
X5 – Translation Ability
X6 – Decision Making
X7 –Problem Solving

From the model generated, it is clear that Analysis
ability and Deduction ability may be the crucial factors in
determining the Programmer Quotient and also, Inductive
ability and Translation ability may not be a good
differentiator.

The further details of the regression analysis are
given below in the table. The value of R2 determines the
predictive ability of the model. It tells us how much of the
variance of "Y" we have explained in the regression. The
closer R2 is to 1, the better the model and the prediction are.
Adjusted R2 is the percentage measurement of goodness of fit.
The higher this value, the more accurate the equation is.

Regression Statistics

Multiple R 0.865233

R Square 0.748628

Adjusted R Square 0.730673

Standard Error 1.015735

Observations 106

Here, the value of R2 is 0.74, which indicates that the

model has a reasonably good predictive capability.The
standard error is an estimate of the standard deviation of the
coefficient, the amount it varies across cases. It can be thought
of as a measure of the precision with which the regression
coefficient is measured. Here the SE of 1 makes the equation
acceptable.

Another value is the P-value, which is the
significance factor. These values provide the likelihood that
they are real results and did not occur by chance. The lower
the P-Value, the higher the likelihood that the coefficient is
valid. For example, a P-Value of 0.016 for a regression

coefficient indicates that there is only a 1.6% chance that the
result occurred only as a result of chance.

Parameter P-value
Analysis 1.60066E-08
Synthesis 0.002234168
Induction 0.809137687
Deduction 7.70271E-12
Translation 0.645938007
Decision Making 0.001225338
Problem Solving 0.066975398

Here, from the p-values for various factors, we can
assume that the significance of Induction and Translation is
very less in predicting the PQ.

With satisfying values of R2 and p, the model thus
was tested among a sample of 10 students. The PQ predicted
by the model was found to be a good prediction of their
programming ability.

5. CONCLUSION AND FUTURE WORK

The experiments conducted with a sample of about
100 students over 7 factors showed promising results.
Analytical ability and deduction ability could very well be
concluded as two main factors which may contribute to one’s
programming ability. And we could also assume that some of
these factors like Induction and Translation may not be clear
distinguishing factors affecting the programming ability of the
student.

 The model has many real-world applications. The
model can be used at the admission test level to screen the
students admitted to the CS & IT courses. This will ensure that
only students with the programming capability join the course
and thus will reduce the failure rate. It will also help in
improving the morale of the students. At industry level, the
model can be used to identify employees with great
programming skills. They can thus be allotted to projects
requiring good deal of programming skill and vice versa.

 The evaluation and analysis of the method
developed suggest interesting directions for future work. Our
model met almost all the objectives that we aimed, to a
particular extend. Next step is to concentrate on how to
improve the accuracy as a future study.The work could be
enhanced by considering more factors, which are considered to
be affecting the programming ability. This could include
various other factors like Abstraction ability, Critical thinking
etc. Including some other factors like gender could also
provide an interesting insight to the future work.

ACKNOWLEDGMENT
I would like to express my sincere gratitude to my guide

for giving me valuable ideas and guidance.I also thank the
various teaching and laboratory faculty in SOE, CUSATfor
their help inconducting the experiments.

REFERENCES
[1] Andrew Mcgettrick, Roger Boyle, Roland Ibbet, John

Lloyd, Gillian Lovegrove, And Keith Mander;Grand
challenges in computing: Education – A summary.
Computer Journal Vol. 48 No.1, 2005, 42–48.

[2] Sheeson E. Chang; Computer anxiety and perception of

task complexity in learning programming-related skills;
Computers in Human Behavior; Volume 21, Issue 5
September 2005, Pages 713–728, Elsevier

[3] EssiLahtinen, KirstiAla-Mutka, Hannu-MattiJärvinen; A

Study of the Difficulties of Novice Programmers; ITiCSE
'05 Proceedings of the 10th annual SIGCSE conference on
Innovation and technology in computer science education,
Pages 14-18; ACM New York, NY, USA ©2005;

[4] Raymond Lister, Elizabeth S. Adams, Sue Fitzgerald,

William Fone, John Hamer, Morten Lindholm, Robert
McCartney, Jan Erik Mostr, Kate Sanders, Otto Sepp¨al¨a,
Beth Simon, and Lynda Thomas.; A multi-national study
of reading and tracing skills in novice programmers, 2004

[5] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark

Guzdial, Dianne Hagan, Yifat Ben- David Kolikant, Cary
Laxer, Lynda Thomas, Ian Utting, and TadeuszWilusz; A
multinational, multi-institutional study of assessment of
programming skills of first-year CS students. In
workinggroup reports from ITiCSE on Innovation and
technology in computer science education, Canterbury,
UK, 2001. ACM SIGCSE, 2001 - dl.acm.org.

