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 
Abstract— Computing education necessitates programming 
skill. But it varies in students. How can we quantify or 
measure the skill? We are yet to have a standardized 
measurement system for the programming ability. The concept 
of Programmer Quotient (PQ), which gives a measure of 
innate programming ability, attributes a value to one’s ability 
to program, just like Intelligence Quotient (IQ). This would 
remain the same independent of the programming experience. 
In this paper, we consider few inherent skills such as 
Analytical ability, ability to synthesize etc. and try to correlate 
these skills to one’s programming ability. A questionnaire was 
designed and used to measure the skill in these areas. Then a 
model was designed from the data collected. It can predict the 
programming skills of a student from his/her inherent skills, 
irrespective of the programming language.  
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1. INTRODUCTION 

THE primary purpose of computing education is to 
impart to students a set of skills required to become a good 
programmer. But both teaching and learning of programming 
is considered to be really challenging by many [1].To learn 
programming, it requires correct understanding of the abstract 
concepts. Nature of the subject makes it difficult for many to 
learn it. For teaching, the size and heterogeneous nature of the 
student groups makes it difficult to design instruction, in such 
a way that it would be beneficial for everyone.[3] 

Students find it hard to acquire the logic of computer 
programming. Many research works at the end of Introductory 
Programming Course (IPC) have shown that the rate of failure 
in these programming courses is relatively high [4] [5] [7].The 
high dropout and failure rates in IPCs are a universal problem 
that motivated many researchers to propose methodologies 
and tools to help students. 

Another perception of the difficulty faced by students 
in programming is that not all students have the ability or the 
aptitude to program well [6]. This group argues that if we can 
measure this aptitude before admitting the students to a 
programming course, the failure rate and the dropout rates can 
be significantly reduced.Programming-related skills refer to 
the ability of a person in operating a computer to perform a 
task or multiple tasks. Handling a computer task with certain 
level of complexity often requires computer programming 
skills.[2] 

This paper is based on the hypothesis that the 
programming ability is correlated with other measurable 
inherent skills or aptitudes of a person. But a test for 
measuring programming aptitude and identifying students who 
have a natural aptitude for programming has not yet been 
standardized. 

Mcgettricket. al, introduced a concept of Programmer 
Quotient (PQ) to measure the programming ability [1]. The 
proposal was to develop the concept of PQ that would remain 
the same irrespective of the programming experience.  

2. RELATED WORK 

Research works in this field of computing education 
can be broadly classified into two. In the first type, the 
researchers have attempted to improve the methods of 
teaching programming. Several methods and tools have been 
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developed to assist the students to grab the concepts of 
programming. And the second category focuses on identifying 
what differentiates successful programmers from non-
successful programmers. Some of the notable works are 
discussed below. 

A. Improvement in Methodology 

A great number of works deals with how the teaching 
methods or the delivery of the contents can be modified or 
improved so that the students are able to grasp the underlying 
concepts of programming. Simplified programming languages, 
environments and simulating software have been proposed to 
support teaching and self-learning different programming 
techniques. 

A prominent work in early days suggests that visual 
way of learning programs can effectively improve the 
understanding.[7] In their paper, B. Kaučič et al.[16] has 
discussed a method to improve the teaching methodology for 
programming so that the success rate can be improved. They 
suggest that, a new generation of programming tools and 
activities can help to overcome the shortcomings of previous 
initiatives, and thus make computer programming more 
accessible to everyone and suitable for youngsters. 

In their paper M.McCracken et al[5] conducted a 
multinational study of the assessment of programming skills in 
first year CS students. They found that the problems observed 
with programming skills seem to be independent of country 
and educational system and that the most difficult part for 
students seemed to be abstracting the problem to be solved 
from the exercise description 

Janna Holovikiet. al found in their work that students 
should have certain basic abilities like mental schemas in 
regard to procedural thinking and action, functional 
understanding of processes, and a comfortable relationship to 
technological artifacts when they start learning 
programming[9]. 