[6] SaeedDehnadi and Richard Bornat; The camel has two

humps’; Feb-2006;
www.cs.mdx.ac.uk/research/PhDArea/saeed/paper1.pdf

[7] D. Mldlan Kurland; Roy D. Pea; Catherine Clement;

Ronald Mawby; A Study Of The Development Of
Programming Ability And Thinking Skills In High School
Students; J. Educational Computing Research, Vol. 2(4),
1986

[8] Jeffrey Carver, Lorin Hochstein, Jason Oslin;

Programming Ability: Do we know it when we see it? An
Empirical Study of Peer Evaluation;

[9] JaanaHolvikivi; Conditions for Successful Learning of

Programming Skills; N. Reynolds and M. Turcsányi-
Szabó (Eds.): KCKS 2010, IFIP AICT 324, pp. 155–164,
2010. © IFIP International Federation for Information
Processing 2010

[10] Richard Bornat, SaeedDehnadi, Simon; Mental models,

Consistency and Programming Aptitude; 2008, Australian
Computer Society, Inc. Tenth Australasian Computing
Education Conference (ACE2008), Wollongong,
Australia, January 2008.

[11] Simon, Sally Fincher, Anthony Robins; Predictors of
Success in a First Programming Course; 2006, Australian
Computer Society, Inc. Eighth Australasian Computing
Education Conference (ACE2006), Hobart, Tasmania,
Australia, January 2006

[12] Richard Bornat; Camels and humps: a retraction*; July

24, 2014

[13] Jens Bennedsen, Michael E. Caspersen; Abstraction
Ability as an Indicator of Success for Learning Computing
Science? ICER’08, September 6–7, 2008, Sydney,
Australia, ACM

[14] Renumol. V. G.,DharanipragadaJanakiram, and

Jayaprakash. S. 2010. Identification of cognitive processes
of effective and ineffective students during computer
programming. ACM Trans. Comput. Educ. 10, 3, Article
10 (August 2010);

[15] Ambrosio, A.P, Fábio Moreira Costa, Leandro Almeida,

Amanda Franco, and JoaquimMacedo; Identifying
cognitive abilities to improve CS1 outcome; 41st
ASEE/IEEE Frontiers in Education Conference; October
12 – 15, 2011

[16] B. Kaučič*, T. Asič; Improving Introductory
Programming with Scratch; MIPRO 2011, May 23-27,
2011, Opatija, Croatia; IEEE

[17] SaeedDehnadi; Testing Programming Aptitude;

Workshop of the Psychology of Programming Interest
Group, 2006 - hssc.sla.mdx.ac.uk

[18] MarkkuTukiainen and EeroMönkkönen; Programming

aptitude testing as a prediction of learning to program;
14th Workshop of the Psychology of Programming
Interest Group, Brunel University, June 2002

[19] David CLARK, Testing Programming Skills with

Multiple Choice Questions; Informatics in Education,
2004, Vol. 3, No. 2, 161–178

[20] Otto Seppala; Advances in assessment of programming

skills; Aalto University publication series DOCTORAL
DISSERTATIONS, 98/2012

[21] Allen and Noel, 2002; Types and levels of educational

obje;ctives; 2005 University of Central Florida UCF
Academic Program Assessment Handbook;
http://oeas.ucf.edu/doc/Bloom_Taxonomy.pdf ;

[22] http://www.socialresearchmethods.net/kb/dedind.php;
[23] http://www.academia.edu/1268673/Translation_Ability_a

nd_Translatorial_Competence_Expert_and_Novice_Use_
of_Dictionaries;

[24] http://www.businessdictionary.com/definition/decision-
making.html;

[25] http://www.businessdictionary.com/definition/problem-
solving.html;

http://www.cs.mdx.ac.uk/research/PhDArea/saeed/paper1.pdf
http://oeas.ucf.edu/doc/Bloom_Taxonomy.pdf
http://www.socialresearchmethods.net/kb/dedind.php;
http://www.academia.edu/1268673/Translation_Ability_a
http://www.businessdictionary.com/definition/decision-
http://www.businessdictionary.com/definition/problem-

[26] National Center for Research on Evaluation, Standards,

and Student Testing (CRESST)