B. Factors Affecting Programming Ability 

In Predictors of Success in a First Programming 
Course, [11] Simon et al, studied the relationship of 
programming ability with that of one’s spatial visualization, 
behavioral aspects and Attitude. It has been found that, the 
behavioral aspects like searching a phone book has clear 
association with one’s ability to program well. The learning 
approach also has a positive correlation on the effectiveness.  

In two related papers Dehnadi, Richard et al. reported 
that the students can be classified based on the mental models 
they used to solve the questions: i) Consistent and ii) 
Inconsistent [6] [10]. Consistent students use the same model 
to solve all questions while the inconsistent group used 
different models for different questions. They found that 
consistent students tend to perform slightly better than the 
inconsistent students and they suggested that students can be 
divided into programming sheep and non-programming goats 
[6]. But in paper[10] they confirmed that this test doesn't work 
if the intake is already experienced.The paper [6] claimed that 
with the test used one can divide the students into 2 categories: 
the programming-sheep and the non-programming goats. 

But recently, the above work was retracted by the co-
author Richard Bornet [12]. While he accepts it to be true that 
novices who answer ‘consistently’ in the test are more likely 
to pass a programming course, he retract his claims that 
Dehnadi discovered a correct way to measure the 
programming skills and students can be divided into 
programming sheep and non-programming goats. 

Kurland et al. [7] in a pioneer work on the 
development of programming skills in high school students 
and found that Math and reasoning abilities have direct 
correlation with the programming skills.Simon et al,[11] 
studied the relationship of programming ability with that of 
one’s spatial visualization, behavioral aspects and attitude. 
They found that there are several factors positively correlate 
with one’s programming ability.  And they are logical 
thinking, problem solving attention to detail, consideration of 
alternatives, mathematics, knowledge of programming, ability 
to learn, knowledge of computers, modularizing, and planning. 

Jens Bennedsen et.al[13] claimsthat general 
abstraction ability has a positive impact on performance in 
computing science, but they did not find a correlation between 
abstraction ability and overall performance in learning 
computing science. In their work [14], Renumol et.al, has 
identified a set of 8 cognitive processes through which a 
student may go through while programming.  In a similar 
work,[15] Ambrosio, et.al, has pointed that abstraction and 
command sequencing are the 2 cognitive abilities which are 
identified as key to explain the difficulties the students 
encounter when learning to program. Underlying the 
abstraction difficulties are the student’s problem solving 
abilities. Problem solving is composed of Analysis and 
Synthesis. 

Some of the existing papers on methods to test the 
programming skills are described by David Clark [19] and 
SaeedDehnadi [17]. They have tried the effectiveness of 
testing the programming skills using MCQs from the 
programming knowledge. David Clark in his work[19], 
assessed students’ programming skills with MCQs from 4 
levels of cognitive skills namely, Knowledge, Comprehension, 
Application, and Problem-solving. It was found that 
comprehension, application and analysis questions were good 
discriminators for the students’ skill, but Knowledge questions 
were not significant discriminators. In [17], Dehnadi tried to 
give an objective interpretation of the results from previous 
experiments using mental models for predicting success in 
programming course. 

In their paper, ‘Programming aptitude testing as a 
prediction of learning to program’ [18], MarkkuTukiainen 
et.al.devised a Programming Aptitude Test (PAT) with three 
parts: Number series, figure analogies, and arithmetic 
problems. Their test was considered to predict the floor limit 
of performance in the first programming course for those who 
had prior knowledge of programming concepts. In his thesis 
work, Otto Seppala researched about the Advances in 
assessment of programming skills[20], how to improve 
existing assessment techniques and tools so that we can more 
accurately assess students’ programming skills and give them 



 

 
 

better feedback. He used visual feedback, reading and tracing 
of the code to improve the programming skills of students. 

As these works suggested there may be few factors 
which distinguish the successful programmers from others. 
The paper is a preliminary effort to identify some of these 
factors which contribute to PQ. The objective of this work is 
to create a model to predict the programming ability of a 
student by assessing his/her cognitive skills. The resultant 
model is expected to predict the programming ability with a 
certain level of accuracy 

3. OVERVIEW OF THE SYSTEM 
The programming ability of a person might depend 

on numerous factors ranging from one’s gender or the type of 
education one has had. In this project we concentrate on 
various cognitive and aptitude skills of the students and their 
effect in their PQ such as analytical ability, ability to 
synthesize, inductive and deductive  reasoning, translation, 
decision making and problem solving skills. The effects of 
gender, family background, emotional condition or any other 
similar aspects on one’s PQ are not considered. 

In this project we have identified few cognitive and 
aptitude abilities for our experiment. Some of these identified 
areas are part of Bloom’s Taxonomy of learning objectives. 
Some are on the basis of our experience, assumptions and also 
some exploratory options. We need to verify if a correlation 
exists between ability in these areas and programming ability 

 

A. Phase I: Designing the Questionnaire 

For the modeling of the predictor, we have identified 
the following set of factors.  

1. Analytical ability – Ability to examine and break 
information into parts by identifying motives or causes; 
making inferences and finding evidence to support 
generalizations.[21] 

2. Synthesis ability – Ability to combine facts, ideas, or 
information to make a new whole[21] 

3. Induction – Ability  to move from specific observations 
to broader generalizations “(bottom up" approach )[22] 

4. Deduction – Ability to move from the more general to 
the more specific ("top-down" approach.)[22] 

5. Translation – Ability to understand, express and re-
express the ‘same’ or ‘equivalent’ meaning in another 
form[23] 

6. Decision making – Ability to select a logical choice from 
the available options[24] 

7. Problem solving – Ability to work through details of 
a problem to reach a solution [25] 

Once the independent factors were identified for the 
model, the questions for assessing each of these abilities were 
identified. Datasets of each of these areas consisting of 50 
questions were created. The questions were identified from 
text books written for the purpose of measuring these skills 
and also from the web. 

With enough number of questions in place, the 
required questionnaire was designed. The questionnaires 
consists of five questions each from Analytical, Synthesis, 
Induction, Deduction, Translation, Decision Making and one 
question from Problem Solving. This is because; the question 
in the problem solving section is descriptive type while others 
are multiple choice questions.Problem solving questions 
involves giving a situation to a student and asking him/her to 
write down the steps that would be taken to tackle the situation 
effectively. The answer given by a student is evaluated using 
the guidelines from the method shown byNational Center for 
Research on Evaluation, Standards, and Student Testing 
(CRESST)[26] 

The questionnaire is then distributed among different 
sets of students – the known sample. These groups of students 
formed the training groups, about whose programming ability 
is already known.Thus their programming ability can be 
quantified by a value, which we call the programmer quotient. 
The questionnaire was distributed among several training 
groups belonging to undergraduate engineering programs in 
Information Technology and Electronics & Communication 
Departments. 

B. Designing theModel 

The questionnaires answered by the students with 
different PQs are evaluated and the results are analyzed. Then 
we tried to correlate or map the aptitude abilities to the 
programming ability. Analysis of the questionnaire evaluation 
gives us a general trend of the factors that might contribute to 
the programming ability of students. 

By analyzing the data from the questionnaires, a 
model for Programmer quotientis built using statistical data 
analysis tools. We assume PQ to be a variable dependent on 
several independent variables. Thus the subjective assessment 
is translated to an objective assessment, which gives a 
quantitative value for the programmer quotient. The model 
thus predicts the PQ of a student, based on the assessment of 
the questionnaire answers.  

This model is then tested on other student groups. 
The test groupswere given the questionnaire and their answers 
were evaluated. The data is then put to the model and the 
model predicts their PQ. 

4. RESULTS 
 
Different sets of questionnaires were created and distributed 

among known sample of students and the answers were 
analyzed. Multiple regression analysis was done on the data 
collected to develop the model. 

A. Method 

Data was collected from a known sample of nearly 
100 students. The students were from undergraduate 
programmes of Information Technology and Electronics & 
Communication in School of Engineering, Cochin University 
of Science & Technology, India. 

Questionnaires were distributed among the students 
and theirprogramming ability was known from their practical 
work, viva voce and usage of algorithms/logics in solving 



 

 
 

various problems assigned in their practical sessions. Inputs 
regarding their programming ability were also taken from the 
teaching and lab faculty, to arrive at the final Programmer 
Quotient assigned for the students. 

The data was then stored in MS Excel. Then using 
the multiple regression analysis technique, a model was 
generated. For each sample of students, the model was 
generated and also, the model was generated for each of the 
variable. 

The finally generated model of the form Y = b0 + b1 
X1 + b2 X2 + …,,……… + bkXk is given by: 

 
PQ = 1.08 + 0.64 * X1 – 0.42 * X2 + 0.02 * X3 + 0.76 * 
X4 + 0.04 * X5 + 0.29 * X6 + 0.17 * X7 

Where X1 – Analytical Ability 
X2 – Synthesis Ability 
X3 – Inductive Ability 
X4 – Deductive Ability 
X5 – Translation Ability 
X6 – Decision Making 
X7 –Problem Solving 
 

From the model generated, it is clear that Analysis 
ability and Deduction ability may be the crucial factors in 
determining the Programmer Quotient and also, Inductive 
ability and Translation ability may not be a good 
differentiator.  

The further details of the regression analysis are 
given below in the table. The value of R2 determines the 
predictive ability of the model. It tells us how much of the 
variance of "Y" we have explained in the regression. The 
closer R2 is to 1, the better the model and the prediction are. 
Adjusted R2 is the percentage measurement of goodness of fit. 
The higher this value, the more accurate the equation is. 

 

Regression Statistics 

Multiple R 0.865233 

R Square 0.748628 

Adjusted R Square 0.730673 

Standard Error 1.015735 

Observations 106 
 
Here, the value of R2 is 0.74, which indicates that the 

model has a reasonably good predictive capability.The 
standard error is an estimate of the standard deviation of the 
coefficient, the amount it varies across cases. It can be thought 
of as a measure of the precision with which the regression 
coefficient is measured. Here the SE of 1 makes the equation 
acceptable. 

Another value is the P-value, which is the 
significance factor. These values provide the likelihood that 
they are real results and did not occur by chance. The lower 
the P-Value, the higher the likelihood that the coefficient is 
valid. For example, a P-Value of 0.016 for a regression 

coefficient indicates that there is only a 1.6% chance that the 
result occurred only as a result of chance. 

 
Parameter P-value 
Analysis 1.60066E-08 
Synthesis 0.002234168 
Induction  0.809137687 
Deduction 7.70271E-12 
Translation 0.645938007 
Decision Making 0.001225338 
Problem Solving 0.066975398 
 

Here, from the p-values for various factors, we can 
assume that the significance of Induction and Translation is 
very less in predicting the PQ.  

With satisfying values of R2 and p, the model thus 
was tested among a sample of 10 students. The PQ predicted 
by the model was found to be a good prediction of their 
programming ability.  

5. CONCLUSION AND FUTURE WORK 
 

The experiments conducted with a sample of about 
100 students over 7 factors showed promising results. 
Analytical ability and deduction ability could very well be 
concluded as two main factors which may contribute to one’s 
programming ability. And we could also assume that some of 
these factors like Induction and Translation may not be clear 
distinguishing factors affecting the programming ability of the 
student. 

  The model has many real-world applications. The 
model can be used at the admission test level to screen the 
students admitted to the CS & IT courses. This will ensure that 
only students with the programming capability join the course 
and thus will reduce the failure rate. It will also help in 
improving the morale of the students. At industry level, the 
model can be used to identify employees with great 
programming skills. They can thus be allotted to projects 
requiring good deal of programming skill and vice versa. 

  The evaluation and analysis of the method 
developed suggest interesting directions for future work. Our 
model met almost all the objectives that we aimed, to a 
particular extend. Next step is to concentrate on how to 
improve the accuracy as a future study.The work could be 
enhanced by considering more factors, which are considered to 
be affecting the programming ability. This could include 
various other factors like Abstraction ability, Critical thinking 
etc. Including some other factors like gender could also 
provide an interesting insight to the future work. 
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